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11 Cost of time in motor control 

 

Perhaps in no area of neuroscience is the cooperation between theory and data more fruitful than 

in the study of movements.  The reason has much to do with the fact that movements of people 

and other animals tend to be highly reproducible.  For example, reaching movements, eye 

movements, and walking each have distinct features that are present in all healthy people.  A 

teenager may actively choose to dress very differently than his parents, but will not exhibit 

walking, reaching, or eye movements that are very different.  Indeed, a persistent difference in 

movements is often a sign of a neurological disorder.  Our aim here is to describe some of this 

regularity, and attempt to build a theory that may account for it. 

 

Over the last 25 years, a large body of experimental and computational work has been directed 

towards offering theories that attempt to explain why there is regularity in our movements.  The 

approaches are reminiscent of physics and its earliest attempts to explain regularity in motion of 

celestial objects.  Similar to physics, the search in the field of motor control has been for 

normative laws, or cost functions, that govern our behavior.  Here, we will focus on a theory that 

assumes that the purpose of movements is to achieve a rewarding state at a minimum effort.  That 

is, we are going to assume that we make movements in order to change the state of our body to 

something more valuable, and effort is the cost that we pay to acquire reward.   

 

Consider the behavior of the eyes during saccadic eye movements: when we are looking at an 

image, the brain shifts our gaze from location to location with saccades.  During each saccade, the 

eyes move in a stereotypical trajectory, with temporal and spatial characteristics that are 

described in Fig. 10.3.  These characteristics include a nearly linear relationship between saccade 

amplitude and duration (Fig. 10.3B), and a symmetric trajectory of eye velocities for small 

amplitude saccades but asymmetric velocities during large amplitude saccades (Fig. 10.3D).  

However, these characteristics are variable and the variability is not entirely due to random noise.  

For example, when we make a saccade to look at a face, the eyes move slightly faster and arrive 

at the target slightly sooner than if the goal of our saccade was to foveate another kind of image 

(Fig. 10.7).  When monkeys are rewarded with juice for moving their eyes to a location, their 

saccade has a shorter duration and higher peak speed than when the same location is unrewarded 

(Fig. 10.4).  Therefore, while saccades show certain patterns in their temporal and spatial 

properties, the variability in these patterns appears to have something to do with the value of the 

stimulus that affords the movement.  Possibly, the expected reward alters the motor commands 
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that the brain programs to make a movement.  In particular, movements seem to be faster (higher 

speed) and have a shorter reaction time (Fig. 10.4C) when the value of the stimulus is higher. 

 

These results hint that the subjective value of a state that we wish to attain by our movements 

somehow discounts the motor commands, making the movement faster and with a shorter 

duration.  In a sense, by spending a greater effort, the brain produces motor commands that attain 

a valuable stimulus sooner.  Time, even in the range of milliseconds seems to matter because it 

provides the reward sooner.  These ideas lead us toward a cost for movements: it seems that 

reward is something that is good and we should get as much of it as possible, but effort is 

something that is bad and we should spend as little of it as possible.  A reward that is attained 

sooner is better than the same reward if it is attained later.  By mathematically describing these 

ideas, a framework will be constructed that can account for the specific saccade durations and 

velocities of healthy humans.  More interestingly, we will be able to consider changes in the 

reward system of the brain due to development, aging, and disease, and try and make sense of 

changes that occur in control of movements.   

 

11.1 Temporal discounting of reward 

 

Economists and psychologists have noted that humans (and other animals) tend to discount 

reward as a function of time.  An example of this is an experiment by Joel Myerson and Leonard 

Green (Myerson and Green, 1995) in which undergraduate students were asked to make a series 

of hypothetical decisions between monetary rewards.  They were shown one card that specified 

how much they would be paid now, and another card that specified a larger amount that they 

would be paid if they waited some amount of time.  Based on the choice that each subject made, 

the authors constructed a function that estimated how value of the reward declined as a function 

of time (in this case, years).  For example, say that a subject picks at roughly 50% probability 

between $350 now and $1000 at 5 years.  This would suggest that for this person, $350 now is 

equal to $1000 in 5 years, which would imply that $1000 loses its value as a function of time.  

