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1. Space in the mammalian brain 
 

1.1  Where am I? 

You wake up one morning in a hotel room. You have just arrived in Cozumel, Mexico for a short 

vacation. But right now, coming out of a dream, you do not quite remember this fact. The room is 

dark, there is only a dim light coming from the shutter on the right side somewhere at a distance. 

You do not know where you are.  Or why you are there. It cannot be your home. Or is it?  The 

bathroom would be right on the left of the door. But where is the door? This is a transient 

disorientation that many have occasionally experienced. Puzzling and disturbing. But it does not 

last long. Our normal mode of being includes a persistent awareness of where we are in space and 

this awareness seems to be tightly connected with our ability to remember facts. For example, to 

remember that we are on vacation in Cozumel.   

 

Figure 1.1. The hippocampus 

A) Sagittal MRI with medial aspect of human hippocampus. The arrow shows the alveus of 

the posterior part of the hippocampus. (From Gardner and Hogan, Clinical Anatomy 18: 

481-487, 2005) 

B) Rat Hippocampus (From Teyler and DiSchenna, Brain Res. Bull. 12:711-719, 1984) 

C) Rodent hippocampal circuitry drawn by S. Ramon Y Cajal. (1911) 
 

 

The ability to form certain kinds of new memories as well as the ability to locate ourselves in 

space are both dependent on the hippocampus, a small yet very important seahorse-shaped 

structure inside the temporal lobes of the brain.  The hippocampus (Fig. 1.1a) has attracted the 

attention of Neuroanatomists since the beginning of modern neuroscience. The oldest drawings of 

the hippocampal network (Fig. 1.1b) are credited to the early giant of neuroanatomy, Santiago 

Ramon y Cajal, who was among the first to propose the “Neuron Doctrine”.  What is now 

common knowledge, was then, at the end of the 19
th
 century, the revolutionary idea that nerve 

cells form a communication network through a dense pattern of interconnections.  

 

Damage to the hippocampus is known to cause anterograde amnesia, the inability to form new 

memories. This has been studied in the famous clinical case of  H.M. (Milner et al., 1968), a man 

who had the medial temporal lobes on both sides removed to treat a severe form of epilepsy.  The 

intervention cured the epilepsy, but it had a very severe side effect: H.M. was left without the 
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ability to form new memories of facts. Nevertheless, he maintained the ability to learn new motor 

skills. Brenda Milner trained HM to execute difficult manual tasks. For example, tracing the 

shape of a star while looking at it through a mirror (Milner, 1962). After practicing for a few trials 

on one day he was tested on a subsequent day. On the second day he retained the level of skill 

that he had acquired in the previous day. But he could not remember the fact that he had practiced 

that task earlier. In fact, he was quite surprised at his own unexpected dexterity in such a difficult 

activity. Dramatically more common than the story of HM is Alzheimer disease, which causes a 

progressive loss of memory capacity and disorientation, associated with a severe damage to the 

hippocampus and the cerebral cortex. 

 

1.2 Space representations in the Mongolian Gerbil 

The amnesia and disorientation following hippocampal damage are cues that the ability to locate 

ourselves in space and in time is strongly associated with the function of this brain region. This 

spatial skill is not merely human, as it is present in a multitude of animal species. A well-known 

example is a species of butterfly, the Monarch, who migrates every year from central Mexico to 

Canada and then back. On more moderate geographical scales, rodents have notable skills to 

navigate across various terrains and in various lighting conditions. 

 

Mongolian Gerbils are the small rodents that some people like to keep as pets. Besides being a 

cute domestic animal, the Mongolian Gerbils is a skilled explorer and scavenger. The name 

comes from the hostile environment these gerbils come from, the Mongolian steppes.  These are 

large, hostile and arid territories, where food is scarce and long trips are necessary for the gerbils 

to find seeds and other nutrients and bring them back to their burrows for storage. These small 

rodents are among our best models of animal exploration.  

 

Figure 1.2. Search-pattern of one gerbil. A: plan-view of landmark (circle) and reward-site 

(triangle). Calibration is 100 cm. Landmarks are not shown to scale. B: paths followed by the 

gerbil when released from different points within the arena.  C: Cumulative search-distribution 

resulting from 21 tests of 60 s duration. In this and subsequent figures., the animal's position in 

relation to the landmark-array is given to within a cell 11 cm across and 13.3 cm high. The 

blacker the cell, the more time the gerbil spent there. Time spent in each cell is expressed as a 

percentage of that spent in the most visited cell. The latter is filled by 25 dots arranged in a 

square. (From Collett et al. 1986) 

 

In a set of now classic experiments, Collett, Cartwright and Smith (1986) trained Mongolian 

gerbils to seek food inside a circular arena. They hid a sunflower seed under a layer of gravel 
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scattered on the floor. The environment was carefully designed so that only the objects, or 

“landmarks” placed by the investigators could serve as spatial references for the gerbils. The 

arena had a diameter of 3.5 meters and was placed inside a room whose walls were painted black. 

A light bulb illuminated the floor and left the walls in the shadow. Somewhere in the center of the 

arena, the investigators placed a white cylinder that was clearly visible to the gerbil. The 

sunflower seed was hidden always at a distance of 50cm and at fixed angle from the base of the 

cylinder (Fig. 1.2).  Collett and colleagues placed the gerbil in the arena and allowed it to find the 

seed for several training trials. On each trial, they changed the position of the landmark cylinder, 

but they maintained the position of the seed relative to the landmark. After a few trials, the gerbils 

learned to move straight toward the seed and retrieve it.  

 

Once the investigators verified that the gerbils had learned this simple task, they removed the 

seed and watched as the gerbils searched for their reward. The Fig. 1.2C displays the performance 

of the gerbils in the test trials. The area of each black square is proportional to the total time spent 

by a gerbil searching within the corresponding region of space. This simple diagram demonstrates 

that the gerbil learned to predict the location of the seed in relation to the landmark. Importantly, 

the gerbil searched in the correct location even when starting different trials from different 

locations. That is, the gerbils had formed a spatial memory of the location of the goal in terms of 

its distance and orientation with respect to the landmark. And even if the investigators took care 

of removing the external visual cues, the ability to identify the correct direction with respect to 

the cue indicates that the gerbils had a sense of a fixed “north arrow” which could not have been 

supplied by the landmark alone, since this was uniform in color and cylindrical in shape
i
.  

 

To gain a deeper knowledge about space representations in the gerbils, Collett and colleagues 

changed the pattern of landmarks once the gerbils had learned to retrieve the seed. Their objective 

was to investigate how the relation between the goal and the landmarks was understood and 

exploited by the gerbil’s brain. In one experiment, the gerbils were first trained to retrieve the 

seed inside an arena with two identical landmarks (Fig. 1.3).  The seed was placed in an 

equilateral triangle arrangement, at equal distance from the two landmarks. How would the 

trained gerbil react if the distance between the landmarks were unexpectedly doubled? We make 

the working hypothesis that the gerbil’s brain forms a representation of the environment and that 

this representation, which we call an “internal model”, is updated as the gerbil experiences new 

spatial relations among itself, the landmarks and the seed.  We may think of two possible 

outcomes. In one case, the gerbil’s internal model of the environment preserves the shape of the 
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seed-landmark pattern and searches at one location which is at the same distance from the two 

landmarks. Since the distance between the landmarks has doubled, the distance of the seed from 

the line joining the landmarks must also increase so that the seed is at the vertex of an isosceles 

triangle. Alternatively, the internal model preserves the expected distance and orientation of the 

seed with respect to either landmark. This means that we now would have not one but two distinct 

sites where the seed might be at. This second outcome is what Collett and coworkers observed: 

the gerbils during the test trials searched for the seed at two distinct positions, each one 

corresponding to the position of the seed relative to the closest landmark.   

 

Figure 1.3.  Euclidean versus scaling transformations.   A: Gerbils were trained to retrieve the 

seed placed at equal distance from two identical landmarks. B: Search pattern after training. C: 

When the distance between the landmarks is increased, the gerbils do not use a scaling rule. 

Instead, they look for the seed at two sites. Each searched site is at the same distance from the 

corresponding landmark in the trained configuration. This means that the Gerbil understood that 

the environment had changed. The landmarks have been displaced and the expected distance 

between the seed and each landmark has remained fixed.   D: In another experiment, gerbils were 

trained with two different landmarks: a dark aluminum cylinder on the left and a white cylinder 

on the right. The seed, again, was placed in an equilateral triangle configuration as in A. The 

black square indicates the location from which the gerbils start searching. E: search distribution 

when the landmarks are rotated by 180 degrees. The gerbil searches in the correct location with 

respect to the triangular arrangement of the landmarks. The black square indicates the point 

where the gerbil was released for this test F: Search distribution with the landmarks in the same 

configuration used for training. F: Search distribution with the landmarks rotated by 180 

degrees. In this case, the gerbils apply the same transformation to the expected site for the 

seed.(From Collett et al.  1986) 
 

Consider a new scenario (Fig. 1.3D) in which the gerbils are trained with two different 

landmarks, an aluminum cylinder and a white cylinder. Again, the seed is placed in a triangular 

arrangement, at equal distance from the two cylinders. After the gerbils have been trained to find 

the seed, they are tested with a 180 degree rotation of the landmark arrangement: their positions 

are now interchanged, but their distances are preserved. In this new environment, the gerbil 

searches the seed at a location that is consistent with this rigid rotation, that is at a location which 

is reflected over the segment joining the two landmarks (Fig. 1.3F). These results suggest that not 

only the gerbils have a clear sense of distance, but they also can distinguish between a rigid 

transformation that preserves the distances between the landmarks and can be interpreted as a 

rotation and a transformation in which the distances have been altered. In the latter case, the 

gerbils’ brains deduce that the landmarks have moved. Accordingly, the seed is searched in 

relation to each landmark separately. Instead, in the former case, the gerbil’s brain understands 

that distances have not changed. Therefore, the scene - landmarks and seed - has undergone either 
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a rotation or a translation or both.  Or, alternatively, the viewpoint has changed by a relative 

movement of the gerbil with respect to the fixed scene. The gerbil’s brain, however, is not willing 

to accept the possibility that there has been a dilation of the environment. A dilation might occur 

through development, as the animal grows in size, but certainly not in the time scale of the 

experiment. As we will discuss in more detail, the two situations – rigid motions and scale 

changes - are representative of two types of affine transformations of space. These are all linear 

transformations, and only a subclass of them preserves the distance between points.  This is the 

subclass of isometries or Euclidean transformations. As we move around in our environment, the 

points and objects around us remain unchanged. Therefore, our representation of these points and 

objects undergoes transformations of this Euclidean type. 

 

1.3 Some general properties of space maps in psychology and mathematics 

There is an ancient debate between two views of animal intelligence. In one view -  we call it the 

“reductionist” view -  what we think of as intelligence is nothing but the apparent manifestation 

of automatic behaviors through which an organism seeks to acquire the largest amount possible of 

good stuff or, conversely, seeks to avoid bad stuff. Good and bad stuff are the less technical 

names of positive reward and negative reward. The reductionist viewpoint was once known as the 

stimulus-response or S-R theory. At its origin is the work of Clark Hull who investigated learning 

as a consolidation of stimulus-response associations (Hull, 1930). This conceptual  framework 

has had a revival in  theories of optimal control (Todorov and Jordan, 2002) and reinforcement  

learning (Sutton and Barto, 1998), based on solid mathematical principles as well as on empirical 

observations. 

 

In the other view, that we call the “cognitive” view, organisms do not simply respond to internal 

and external stimuli, but they create knowledge. As they act in their environment, they acquire 

and maintain information that may not be immediately conducive to reward but may be later used 

to this purpose. Edward Tolman was an early champion of the cognitive view (Tolman, 1948). He 

vehemently opposed Hull-stimulus-response approach. According to Tolman, when a rat moves 

inside a maze in search of food “something like a field map gets established in the rat’s brain.” 

The studies of Tolman as well as of other experimental psychologists of the time were mostly 

carried out on rats. The rats were placed within more or less complicated mazes, with corridors, 

curves and dead-end.  Tolman described one such experiment as being particularly supportive of 

the cognitive view.  The rats entered a starting chamber at the base of a Y-shaped maze.  They 
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moved forward and were to choose between the right and left arms of the Y.  At the end of each 

arm there was an exit. Near the right exit there was a bowl of water and near the left exit there 

was a bowl of food. In an initial phase, the rats were satiated with food and water before entering 

the maze. They did not care about drinking or eating at the end of the maze. However, they 

wanted to find an exit quickly.  Sometimes they took the right exit and sometimes the left with no 

particular preference. After a few repetitions of these initial trials, the rats were divided into two 

groups. One group was made hungry and the other was made thirsty before entering the maze.  It 

turned out, Tolman reported, that the thirsty rats went immediately to the right, where there was 

water, and the hungry rats went immediately to the left, where there was food. He concluded that 

the rats during the first phase of the experiment learned where the food and the water were 

despite the fact that they did not receive any water or food reward. In the second phase, as they 

became hungry or thirsty, they went to the right place. The name for this kind of learning is 

"latent learning" because it is not associated to the delivery of reward and Tolman saw it as 

crucial evidence against the S-R theory. 