Myerson and Green considered two kinds of functions to describe this temporal discounting of 

value: hyperbolic and exponential.   
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The variable p  represents the time delay to reward acquisition.  The exponential function is one 

that is typically used in economics and is called a discounted utility model.  It assumes that future 

rewards are discounted because of the risk involved in waiting for them.  The hyperbolic function 

is one that has been used by psychologists, and its rationale is based on empirical grounds: it fits 

the data better (Fig. 11.1A). (However, as we will see later, there may be a good reason for why 

animals use hyperbolic discount functions, as they may be trying to maximize reward per unit of 

time.)  In particular, as can be seen in Fig. 11.1A, exponential discounting underestimates the 

value of reward at longer time delays.  People generally do not discount future reward as steeply 

as is predicted by an exponential --- the hyperbolic form of the discount function fits the data 

better. 

 

Interestingly, the basic form of the temporal discount function remains hyperbolic when we go 

from time delay of years to time delay of seconds.  Koji Jimura and colleagues (Jimura et al., 

2009) asked undergraduates to not drink anything for a few hours and then gave them a choice 

between a small amount of water now, and a larger amount some seconds later.  They found that 

the temporal discount function was a hyperbola, with a rate 0.09   per second (Fig. 11.1B).  

Shunsuke Kobayashi and Wolfram Schultz (2008) trained thirsty monkeys to choose between a 

small amount of juice now and a greater amount some seconds later and found a temporal 

discount rate of 0.31   per second for one monkey and 0.17   per second for another 

monkey (Fig. 11.2A).  The larger value of   indicates that the subject is more impulsive, i.e., 

would rather take a smaller amount of reward now than wait for the larger amount.  Kenway 

Louie and Paul Glimcher (2010) also trained thirsty monkeys to choose between a small amount 

of juice now and a greater amount some seconds later and found a temporal discount rate of 

0.16   per second for one monkey and 0.04   per second for the another (Fig. 11.2C and 

11.2D).  Leonard Green and colleagues (Green et al., 2004) trained pigeons to choose between a 

small amount of food now or a greater amount a few seconds later and found a temporal discount 

rate of 0.62   per second.  Although it is difficult to directly compare these results because 

the experiments are somewhat different, there are two basic ideas that emerge from this vast 

literature:  1) animals tend to discount reward hyperbolically as a function of time, and 2) while 

there are inter-subject differences within specie (e.g., some monkeys are more impulsive than 

others), there are also large differences between species, with pigeons generally more impulsive 

than rhesus monkeys, and rhesus monkeys more impulsive than humans.   
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A hyperbolic function of time is not only a good fit to choices that people and other animals make 

regarding the temporal discounting of valuable commodities, it is also a good fit to discharge of 

dopamine cells in the brain of monkeys that have been trained to associate visual stimuli with 

delayed reward.  Shunsuke Kobayashi and Wolfram Schultz (2008) trained two monkeys to 

watch a monitor upon which visual stimuli appeared.  In a given trial, one stimulus was followed 

by a short delay and then a small amount of liquid.  In another trial, another stimulus was 

followed by a longer delay and the same amount of liquid.  They then recorded from 

dopaminergic cells in the substantia nigra (a part of the basal ganglia) and found that in response 

to the stimulus that predicted reward at short delay, discharge was high.  In contrast, in response 

to the stimulus that predicted the same amount of reward after a long delay, discharge was low.  

This response declined approximately hyperbolically as a function of delay (Fig. 11.2B).  

Intriguingly, for the monkey that was more impulsive (monkey A in Fig. 11.2A), the dopamine 

function was slightly steeper (monkey A in Fig. 11.2B).  Therefore, dopaminergic cells tend to 

give a short burst of discharge in response to a stimulus that predicts future reward, and the 

magnitude of this burst declines hyperbolically as a function of the expected delay to reward.   

 

This hyperbolic encoding of future reward is also present in the response of neurons in the lateral 

intraprietal area (LIP), an area of the brain that mediates sensorimotor transformations for control 

of eye movements.  Cells in this area respond to stimuli in a selective region of the visual space 

(called a receptive field), firing before a saccade to that location.  Kenway Louie and Paul 

Glimcher (2010) trained monkeys in a task in which two stimuli would appear (red and green 

LED), and the animal had the choice of making a saccade to one of the stimuli.  In a given block 

of trials, the red stimulus was associated with an immediate reward (small magnitude), and the 

green stimulus was associated with a delayed reward (larger magnitude).  The animal would 

saccade to indicate the choice of which reward it wanted.  By manipulating the magnitude of the 

delayed reward the authors constructed the behavioral temporal discount function for each 

monkey (Fig. 11.2C and 11.2D).  Monkey C was more impulsive than monkey D.  Next, the 

authors recorded from cells in LIP.  When a stimulus appeared in a cell‟s receptive field, the cell 

responded with a firing rate that increased with the subjective stimulus value (Fig. 11.2C and 

11.2D).  That is, for the more impulsive monkey (monkey C), LIP cells tended to fire much less 

for a stimulus that predicted a 12s delayed reward as compared to an immediate reward.  