 

While there is a natural dialectic tension between reductionist and cognitivist views, these views 

are mutually incompatible only in their most extreme versions. In the initial part of the 

experiment, the rats entered the maze without interest for water or food. However, they were 

already endowed with the notion that food and water are important items from past stimulus-

response associations. Then, the unexpected presence of food and water was registered as a 

salient event. One can say that such an event is interpreted by the brain as an error over the 

expectation that the maze was merely an empty path. This type of unexpected event is known to 

trigger learning and the formation of new memories. Thus, the pairing between stimuli and 

responses or, in this case the association of motor commands with their potential to generate 

reward does not have to be restricted to narrow temporal contiguity.  In this text we are not 

considering the formation of maps in opposition to the mechanisms of reinforcement. It is 

abundantly evident that both are expressed in our brains. The challenge of reconciling stimulus-

response mechanisms with the formation of cognitive maps may well lead to a deeper 

understanding of biological learning. 

 

Before considering how maps can be formed, we must ask what is a space map.  In mathematics a 

“mapping” establishes a correspondence between the elements of two sets. Take, for example, a 

typical street map of Paris. In this case we have a correspondence between the points on a sheet 

of paper, a small planar surface, and points in the French capital. The space of Paris is three-
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dimensional, whereas the space of the map is two-dimensional.  Therefore the street map involves 

a projection from 3 to 2-D. The difference in dimensions imposes some restrictions on the way 

we go between the map and the space it represents. Each point in Paris has an image in each point 

of the planar surface of the map. But each point of the map corresponds to a whole line  - a 

vertical line – in Paris. One can find different images for different buildings. But all the floors in a 

building have the same image on the planar map. We see here a first important point about 

topographical maps. They compress information so that not everything is represented but only 

what can be of some utility. The Argentinean writer Jorge Luis Borges wrote a short story about a 

fictional emperor who asked a team of cartographers to create a map so detailed to contain 

literally everything that was inside his empire: every grain of sand, every speck of wood, etc. The 

cartographers succeeded in their mission. But at the end, it turned out that their map, being so 

absolutely complete, was also perfectly useless.  

 

On the street map of Paris, we find an index where we read something like “Eiffel Tower, E4.” 

This means that the object Eiffel Tower is at the intersection of the row labeled E with the column 

labeled 4. The map is organized in a grid, which divides the territory into a finite number of 

squares.  Each square is identified by two symbols, corresponding to the rows and columns of the 

grid. In most street maps, one set of symbols are letters and the other are integers.  This is a trick 

to give a distinct identity to rows and columns. The letters, like the natural numbers follow an 

order: A, B, C, D... They only differ from numbers in that operations such as sums and 

subtractions are not explicitly defined.  This is because the average tourist uses the map only to 

locate objects.  However, if numbers were used in place of generic labels, then one could carry 

out arithmetic operations and place these operations in correspondence with objects in the real 

world. For example, one could add the displacements from landmark L1 to landmark L2 and from 

landmark L2 to landmark L3 to derive the displacement from landmark L1 to landmark L3.  This 

is where a more rigorous mathematical definition of a mapping becomes most valuable.   

 

Figure 1.4. Mapping the circle. Left: The real line is placed in correspondence to the lower half-

circle by drawing a line from the center of the circle, through the point P. The intersection with 

the real line is the number x . This establishes a one-to one correspondence between the points in 

the lower half- of the  circle and the whole real line. Right: Two circular arcs, AC and BD, are 

mapped by two charts onto two real intervals, (x
A 

 , x
C
) and

 

(x
B 

 , x
D 

). Note that the two charts 

have different “gains”, as the projecting distances between the real lines and the circle are 

different. They also have overlapping regions in their domains (the arc BC). A collection of 

charts that cover the whole circle is called an “atlas”. 
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The connection between numbers and “things” -for lack of a better term- is central to the 

development of topology and geometry. The prime example of this is the concept of the real line. 

A line is a geometrical entity, made of a continuum of points. The real line, indicated as , is a 

simple and fundamental correspondence between the real numbers - extending from   to  - 

and the points of a straight line. The correspondence established by is bijective:  each point on 

the line corresponds to one and only one real number and each real number corresponds to one 

and only one point on the line.  Then, real numbers and points on the line can be used 

interchangeably. What happens if instead of a real line we consider some other geometrical 

object? For example, consider a circle (Fig. 1.4). Because the real line is in some ways equivalent 

to the real numbers, we ask if the points on the real line can be placed in a bijective 

correspondence to the points on the circle by some type of projection. However, things are now 

more complicated.  We see that, by projection, all the points in the lower half circle can be placed 

in correspondence with the entire real line, so that the two points on the “equator”, Q and R, 

correspond to   and   respectively. The right panel of Fig. 1.4 illustrates how the entire 

circle is mapped over multiple segments on the real line. Each segment is placed in 

correspondence with a portion of the circle, i.e. with an arc.  The mapping on each segment is an 

example of what is called a “chart”.  By combining multiple charts we may cover the entire circle 

and obtain what is called an “atlas”.  This mathematical terminology was borrowed from 

geography and from the ordinary concept of a world atlas, as a collection of charts that, put 

together, cover the entire globe.  In building an atlas,  it is of great importance to insure an precise 

correspondence in the  regions where contiguous charts are overlapping.  In a world atlas there 

are identical regions in different pages covering contiguous areas of the globe. Likewise, to make 

an atlas of the circle in Fig. 1.4, we need to rescale the two charts on the left of the figure so as to 

have a consistent mapping  across charts.  

 

Figure 1.5. Neural charts. The model of Samsonovich and McNaughton depicts the activities of a 

collection of 100 hippocampal place neurons, by locating each neuron over a Cartesian x-y plane 

that represents the extrinsic space in which the rat is moving. The activity map is a snapshot of 

the activities over the entire set of recorded place cells when the rat was passing by the central 

location of the chart. (from Samsonovich and McNaughton, 1997,  drawing on th ebottom portion 

is from Eichenbaum et al, 1999)  

 

The mathematical ideas of maps and charts have become increasingly relevant to describe the 

pattern of neural activities in the hippocampus. This is illustrated in Fig. 1.5, where the activities 

recorded from about 100 neurons in the hippocampus are represented over a region that 
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corresponds to a 62x62cm box in which a rat was free to move. These data come from an 

experiment of Matthew Wilson and Bruce McNaughton (Wilson and McNaughton, 1993) but 

were arranged in this particular representation in a subsequent article by Alexei Samsonovich and 

McNaughton (Samsonovich and McNaughton, 1997).  Isolated locations on the xy plane 

correspond to the activity of recorded hippocampal neurons. This correspondence establishes a 

chart that relates the locations of space explored by the rat to the activity of a family of neurons in 

the hippocampus that are called “place cells” and were discovered in the early 1970’s.  