Therefore, the discharge in LIP before the saccade was a reflection of the subjective value of the 

upcoming movement.  It appears that the brain encodes the economic value of a given stimulus 

that promises future reward as a hyperbolic function of time. 
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11.2 Hyperbolic vs. exponential discounting of reward 

 

We only have a few data points in each subplot of Figs. 11.1 and 11.2, and they are often missing 

error bars.  Why has previous work preferred to use hyperbolas to represent temporal discounting 

of reward vs. exponentials?  The reason has to do with a basic property of decision making: 

change of mind. 

 

Suppose that on Friday morning you are informed that there will be a test in one of your classes 

on Monday.  Later that morning a friend mentions that they are planning to go out to dinner and 

dancing on Saturday evening and it would be great if you could come.  You are faced with a 

choice: stay home on Saturday and study for the test, or go out with friends.  Suppose that the 

value that you associate with passing your test is greater than the value that you assign to going 

out with friends.  Indeed, on Friday morning you evaluate your two options and decide to stay 

home on Saturday.  However, as Saturday evening approaches, you change your mind and decide 

to go out with friends.  Let us show that hyperbolic discounting of reward can explain this 

behavior, whereas exponential discounting cannot. 

 

In Fig. 11.4 we have plotted the temporal discounting of two rewarding events that will take place 

in the future.  One event has a greater value but will take place later (passing your test), the other 

event has a smaller value but will take place sooner (going out with friends).  The two rewarding 

events are discounted in time at the same rate.  So all that matters is the value that you assign to 

the events at the time that they will occur.  Consider a hyperbolic form of temporal discounting of 

these two events (Fig. 11.4A).  At time zero (Friday morning) you evaluate your choices and pick 

the later event (passing your test, black line), as this has a higher current value.  However, as you 

get closer to the time of the sooner event (going out with friends), its value becomes greater than 

the later event (gray line crosses the black line).  On Saturday evening you change your mind and 

decide to go out with friends.  However, if you discounted reward exponentially (Fig. 11.4B), the 

two functions would never cross and you would not change your mind.  The fact that people and 

other animals do occasionally change their mind is inconsistent with exponential temporal 

discounting of reward. 

 

11.3 A cost for movements 
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Let us now return to the problem of making movements.  Suppose that the objective of any 

movement is to place our body in a state that is more rewarding.  Further suppose that the value 

of the state that we wish to acquire declines hyperbolically with time, meaning that it is better to 

get to this valuable state sooner rather than later.  But how much better is it to get there sooner?  

Well, that depends on our subjective value of the stimulus and our temporal discount function.  

However, in order to acquire this state we will have to spend some effort.  Usually, the greatest 

effort will be associated with acquiring the rewarding state sooner (move quickly), and the 

smaller effort will be associated with acquiring the rewarding state later (move slowly).  Putting 

these ideas together, we get a natural balance between effortful behavior and maximizing reward: 

the movement that we perform is one that maximizes reward while minimizing effort.   

 

Here, we will construct a simple model of the eye‟s dynamics, produce a saccade that minimizes 

a cost, and explore the influence of temporal discounting on the movement kinematics.  Our 

objective is to ask why eye trajectories have their specific regularities, and why a change in the 

value associated with the target of the movement might alter this trajectory.  As we will see, there 

appears to be a link between how the brain temporally discounts reward, and the trajectory that 

the eye follows during a saccade.  The basic idea is that the motor commands that move our body 

are a reflection of an economic decision regarding reward and effort. 

 

Suppose that in order to make a movement the brain solves the following problem: generate 

motor commands to acquire as much reward as possible, while expending as little effort as 

possible.  Suppose that at time t , the state of our eye is described by vector  tx  (representing 

position, velocity, etc.), our motor commands are  u t , and our target is a stimulus at position g  

(with respect to the fovea).  Our brain assigns some value   to the visual stimulus that happens 

to be the target of our saccade.  The reward is acquired when the image of the target is on the 

fovea, which will require a movement that will take time.  The crucial question is how passage of 

time should affect the reward value of the target.  That is, how much more valuable is it for us to 

place the face on our fovea within 50ms vs. 100ms?  Shadmehr, Jean-Jacque Orban de Xivry, 

Minnan Xu-Wilson, and Ting-Yu Shih (Shadmehr et al., 2010) proposed that the same temporal 

discount function that described devaluation of reward in timescales of years and seconds, may 

also describe this devaluation in timescale of milliseconds.  That is, the motor system will incur a 

cost for delaying the acquisition of reward because of the time p  that it takes to place the 

valuable image on the fovea: 
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Therefore, the longer it takes to get the target on the fovea, the larger the loss of reward value.  

More importantly, note that the cost depends on the initial value   that we assign to the 

stimulus, and the rate   with which we temporally discount this value.  If the stimulus was 

interesting (e.g., face of an attractive person), we incur a greater cost for the duration of the 

movement than if the stimulus was uninteresting (e.g., an image made of random noise).  

Similarly, if one subject is more impulsive than another (i.e., a larger  ), then the passage of a 

given amount of time will cost more for the impulsive subject. 

 

In order to move the eyes, we will have to spend some effort in terms of motor commands.  We 

have little information about how the brain represents motor costs, but in the previous chapter we 

saw some evidence that this cost is approximately a quadratic function of force.  For example, 

Fagg et al. (2002) suggested that the width of the tuning function of muscles that act on the wrist 

could be accounted for if one assumes that the brain activates the muscles in such as way as to 

minimize a cost composed of the sum of the squared force contribution of each muscle (Fig. 

10.11).  Similarly, O‟Sullivan et al. (2009) estimated that in a task in which fingers of the two 

hands cooperate to produce a goal force, the brain generated a force in each finger so to minimize 

the sum of squared forces (Fig. 10.14).  Based on this admittedly limited body of evidence, the 

best that we can currently do is to define motor costs during a movement as the sum of squared 

muscle activations:  

 
2

0

( )

p

uJ u t dt   (11.2) 

The parameter   specifies the relative cost that we incur for the motor commands.  Finally, when 

our movement ends at time t p , the target at position g  should be on the fovea.  This 

constitutes an accuracy cost, and it is mathematically convenient to represent it as a quadratic 

function:  

  
2

( )xJ x p g   (11.3) 

In Eq. (11.3), the term ( )x p  represents the position of our eye at the end of the movement.  The 

parameter   specifies the relative cost that we incur for being inaccurate. 
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In summary, we assume that in performing a movement, the brain attempts to produce motor 

commands that minimize a cost composed of accuracy cost, effort cost, and temporal cost:  

 x u pJ J J J    (11.4) 

Our first objective is to ask whether a hyperbolic temporal cost can account for the kinematics 

(i.e., duration, velocity, etc.) of saccades.  Our second objective is to ask whether this temporal 

cost is related to reward processing in the brain.  These objectives require solving an optimal 

control problem in which Eq. (11.4) serves as a cost function.  The crucial prediction of the 

theory is that there should be specific changes in saccade durations and velocities due to changes 

in the reward discounting function (Eq. 11.1), for example, due to changes in stimulus reward 

value   or temporal discounting rate  . 

 

11.4 Optimal control of eye movements 

 

In this section we will describe a very simply model of the human eye plant (i.e., dynamics of the 

eyes), and then find a set of motor commands that bring the eyes to the target while minimizing a 

cost (Eq. 11.4).  Our objective will be to find the „best movement‟ that can be performed in order 

to be as lazy as possible (least effort), while getting as much reward as possible (least 

devaluation).  

 

In our one dimensional model of the eye in Fig. 11.4A, there are two elastic elements that pull the 

eye in each direction, and a viscous element that resists this motion.  Suppose that the stiffness of 

each spring is / 2k .  The force in the bottom spring is 
2

k
x  and the force in the top spring is 

 0
2

k
x x .  The dynamics of this system is: 

  0
2 2

k k
mx x bx f x x        

which can be simplified to: 

 0

2

x
mx k x bx f

 
     

 
 (11.5) 

If we redefine x  so that we measure it from 0

2

x
, then the equivalent system is shown in Fig. 