 

1.4 Place cells 

The neurons studied by Samsonovich and McNaughton were discovered twenty years earlier by 

John O’Keefe and  Jonathan Dostrovsky (O'Keefe and Dostrovsky, 1971).  They were studying 

the activity of neurons in the rat’s hippocampus and saw that a small fraction of these cells (about 

10%) became active when the rat was placed in particular locations and was oriented in particular 

directions. In these early experiments at the Department of Anatomy of the University College in 

London, the rats were placed and kept by hand in different sites. Being interested on the 

formation of space maps in the brain and being aware of the work of Tolmann, O’Keefe and 

Dostrovsky immediately realized the importance of this relatively small sample of hippocampal 

neurons. In a later study, O’Keefe and David Conway (O'Keefe and Conway, 1976) had the rats 

moving within a maze populated with peculiar objects. This is well described by O’Keefe and  

Lynn Nadel in “The hippocampus as a cognitive map”  (O'Keefe and Nadel, 1978) : 

“The environment consisted of a 7 ft square set of black curtains within which was set a 

T-shaped maze. On the walls formed by the curtains were four stimuli: a low-wattage 

light bulb on the first wall, a white card on the second, and a buzzer and a fan on the third 

and fourth, respectively. Throughout the experiment the location of the goal arm of the T-

maze and the four stimuli maintained the same spatial relationship to each other, but all 

other spatial relations were systematically varied.” (page 205) 

 

To record the neural activity from hippocampal cells while the rat was exploring the maze, and to 

place these activities in relation to the place where they occurred, the investigators developed a 

very ingenious system. Remember, this is 1970, a time when computers were still in their infancy 

and video recorders were not yet on the scene: 

“Rats were taught a place discrimination in this environment. They were made hungry 

and taught to go to the goal arm as defined by its relation to the four stimuli within the 
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curtains in order to obtain food. After they had learned the task, place units were 

recorded. In order to relate the firing of these units to the animal’s position in the 

environment, advantage was taken of the fact that these units have low spontaneous 

activity … outside the place field. Each action potential from the unit was used to trigger 

a voltage pulse which, when fed back to a light-emitting diode on the animal’s head, 

produced a brief flash of light. A camera on the ceiling of the environment photographed 

the spots, recording directly the firing of the unit relative to the environment.” (page 206) 

 

 

Figure 1.6. The firing of a place unit when a rat is on the T-shaped maze inside the cue-

controlled enclosure. Each dot represents one action potential. Four ground trials are shown in 

A-D in which the T-maze and the cues on the wall have four different orientations relative to the 

external world. The unit fires when the rat is in the start arm when it is on the side close to the 

buzzer, regardless of the orientation relative to the external world. E and F show two ground 

trials with the start arm rotated 180° so that it is on the side close to the light. There is no unit 

firing in the start arm. (From O’Keefe and Nadel, 1978) 

 

The activity recorded from one hippocampal “place unit” is illustrated in Fig. 1.6. The dots 

indicate the location at which the activity was detected while the rats moved into the T-maze. The 

cell in this case became active only when the rat was near the buzzer and when the relative 

locations of the 4 landmarks were preserved.  The cell was not sensitive to global rotations of the 

landmark systems, or to the particular physical arm of the maze that happened to be near the 

buzzer.  These and subsequent studies confirmed that place cells became active when the rat was 

moving at specific locations and with specific heading directions with respect to the set of 

landmarks that collectively define a spatial frame of reference.  

 

After the seminal work of O’Keefe and colleagues, the last two decades of the past millennium 

have seen a flourishing of studies on space representations in the hippocampus. While there is 

still much to understand about this neural code and its relation to episodic memory, there is no 

doubt that the place neurons are capable to represent single locations in extrapersonal – or 

“allocentric” – space in a way that is consistent with the presence of a well-organized system of 

geometrical charts inside the brain of rodents. This has rapidly led to functional imaging studies 

of the human hippocampus. Of particular significance is the work of Eleanor Maguire and 

colleagues, who studied the brains of London taxi drivers. One of the studies (Maguire et al., 

2000) revealed that licensed taxi drivers have an expanded posterior hippocampus, compared to 

controls that do not drive taxis. This structural study was complemented by functional imaging 
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that revealed significant differences in the activities of a collection of brain regions that includes 

the right hippocampus (Maguire et al., 1997). Functional imaging studies have less spatial and 

temporal resolution than electrophysiological recordings, which monitor the activities of isolated 

neurons on a millisecond scale.  However, functional imaging offers the opportunity of looking at 

activity patterns across the whole brain. This has revealed that information processing associated 

with the representation of space spans a broad network of structures. The hippocampus is only 

one of them. But it is a very prominent one, as was recently demonstrated in a study by Demis 

Hassabis, Eleanor Maguire and collaborators (Hassabis et al., 2009).  The place cells investigated 

by O’Keefe and others with recording electrodes are relatively rare and there has not yet been 

evidence for any topographical organization over the hippocampus. Place cells representing two 

nearby locations of space may be relatively distant from each other. Vice versa, two cells that are 

in nearby hippocampal sites may become active at two rather different and distant locations in 

allocentric space. Does this mean that there is no particular organization of neuronal populations 

in the hippocampus?  

 

Hassabis and collaborators took a pragmatic approach to this question: If there is any functional 

organization in the activity of hippocampal neurons representing spatial locations, then it should 

be possible for a computer program to analyze hippocampal population activities and figure out 

where one is located in allocentric space. In a way, they took advantage of the poor resolution of 

functional MRI, where activities can only be discriminated to a limit of about 1mm
3
, the 

approximate size of a “voxel”. While this may appear to be a small size, one cubic millimeter of 

hippocampal gray matter may actually contain between 
410  and

510 neurons. Therefore a speck 

of activity detected by fMRI originates from a rather large population of cells. If there were no 

particular organization in the distribution of place cells, then each voxel would contain more or 

less the same proportion of the same place cells. The resulting activity snapshot would look like a 

random blur. In that case, it would be virtually impossible to look at fMRI images of the 

hippocampus and make a good guess about what space region has “caused” the detected activity. 

There would be at most a diffuse pattern of signals indicating that the hippocampus is active in a 

spatial task, but no possibility to extract a space code. To test this possibility, Hassabis and 

colleagues asked subject to play a virtual reality game while lying in a MR scanner. Subjects 

were presented with the image of a room, with chairs, tables and other objects that provided a 

spatial reference. Their task was simply to “move” within the room by pressing on arrow keys. 

Once at a target location, the view was switched down to the floor mat. This was the same image 
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at all locations, so as to avoid any visual cue about the place in the room. While in this location 

and without feedback, a functional image was acquired.   

 

This operation was repeated at four different locations. A standard pattern classification algorithm 

was required to determine the locations based on the activities observed over a large region of the 

medial temporal lobe, which included the hippocampus.  The algorithm was able to determine the 

location with high accuracy (> 80%) based only on the activity over the hippocampal region. This 

provides new evidence – albeit not conclusive - supporting the hypothesis that there is some 

topographical structure in the population activity over the hippocampus. In this case,  activity 

charts, such as the one of Fig. 1.5, derived from neural recordings, might actually represent the 

internal model of the extra-personal space. But remember that only a fraction of the hippocampal 

cells are place cells. The studies on amnesic patients, like HM, had revealed that the hippocampus 

is critical to the formation of new memories. There is a close connection between the memory of 

an event and the location in space where the event occurred. We remember where we were when 

the twin towers were hit on September 11 of 2001. As stated by Hassabis and colleagues, this 

spatial representation may form “the scaffold upon which episodic memories are built”.  At the 

end of the next chapter, we will present a computational argument in support of this statement. 