11.4B, where the equilibrium point of the spring is at 0.x    As a result, the dynamics of our 

system becomes:  
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 mx kx bx f     (11.6) 

Solving for acceleration we have:  

 
1k b

x x x f
m m m

     (11.7)  

The term f  represents the active forces produced by the muscles.  A very simple muscle model 

is one that transforms „activations‟ u  into force:  

 1 2
df

f u
dt

    (11.8) 

We can re-write this third order dynamics as a sequence of first order differential equations.  Let 

us define 1x x , 2x x , and 3x f .  We have:  
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2 2

3 3
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1
1
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0

1
0

1

0 0
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x x




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  
     
     

         
               

 

 (11.9) 

David Robinson and colleagues (Keller, 1973;Robinson et al., 1986) perturbed the human eyes, 

measured the mechanical response, and found that the system could be approximated via the 

linear system of Eq. (11.9) with time constants of 224, 13, and 4 ms.  [In Eq. (11.9), if we set 

1k  , then 1 2b     and 1 2m   , where 1 0.224   and 2 0.013  .  If we set 2 1  , then 

1 0.004  .]  Our goal is to find the motor commands ( )u t  that move the eyes so that we get as 

much reward as possible (i.e., minimize the temporal discounting of reward), while being as lazy 

and accurate as possible (i.e., minimize the effort and accuracy costs).  To accomplish our goal, 

we will reformulate the dynamics from continuous to discrete time, and then solve the optimal 

control problem. 

 

Relating discrete and continuous representations of linear systems can be readily done using 

Euler‟s approximation.  Suppose the continuous representation is of the form:  

      c ct A t u t x x b  (11.10) 

We have:  

  
   t t t

t
t

 




x x
x  (11.11) 

From Eq. (11.11), we have:  
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 (11.12) 

Therefore, the discrete and continuous representations are related as follows:  

 

     

 

1k k k

d d

d c

d c

A u

A I A t

t


 

  

 
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 (11.13) 

[Eq. (11.13) describes an approximate relationship between discrete and continuous forms.  One 

can also find an exact relationship.  The technique that provides an exact solution relies on matrix 

exponentials.  We have provided a tutorial on the subject in the web based supplementary 

materials that accompany this text.]  Our objective is to find a sequence of motor commands 

(0) (1) ( 1), , ,
T

p

h u u u    u  to minimize a cost of the form:  

    ( ) ( ) 1
1

1

T
p p T

h hJ T L
p




 
      
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y r y r u u  (11.14) 

where:  
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2

3
( 1)
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v g

T v L

v





 

 
    
    

       
        
 

r   

and:  

 

( 1) ( ) ( )

( ) ( )

k k k

k k

A u

C

  



x x b

y x
 (11.15) 

In our simulations, we set the terms C  and L  to be the identity matrix.  The first term in Eq. 

(11.14) enforces our desire to have endpoint accuracy.  Because accuracy matters only at the end 

of the movement, we penalize the squared difference between the state of the eye at movement 

end and the goal state (the goal state includes stimulus position, as well as zero velocity and 

acceleration).  The second term penalizes effort.  The third term enforces our desire to get to the 

target as soon as possible in order to minimize the temporal discounting of reward.  The terms   

and   describe how reward is valued and discounted in time.  As we will see, different 

populations (e.g., children vs. adults, monkeys vs. humans) discount reward in different ways.  

Furthermore, certain diseases (e.g., schizophrenia and Parkinson‟s disease) alter how the brain 
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processes reward.  Eq. (11.14) predicts that there should be a correlation between this discounting 

of reward and eye movements in these different populations. 

 

Notice that our model of the eye plant has no noise in it.  We will solve the optimal control 

problem for a system without noise, and then solve it again with noise.  We will find that if the 

system has signal dependent noise, the optimum set of motor commands are quite different than if 

it has no noise.  We will see that the trajectory of the modeled eye with signal dependent noise 

looks quite similar to actual eye movements, but without this noise, the trajectory is quite 

different than the actual eye movement. 

 

To minimize the cost in Eq. (11.14), we will make a critical assumption: that the motor 

commands during a saccade do not have access to sensory feedback regarding state of the eye.  

Indeed, typical saccades are too brief for visual feedback to influence saccade trajectory (a 

movement ends after about 100ms). Furthermore, proprioceptive signals from the eyes do not 

play a significant role in controlling saccade trajectories (Keller and Robinson, 1971;Guthrie et 

al., 1983).  Technically, this means that we have an open-loop optimal control problem that we 

are trying to solve. 

 

In order to minimize the cost in Eq. (11.14), given the constraint in Eq. (11.15), we will divide 

our problem into two parts: first, we select an arbitrary length of time p  and find the optimal set 

of motor commands 
* ( )h pu  that minimize Eq. (11.14).  We repeat this for all possible p .  

Second, given that we produce the optimal motor commands 
* ( )h pu , we search the space of p  

for the one movement time that provides us with the minimum total cost J . 