 

1.5 Grid cells 

What is the neural mechanism that leads to the formation of space cells in the hippocampus? 

While this question remains to be answered, an important clue has come from studies of May-

Britt Moser, Edward Moser, Marianne Fyhn  and collaborators, who discovered in 2004 an 

intriguing pattern of activities in the entorhinal cortex of freely moving rats (Fyhn et al., 2004). 

The entorhinal cortex is part of the parahippocampal complex and is a major source of input to 

the hippocampus. Part of it can be seen in the top portion of Cajal’s drawing, near the letter A 

(Fig. 1.1C).  Some neurons in the entorhinal cortex express a very peculiar and impressive 

geometrical pattern. Like place cell in the hippocampus, these neurons become active when the 

animal moves across certain regions of space. But unlike the place cell, the entorhinal neurons 

display a regular periodic structure (Fig. 1.7): they have distinct peaks of activity placed at the 

vertices of a grid of equilateral triangles!   

 

Figure 1.7. Firing fields of entorhinal grid cells. a) Nissl-stained section indicating the recording 

location in layer II of the dorso-medial entorhinal cortex of a rat. b) Firing fields of three 

simultaneously recorded cells as the rat moved within a large circular arena Cells names refer to 
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tetrode (t) and cell (c). The left column shows trajectories of the rat with superimposed firing 

locations (dark spots).  The middle column is a gray-scale map of the recorded activity (black: no 

activity). The peak rates are indicated on the side of each diagram.  Note the distribution of 

activity peaks over the vertices of a grid of equilateral triangles. (from Hafting et al. 2005) 

 

A simple and elegant mathematical analysis by Trygve Solstad, Edward Moser and Gaute 

Einevoll sheds some light on the significance – if not on the origin - of this pattern  (Solstad et al., 

2006).  Let us begin by asking how a pattern of “peaks”, similar to the activities of grid cells may 

come with a structure of equilateral triangles. Suppose we have a periodic function of space: a 

standing sine wave with wavelength λ. Three such waves are depicted in Fig. 1.8, with 3   

length units. These could be meters, inches or centimeters --- it does not matter for the present 

discussion.  Instead, it matters that the three sine waves are oriented in three directions, 60 

degrees apart from each other. Let us give a mathematical form for these sinusoids. They map 

each point on the plane,  
T

x yr  into a number 

  ( ) cos 1     1,2, or 3T

i iF i  r k r . (1.1) 

 

Figure 1.8. Summing three sinusoidal functions of space (F
1
 + F

2 
 +  F

3
) with orientations that 

differ by 60 degrees results into a periodic distribution of equispaced peaks (right) in an 

equilateral triangle configuration. Note the similarity of this simple interference pattern with the 

activity patterns of the entorhinal grid cells (Figure 7). 
 

The three vectors ik  represent the wave fronts and are oriented in three directions 60 degrees 

apart from each other. Their amplitude is the spatial frequency of the wave in radians per unit 

lengths: 

 

 1

2

3

2
cos( ) sin( )

2
cos( ) sin( )

3 3

2
cos( 2 ) sin( 2 )

3 3

T

T

T


 



  
 



  
 





 
   

 

 
   

 

k

k

k

 (1.2) 

The orientation of the first wave front 1k  is the angle  . In Fig. 1.8, 0   and the front is 

perpendicular to the x-axis. Adding 1 to the cosine functions insures that the range of each wave 

function remains positive  0 2iF  . When the three functions are added together, they form 

the interference pattern shown on the right part of Fig. 1.8: 
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Figure 1.9. Interference pattern. The dotted lines represent the wave fronts of Figure 8. These are 

lines at which each sine waves reach their maximum values. The arrows are the directions of the 

sine waves, i.e. the directions of the vectors k
1 , 

k
2 
 and k

3 
  (see main text). The intersections of 

three wave fronts are the points at which their sum reaches the maximum value. Simple 

trigonometry shows that the distance between two such peaks is slightly larger than the wave 

length of each wave component  (the distance between parallel dotted lines) 
 

What we obtain by this simple summation of waves resembles the pattern of firing observed in 

the entorhinal grid cells (Fig. 1.7). The spacing, d , of the grid depends upon the wave length of 

the wave fronts, λ  (Fig. 1.9): 

 
2

3
d   (1.4) 

Each grid cell does not inform the rat’s brain about the location at which the rat is. It only 

indicates a set of possible locations at which the rat could be. In that regard, we may see this as a 

particular coordinate system, like longitude and latitude.  If we know our latitude we know a set 

of places where we may be.  To know our position on the sphere we need both the latitude and 

the longitude. As we shall see, the grid cells can be used as coordinates in a similar way. But 

many more than two coordinates are needed to specify a position. 

 
1.6 Grid cells to place cells: functional analysis 

The French mathematician Jean Baptiste Joseph Fourier discovered two centuries ago the 

possibility of constructing arbitrary continuous functions by adding trigonometric functions with 

different frequencies.  Fourier series are infinite sums that in the limit converge upon continuous 

functions. Most remarkably, any continuous function over a finite interval can be obtained as a 

Fourier series: 

      0

1 1

1
cos sin

2
n n

n n

f x a a nx b nx
 

 

     (1.5) 

Daniel Bernoulli first suggested such an infinite series in the late 1740s as he was working on a 

mathematical analysis of vibrating musical strings.  However, Bernoulli was unable to solve for 

the coefficients of the series.  Fourier’s great accomplishment was determining the values of the 
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coefficients.  For example, for a function  f x  over the interval  ,x     , Fourier 

demonstrated the following:  

 

0

1
( )

1
( )cos( )

1
( )sin( )

n

n

a f x dx

a f x nx dx

b f x nx dx





































 (1.6) 

Briefly, Fourier arrived at his solution by doing the following. First, he integrated the left and 

right sides of Eq. (1.5) over the range  ,    and then solved for 0a  by noting that the 

integrals of the trigonometric functions vanish over this range.  Then, to derive the coefficients 

na and nb  he used a more clever observation, which is fundamental to modern functional 

analysis. He noticed that  

 cos( )sin( ) 0nx mx dx





  (1.7) 

for all integer values of m and n .  However, the integral 

 cos( )cos( )nx mx dx





  (1.8) 

and the integrals 

 sin( )sin( )nx mx dx





  (1.9) 

vanish only when n m . Otherwise, 

 
2 2sin ( ) cos ( )nx dx nx dx

 

 


 

   . (1.10) 