 

Step 1: the optimal motor commands for a given movement duration 

It is useful to write the history of states and how they relate to the history of motor commands.  

We note that the state x  at time step k  is related to the history of motor commands as follows:  

 

(1) (0) (0)

(2) (1) (1) 2 (0) (0) (1)

(3) (2) (2) 3 (0) 2 (0) (1) (2)

1
( ) (0) 1 ( )

0

k
k k k j j

j

A u

A u A A u u

A u A A u A u u

A A u


 



 

    

     

 

x x b

x x b x b b

x x b x b b b

x x b

 (11.16) 
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Therefore, the state at the end of our movement is:  

  ( ) (0)p p
h hA F   x x u ε  (11.17) 

where:  

 1 2 3

0 0

0 0 0
      

0

0 0

p p pF A A A I  

 
 
    

   
 
  

b

b

b

 (11.18) 

From Eq. (11.14), we have:  

 ( ) ( ) ( ) 1
( ) 2 1

1

p T T p p T T T T
h hJ p C TC C T T L

p




 
      

 
x x x r r r u u  (11.19) 

Inserting Eq. (11.17) into above, we can compute the derivative of this cost with respect to the 

motor commands at a given p : 

 

(0)2 2

2 2

T T T p T T T
h

h

T T T
h h

dJ
F C TCA F C T

d

F C TCF L

   

   

x r
u

u u

 (11.20) 

Setting Eq. (11.20) to zero and solving for hu  we have:  

    
1

* (0)( ) T T T T T T p
h hp L F C TCF F C T CA


    u r x  (11.21) 

Fig. 11.5 shows simulation results for a 50 deg saccade (thin line, marked „noise-free‟), for which 

we assumed 160msp  .  The simulation time step is 1ms,  (0) 0 0 0
T

x , motor costs are 

( ) 1i  , and the target is at 50 deg, 50 /180g  .  The only variable in our system is tracking 

cost  T , which has three parameters: 
9 65 10 1 10 80v      .  We find that the simulated 

eye arrives at the target, but the velocity profile is symmetric in time (the line labeled noise free 

in Fig. 11.5).  In contrast to our simulation, the velocity profile of the eye during a real saccade 

(of 50 deg) is highly asymmetric, with the maximum speed attained near the start of the 

movement.  That is, despite the fact that we picked a reasonable movement duration, and found 

the optimal motor commands for that duration, we could not replicate the observed trajectory.  

Why did our simulation fail to produce a realistic movement? 

 

Importance of signal dependence noise 

For a movement to show an asymmetric speed profile, it must be advantageous to produce large 

motor commands early into the movement rather than producing the same large motor commands 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 13 

near the end.  Chris Harris and Daniel Wolpert (1998) noted that this advantage comes about 

when the system has a specific noise property:  the relationship between motor commands and 

change in state depends on a noise that grows with the size of the motor commands, called signal-

dependent noise.  As we will show, our simulation failed to produce a realistic movement because 

we imagined the system to be noise free. 

 

To consider the effect of noise in control of our system, suppose that motor commands u  are 

affected by noise  2 20,N u  .  That is, the noise is a Gaussian distribution with mean zero 

and variance that is proportional to 
2u .  We saw examples of this physiological noise in Fig. 

10.12B.  The fact that the variance of our noise is dependent on the motor commands is the key 

assumption.  If the noise variance was independent of the motor commands, addition of noise 

would still have no effect on our solution in Eq. 11.23 (this is because what matters is whether the 

noise has a non-zero derivative with respect to the motor commands).  So let us now solve the 

optimal control problem by assuming that the dynamics of our eye is affected by signal dependent 

noise:  

 

 

 

( 1) ( ) ( ) ( )

2
( ) 2 ( )

( ) ( )

0,

k k k k

k k

k k

A u

N u

C



 

   

 
 
 



x x b

y x

 (11.22) 

Consider the endpoint variance of this system after a sequence of motor commands 

(0) ( 1), , pu u  :  

 

 

   

1
( ) (0) 1 ( ) ( )

0

1 2
( ) 2 ( ) 1 1

0

var

p
p p p k k k

k

p T
p k p k T p k

k

A A u

u A A






 




   



  

  
 





x x b

x bb

 (11.23) 

The variance at the end of the movement depends on the sum of squared motor commands.  Why 

should we care about this variability?  Because the variability affects our accuracy, which is part 

of the cost function that we are trying to minimize: when the state is a random variable, the 

expected value of the „squared-error‟ (as in our cost function in Eq. 11.14) implicitly includes the 

sum of the squared bias and the variance of the state.  If we choose large motor commands, they 

will produce a larger variance, and this will increase our cost.  Interestingly, we see from Eq. 