To derive each coefficient na and nb , Fourier multiplied both sides of Eqn. (1.5) by the 

corresponding trigonometric function --- i.e. by cos( )nx , for na and by sin( )nx  for nb .  For 

example, to derive 3a  one multiplies both sides of Eqn. (1.5) by cos(3 )x  and calculates the 

integrals
ii
 in: 
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 (1.11) 

The Fourier’s representation of a function as a sum of other functions has a powerful algebraic 

and geometric interpretation. The functions that appear in the sum of Eqn. (1.5) are formally 

equivalent to vectors forming a basis in a vector space. While ordinary geometry is only 3-

dimensional, vector spaces can have an unlimited number of dimensions. What matters is that the 

elements that form a basis be mutually independent - like the three unit vectors pointing along the 

x, y and z axes.  But to be independent, vectors do not need to be mutually orthogonal. In 

ordinary 3D space, independence means that a vector that lies outside a plane cannot be obtained 

by adding vectors on that plane.  Thus, one cannot obtain a vector sticking out of a plane by 

adding vectors on that plane. In symbols, if vectors 1φ , 2φ , and 3φ are linearly independent, 

then we cannot write 3 1 1 2 2a a φ φ φ . One other way to say this is that the equation: 

 1 1 2 2 3 3 0a a a  φ φ φ  (1.12) 

can be true only if all the three coefficients, 1 2 3,  and a a a are all zero. This is readily extended to 

an arbitrary number of vectors: N vectors 1 2, , , Nφ φ φ  are linearly independent if and only if 

 1 1 2 2 N Na a a   φ φ φ 0  (1.13) 

implies that all the ia ’s are zero.  Extending this further to an infinite number of independent 

vectors, we obtain the Fourier series, as in Eqn. (1.5). And, going even further to a continuum of 

vectors, we have the Fourier transform. But let us limit this discussion to a finite number of 

independent vectors. 

Now, suppose that the sum Eq. (1.13) is non-zero, i.e.: 

 1 1 2 2 N Na a a    φ φ φ f 0  (1.14) 

 The vector f in belongs to the N-dimensional vector space NV  spanned by the basis 

1 2, , , Nφ φ φ . How can we use this basis to represent vectors in a higher-dimensional space? 

This can be achieved by approximation.  In this case, the linear combination of the basis vectors 

cannot generate exactly the higher-dimensional vector. But it can get as close as possible to it. 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 17 

Consider a vector g ,  in a higher dimensional space, MV , which includes NV  as a subspace 

( M N ). To gain an immediate intuition, one may think of N=2 and M=3. 3V is the ordinary 3D 

space, with an associated Cartesian reference frame. 2V is a planar surface, passing by the origin 

of 3V . The following discussion extends to spaces of higher dimension.  We wish now to find the 

vector in NV
 
that is as close as possible to g . The intuitive solution to this problem is to look for 

the projection of g over NV . Suppose that we have a basis for MV
 
which includes the basis in 

NV , augmented by M-N vectors,  1 2, , ,N N M φ φ φ , orthogonal to NV . In this basis, the vector 

g  
has a representation 

 1 1 2 2 1 1N N N N M Mb b b b b       g φ φ φ φ φ . (1.15) 

Note that the Fourier expansion of Eq. (1.5)looks much like Eq. (1.15), with infinite terms.  The 

first part of this representation, 

 1 1 2 2 N Nb b b   g φ φ φ  (1.16) 

is the projection that we are looking for.  We know the basis vectors, 1 2, , , Nφ φ φ , but we do 

not know the coefficients 1 2, , , Nb b b . To find them we use the inner product operation and we 

exploit the fact that the inner product of the basis vectors in NV with the vectors 

1 2, , ,N N M φ φ φ
 
is zero by hypothesis, because these vectors are orthogonal to NV . Let us 

step back. We need to remember that the inner product of two vectors produces a number
iii
. Here, 

we adopt the convention to use angled brackets to denote the inner product, as in 
1,φ g . In 

N
 

we calculate the Euclidean inner product by multiplying component by component and by adding 

the results. In vector-matrix notation this is  1 1 2 2u vT

N Nu v u v u v      .  

However, here we use a more general notation that is not restricted to Euclidean spaces. To derive 

the coefficients 1 2, , , Nb b b , we begin by taking the inner product of both sides of Equation 

(1.15) with each of the N basis vectors. This produces a system of N linear equations: 

 

1, 1 1,1 1 1,2 2 1,

2, 2 2,1 1 2,2 2 2,

, ,1 1 ,2 1 , 1

N N

N N

N N N N N N

g b b b

g b b b

g b b b

      


     


      

φ g

φ g

φ g

 (1.17) 

with 
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 , ,i j i j  φ φ  (1.18) 

Note that while Equation (1.15) contains vectors - g  
and the 'i sφ - and numbers – the 'ib s - Eq. 

(1.17) contains only numbers. This is a system of N equations in N unknowns.  A compact form 

for it is  

 g b  (1.19) 

with 

 

1,1 1,2 1,1 1

2,1 2,2 2,2 2

,1 ,2 ,

N

N

N N N NN N

g b

g b

g b

  

  

  

    
    
       
    
    

    

g b  

In this notation, vectors are represented as matrices with a single column containing all the vector 

components. The matrix Φ is called the Gramian of the vectors 1 2, , , Nφ φ φ  , after the Danish 

mathematician Jorgen P. Gram. Equation (1.19) provides us with a straightforward solution for 

the coefficients of Eq. (1.15): 

 
1b g  (1.20) 

The only requirement for deriving b  using the above expression is that the inverse of the matrix 

  exist or, equivalently that the determinant of   does not vanish. This condition is insured by 

the fact that the vectors 1 2, , , Nφ φ φ  in Eq. (1.15) form a basis for NV iv
.   

 

To sum, so far we have shown that starting from a set of N independent vectors in NV
 
it is 

possible a) to represent all vectors in NV
 
and b) to find the vector in NV

 
that lies closest to an 

arbitrary vector in a higher dimensional space, MV .  But what if the vectors are not all linearly 

independent?  Then, they live in a space KV
 
of dimension K , lower than N . In this case, it is 

still possible to use the construct that led to Equation (1.19). Now, however, the Gramian 

determinant is zero and the matrix cannot be inverted.  We can still derive the projection of 

g over KV
 
by using the pseudoinverse of the Gramian. This is usually indicated by a * 

superscript, as in 
*  and the equation for b  is quite similar to Eq. (1.20): 

 
*b g  (1.21) 
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There are many ways to calculate the pseudoinverse of a matrix. Here, we limit ourselves to list 

its four defining properties
v
: 

1. 
T    

2. 
T T T    

3. ( )T T T   

4. ( )T T T     

Note that Eq. (1.21) is more general than Equation (1.20), since the pseudoinverse of a matrix is 

equal to the standard inverse, whenever the latter exists. Once we have derived the coefficient 

vector using Equation (1.21), we see that the vector g of Eq. (1.16) is the projection of g  
over 

the smallest subspace of MV , which contains the vectors 1 2, , , Nφ φ φ . In other words, g
 
is the 

closest approximation to g  
in this reduced subspace. 