(11.23) that the variance depends more strongly on the motor commands that arrive later: the 
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power to which the matrix A  is raised is smaller for larger k .  Therefore, if we want reduced 

variance near the end of our movement, we should minimize the size of motor commands, 

particularly near the end of the movement.  If we do this, we will reduce our endpoint variance, 

improve our accuracy, and as a result reduce our costs. 

 

To express these ideas mathematically, let us see how the cost in Eq. (11.14) is affected by the 

addition of signal dependent noise.  We define:  

 

(0) (0)

(1) (1)

( 1) ( 1)

0 0

0 0 0
      

0

0 0 0

h

p p

u

u
U

u





  

   
   
    
   
   
   

ε  (11.24) 

The mean and variance of our noise vector are: 

     2

0

      var

0

h hE UU

 
 

 
 
  

ε ε  (11.25) 

The state at the end of the movement is:  

  ( ) (0)p p
h hA F   x x u ε  (11.26) 

The expected value and variance of our state are: 

 

( ) (0)

( ) 2var

p p
h

p T T

E A F

F UU F

    
 

    
 

x x u

x

 (11.27) 

Because the cost in Eq. (11.14) is now a random variable, a reasonable thing to do is to minimize 

its expected value:  

 

  ( ) ( ) ( )

( )

var

1
2 1

1

T
p T p T p

T
p T T T

h h

E J E C TCE tr C TC

E C T T L
p




       
       

          

x x x

x r r r u u

 (11.28) 

The trace operator in Eq. (11.28) comes about because of the identity:  

      var
TTE A E AE tr A       

x x x x x   

The trace in Eq. (11.28) can be simplified:  
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( ) 2

2

2

varT p T T T

T T T

T T T T
h h

tr C TC tr C TCF UU F

tr U F C TCF U

diag F C TCF







      
     

   
 

   
 

x

u u

 (11.29) 

The term  diag M  in Eq. (11.29) is the diagonal operator that generates a matrix with only the 

diagonal elements of the square matrix M .  We see that the cost for a system with signal 

dependent noise (Eq. 11.28) is similar to the cost for a noise-less system (Eq. 11.14), with the 

crucial exception of an additional term (Eq. 11.29) that penalizes the „squared‟ motor commands 

by an amount proportional to the variance of the signal dependent noise.   

 

Let us now solve the optimal control problem for this system that has signal dependent noise.  We 

pick a movement duration p  and find the optimal motor commands by setting the derivative of 

Eq. (11.28) with respect to hu  to zero and then solve for hu :  

 

   
1

* 2 (0)( )

T T T

T T T T T T p
h

S diag F C TCF

p L F C TCF S F C T CA


   
 

      u r x

 (11.30) 

Fig. 11.5 shows simulation results when the standard deviation of our signal dependent noise was 

set at 0.009  , with all other terms in the simulation unchanged.  With this modest amount of 

noise the speed profile becomes asymmetric, particularly for large amplitude saccades.  The 

simulated saccade now has its greatest speed early in the movement, closely resembling the 

trajectory of a real saccade (dashed line, Fig. 11.5).  The reason for this is because for a system 

with signal dependent noise, it is better to produce large motor commands early rather than late, 

as the large noise in the early motor commands will be naturally dissipated by the viscous 

dynamics of the eye, resulting in little variability by the end of the movement. 

 

Let us summarize the ideas thus far.  Control of saccadic eye movements can be viewed as an 

open-loop process in the sense that motor commands do not rely on sensory feedback.  Saccades 

exhibit characteristic timing and speed profiles.  For example, large amplitude saccades tend to 

have an asymmetric speed profile, with the largest speeds attained early in the movement.  If we 

assume a noise free plant, and a cost function that penalizes endpoint inaccuracy (squared 

endpoint error), as well as effort (squared motor commands), then the motor commands that 

minimize such costs do not produce the asymmetric speed profiles.  However, if we assume that 

the motor commands suffer from signal dependent noise, then the expected value of the squared 
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endpoint error implicitly incorporates a measure of endpoint variance.  This variance depends 

more strongly on the motor commands that arrive later in the movement than those that arrive 

earlier.  As a result, the policy (i.e., the sequence of motor commands) that minimizes the cost 

produces larger speeds earlier in the movement.  The asymmetry in speed profiles of saccadic eye 

movements suggests that the brain is minimizing a cost that includes endpoint accuracy in the 

face of signal dependent noise. 