 

Next, we wish to see how all the above helps in understanding the function implemented by the 

grid cells in the entorhinal cortex, and their relation to the function implemented by the place 

cells in the hippocampus. In the previous discussion, we have assumed that certain quantities are 

vectors and others are numbers. The method of Fourier led to the idea that continuous functions 

are a type of vectors, although not of the kind we have learned in our first courses on Geometry. 

Mathematics seeks abstraction. In the case of vector calculus, the intuitive idea of a vector is 

extended by considering what are its fundamental properties. In this general sense, vectors are 

any objects that can be multiplied by a number and can be added to form other vectors.  Thus, 

continuous functions form a vector space because the sum of any number of continuous functions 

generates another continuous function. But, most importantly, any continuous function can be 

obtained from the weighted sum of other continuous functions, such as sines and cosines. 

Because a Fourier series – as Eq. (1.15) - has infinite independent terms, the vector space it spans 

has infinite dimensions. We conclude that the continuous functions are vectors in an infinite 

dimensional space spanned by an infinite number of “basis functions”.  

 

What happens if, instead of the infinite family of basis functions, one only considers a finite 

number of them?  In this case all the previous discussion on vector spaces applies. With the 

available basis functions we use Eq. (1.20) for deriving the linear combination corresponding to a 

projection of a desired function over the space spanned by the basis functions. This is, in essence, 

one of the fundamental mechanisms to carry out function approximation by “Least Squares. 
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Being a projection under the metric associated with the inner product, this approximation 

minimizes the square distance from the desired function.  

So far, we have only presented the general principles in a rather informal way. Now, we need to 

clarify what is that we can call an inner product of two functions. All we need is a definition that 

satisfies the main general requirements for the inner product operation. These are four: 

1. The inner product  is a real number  (but see note iii).  

2. The inner product is symmetric.   φ,ψ ψ,φ  

3. The inner product is bi-linear: 1 1 2 2 1 1 2 2, , ,a a a a       φ φ ψ φ ψ φ ψ  and 

1 1 2 2 1 1 2 2, , ,a a a a       φ ψ ψ φ ψ φ ψ   

4. The square norm of a vector is the inner product of the vector with itself: 

2
, 0 φ φ φ . The norm is equal to zero if and only if the vector is the null vector. 

The last requirement is perhaps the most important: the inner product defines what we mean by 

“size”.  Once we have an inner product, we are endowing a space with metric properties and the 

space becomes a metric space. The integral operation
vi
  offers a very simple definition of inner 

product. Of course, the requirement is that a function be integrable, or better, that the product of 

any two functions (or the square of a function) be integrable. Given two functions, ( , )x y  and 

( , )x y , both defined over a domain { , }MIN MAX MIN MAXD x x x y y y     , let us define 

their inner product as: 

 , ( , ) ( , )
D

x y x y dx dy  φ ψ  (1.22) 

We can readily verify that if both functions are integrable over D, then the above definition 

satisfies all the four requirements. In practical calculations, the integrals are replaced by sums 

over the indices of the x  and y  variables. This is a convenient way of “extending” the natural 

definition of the inner product of two vectors, which is the simply the sum of the products 

between the corresponding components of each vector.  

 

Let us go back to the physiology. We know that the entorhinal cortex supplies input signals to the 

hippocampus. Not the other way around. Based on this anatomical fact, Solstad, Moser and 

Einevoll (Solstad et al., 2006) asked a simple a question:  is it possible to obtain the firing pattern 

of a hippocampal place cell  from the activities of multiple entorhinal grid?  The answer is 

affirmative and derives directly from the previous discussion.  In a first approximation, following 

Solstad and colleagues, we model the activity of a place cell as a Gaussian function (Figure 1.10):  
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The place cell attains the maximum firing rate, MAXf , at the location 0 0( , )x y
 
of the arena where 

the rat is moving and the activity decays monotonically around this point. So, there is a “receptive 

field” of the place cell, with a “width” of 
2 .  In contrast to the place cells, the grid cells in the 

entorhinal cortex do not specify the single location where the rat is at a given time. Each cell is 

firing whenever the rat is in one of several locations, as shown in Fig. 1.7. We have already 

shown that the superposition of three standing sine waves would reproduce this pattern (Fig. 1.8). 

The function that represents this grid cell has two parameters: the wave-length and the direction. 

Importantly, the grid cell functions, so reconstructed, contain trigonometric functions, which are 

known to provide a basis for representing other continuous functions, like the Gaussian of Eq. 

(1.23). Thus a linear combination of functions corresponding to grid cells can approximate the 

function corresponding to a place cell. This is shown in Fig. 1.10 where the combination of 49 

grid functions generates a pattern that approximates the typical response of a Gaussian place cell.  

We derived this particular example following the least-squares approach - Equation (1.21) – with 

the inner product metric afforded by the definition (1.22). The weighted summation of the 

activities form  relatively few grid cells – of the order of 10 to 50 – can account for the responses 

of individual hippocampal place cells.   

 

Figure 1.10.  Place cells from grid cells. By a simple additive mechanism the firing patterns of 

multiple grid cells contribute to forming the firing pattern of a place cell (right).  Each grid cell 

output is multiplied by a coefficient before being added to the other contributions. In this 

example, 49 simulated grid cells contributed to generate an activity pattern similar to a place 

cell.  Each grid cell was obtained from the superposition of three standing sine waves, as shown 

in Figures 8 and 9. The simulated space is a square with 1 meter side. The spacing of the peaks in 

the grid cells varied between 12 and 80 centimeters and the direction of the central wave front 

varied within 360 degrees. The multiplicative coefficients were obtained from the approximation 

of a Gaussian response profile (left) with a variance of 12 centimeters.  

 

How are the hippocampal activities updated as the rat moves around? Fig. 1.11 illustrates a 

simple approach. We tessellate the space with the contiguous receptive fields of place cells, 

following the logic of Samsonovich and McNaughton (Fig. 1.5). We are thus building a 

topographic chart, by associating each place cell with the location where its activity reaches a 

peak. This arrangement does not correspond to the actual distribution of place cells over the 

hippocampus.  The anatomical distribution could be random (although this is disputed) and it 

would not matter for what one may call the “functional topography”, which is the topography 
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determined by what is being represented. For each place cell so arranged we derive the  

coefficient vector b  using Equation (1.21). Each element of the coefficient vector represents a 

“connection weight” that multiplies the input from the corresponding grid cell.  All inputs are 

added, resulting in the net activity of the place cell. Of course, this is an oversimplified neural 

model to illustrate how a simple summation rule can produce a topographic map similar to that 

observed in the hippocampus.   

Figure 11. Hippocampal GPS. In this model, each simulated place cell receives inputs from 49 

grid cells, as shown in Figure 10. The space within which a fictional rat is moving is a 1 square 

meter region divided in 400 (20x20) small squares. The color of each small square represents the 

activity level of a simulated place cell, whose maximum of activity falls within that region.  Thus, 

the place cells are distributed topographically to match the locations that they are coding for. 

Note that this is not intended to reproduce the spatial distribution of the cells within the 

hippocampus. We simply formed a chart in the style of Samsonovich and McNaughton (see 

Figure 5). With 400 place cells and 50 grid cells, there is a total of 20,000 connections between 

the simulated grid and place system.  As the rat moves along the dotted line (top-right) the 

simulated activity on the hippocampal chart follows the pattern shown in the lower panels. The 

diamonds on the top-right panels correspond to the place cells with maximal activity and tend to 

match closely the actual position of the rat.  

 

If we partition a region of space in 20x20 place cells and if we have 50 grid cells feeding this 

system of place cells, we need to form a total of 20x20x50=20,000 connections. While this is a 

large number of multiplications, they may be carried out simultaneously, in parallel, so that the 

total computational time of this whole charting operation may be as short as the time needed to 

carry out a single multiplication.  As the fictional rat of our example moves within the 

environment, we see a wave of activity along a spatial map, as shown in Fig. 1.11. The peak of 

this wave tracks with good accuracy the instantaneous location of the rat. 

 

This suggests how brain activities evolve between entorhinal cortex and hippocampus, as the rat 

moves in the environment. However, we have not yet addressed the most fundamental question:  

How, in the first place, does the rat’s brain know where the rat is? How does the brain have an 

idea of the x and y coordinates that appear in the argument of the simulated grid cells?  How can 

the brain have such basic information starting from sensory and motor data, supplied by the eyes 

and by the very movement instructions that the nervous system sends to the legs?  We must say 

upfront that the answers to these questions are not yet available. So, we cannot give it here. 

However, in the next chapter we can outline the computational problems that the brain must 

solving for creating and maintaining a representation of the extra personal space.  

 
Summary  
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Earlier studies on Mongolian Gerbils demonstrated the ability of these rodents to form 

geometrical maps of the space in which they move. These maps represent the locations and the 

distances of objects in the environment.  The way in which the gerbils use past experiences to 

search for food revealed their ability to  represent the Euclidean properties of space: they have a 

sense of distance that is invariant by rotations and translations, but not by scaling.   

 

The ability to locate ourselves in space is closely connected to our ability to form new memories 

of events.  The relationship between memory and space maps has a physiological substrate in the 

mammalian hippocampus. Evidence that the hippocampus organizes a map of space came with 

the first observations of “place cells” that encode single locations of extrapersonal space.  A 

population of place cells  in a rat’s hippocampus forms a chart, where the instantaneous position 

of a rat in its environment is revealed  as a moving hill of neural activity.  The hippocampal place 

cell system is also studied in humans, where imaging studies suggest the existence of a 

topographical order.  

 

Upstream from the hippocampus, cells in the entorhinal cortex appear to form a coordinate 

system, analogous to parallel and meridian lines on the earth’s surface.  Unlike place cells, the 

entorhinal “grid cells” become active at multiple places, disposed at the vertices of equilateral 

triangles over the surrounding environment.   Fourier analysis can account for this pattern of 

activities as a superposition of three sinusoidal spatial waves along three directions, 60 degrees 

apart from each other.  By applying Fourier analysis to a system of grid cells we obtain a family 

of units with a single localized peak of activity, similar to the activity of  the hippocampal place 

cells. Therefore, a local representation of the body in space, in the form of a topographic map 

with an isolated peak of activity, emerges from a linear superposition of elements with broad lines 

of activity implementing the representation of a coordinate system.   
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Notes 
                                                 
i
 The physiological basis for the “sense of north” is not well known and varies across species. Some are 

capable of detecting magnetic fields and orient to them. These include migratory birds, who travel to their 

destination for thousands of miles, cows, who reorient themselves while grazing under electric power lines, 

certain bacteria, who are endowed with magnetic sensing organelles and also rodents. Some rodents also 

have a physiological magnetic compass, as it was demonstrated in experiments on the African mole-rats 

Cryptomys hottentotus (Burda et al., 1990):  the presence of an artificial magnetic field deviated 

systematically the paths followed by the mole-rats when building their nest inside a circular arena. In 

addition to the earth magnetic field, there are other subtle cues that are hard to suppress in the laboratory, 

like odors and small variations of colors and shape of the walls. Finally, there are navigation mechanisms 

by which the nervous system performs what sailors call “dead reckoning”, the constant integration of 

visuomotor information that allows one to maintain a representation of one’s position with respect to a 

fixed frame of reference.  
ii
  Fourier first presented this idea in a paper that in 1807 he submitted to Institute de France.  The Institute 

appointed four noted mathematicians, including Laplace and LaGrange, to review the work.  Unfortunately, 

the fourth reviewer, LaGrange, failed to see the importance of the work and objected to the idea that non-

periodic functions should be represented as sum of trigonometric functions.  The paper was rejected.  

Discouraged, Fourier turned his attention to writing a series of books titled Description of Egypt, for which 

he gained fame during his lifetime (remarkably, Fourier was less known as a mathematician during his 

lifetime and more as an Egyptologist).  Only 15 years later could Fourier publish his mathematical result, 

and then in a book form, The Analytical Theory of Heat.  Lord Kelvin, a noted British mathematician, 

would later refer to Fourier’s book as “a mathematical poem.” 

iii Here, we assume this number to be real. But, in general, vector spaces can be defined over complex 

numbers or any kind of scalar field . Scalar fields are structures where the fundamental four operations –

addition, subtractions, multiplication and division – are defined. 
iv
 This statement can be demonstrated in more than one way. One is based on an insightful geometrical 

view of determinants. The determinant of a matrix is the signed volume of the parallelepiped included 

between the vectors that constitute the columns of the matrix. To see this, start with the simple case of a 

diagonal 3x3 matrix. Each column is a vector along the corresponding axis.  The product of these vectors is 

the volume of the rectangular parallelepiped with three edges formed by the three vectors. This argument 

can be rapidly extended to more complex matrices with more rows and columns. 

Each column of the matrix  is the representation of each basis vector in the frame established by the 

vectors themselves. The fact that the vectors of a base are linearly independent implies that span the full 

volume of their own space.  Therefore the determinant of   cannot vanish.  
v
 We are still considering only real-valued matrices.  To obtain the definition for complex-valued matrices, 

simply replace T (for transposed) with an asterisk (for complex conjugate). 
vi
 There are several different types of integrals. The one that is most often used in function spaces is the 

Lebesgue integral, after Henri Lebesgue, another French mathematician.  Another type of integral operation 

is the Riemann integral, which is the one most commonly introduced in calculus classes. The distinction 

between Riemann and Lebesgue integrals is important but subtle, and beyond the scope of this text.  In 

most practical cases the two methods give the same result. 

 

 