 

Step 2: optimal duration and the influence of reward 

In step 1 we assumed that the movement should have a specific duration, and then found the 

optimal motor commands for that duration * ( )h pu .  In our second step, the question that we wish 

to explore is as follows: if we see something interesting at 15 degrees, why should our brain 

produce a saccade that is about 70ms in duration?  If all that mattered were endpoint accuracy and 

motor costs, then we should make a very slow movement, something resembling smooth pursuit, 

not a saccade.  However, if time to reward is itself a cost because time discounts reward, then this 

cost balances the effort and accuracy costs, encouraging us to move faster.  The movement 

duration that we are looking for is one that minimizes the total cost J . 

 

Fig. 11.6A shows the effort, accuracy, and reward costs for a saccade to a target at 20 deg.  For a 

given movement period p , we generate the optimal policy * ( )h pu  in Eq. (11.30).  Finally, we 

compute the costs in Eq. (11.28).  The plot includes the total cost  E J , accuracy costs 

   ( ) ( )
T

p pE T
 

  
 

x r x r , motor costs  * *
T

h hLu u , and costs of delaying the reward, pJ .  On 

the left side of this figure we have plotted the costs when pJ  is of a hyperbolic form, as in Eq. 

(11.1).  Shorter duration saccades have a large cost  E J  because the costs associated with 

inaccuracy and effort increase as saccade duration decreases.  With increasing saccade duration, 

the cost of delaying the reward increases.  The function  E J  has a minimum, and this is the 

optimum movement duration.  At this minimum, the movement balances the need to be accurate 

and lazy vs. the need to maximize reward. 

 

Is there anything special about our hyperbolic cost, or would any function that penalizes time 

produce similar results?  To answer this question, let us consider a quadratic temporal discounting 
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of reward 
2

pJ p .  We see that for both hyperbolic and quadratic temporal discounting there 

exist parameter values such that a 20 deg saccade will have its minimum total cost at around 

75ms.  However, we see that a quadratic discounting of time implies that the loss as a function of 

movement duration increases rapidly.  Therefore, in a quadratic regime there is little loss of 

reward when one compares two movements of 50 and 60ms in duration, but much greater loss 

when one compares two movements of 200 and 210ms in duration.  In contrast, a hyperbolic 

discounting of time works exactly opposite.  There is greater reward loss for short duration 

saccades than for long duration saccades.  That is, as saccade durations increase, the sensitivity to 

passage of time decreases.  As we will see, this is a crucial property of hyperbolic discounting, 

and one that allows us to account for the fact that saccade duration as a function of saccade 

amplitude grows faster than linearly (Fig. 10.3B). 

 

We kept parameter values unchanged and computed optimal saccade durations for movements of 

various amplitudes in Fig. 11.6B.  We see that for a quadratic temporal cost, increasing 

movement amplitudes accompany smaller and smaller changes in saccade durations.  In contrast, 

for a hyperbolic temporal cost, increasing movement amplitudes accompany a faster than linear 

increase in saccade durations.  The optimal movement duration is a balance between the desire to 

get to the goal state as soon as possible, while minimizing effort and inaccuracy.  A hyperbolic 

cost of time produces a very different amplitude-duration relationship than a quadratic cost of 

time.  To see why this is true, let us compute the condition that provides us with the optimal 

movement duration 
*p :  from Eq. (11.4), the derivative of our effort and accuracy costs must be 

equal to the derivative of our temporal cost:  

 
 

**

px u

pp

dJd J J

dp dp


   (11.31) 

Fig. 11.7 plots the above two derivatives for hyperbolic, linear, and quadratic time costs.  Because 

the effort and accuracy costs depend on stimulus location (saccade amplitude), there is a separate 

curve for each amplitude.  The point at which the derivative of the effort/accuracy cost crosses 

the temporal cost is the optimal movement duration.  For example, for a 20deg saccade all three 

temporal costs produce an optimal duration of around 75ms.  However, as saccade amplitudes 

increase, the three temporal costs predict very different saccade durations.  When we compare the 

predicted pattern of saccade durations with actual data, we find that the hyperbolic function is an 

excellent fit.  Fig. 11.8 summarizes these results for three kinds of temporal cost functions: 

quadratic, linear, and hyperbolic.  This figure also includes data from actual saccades (data from 
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Fig. 10.3B).  A quadratic cost of time produces reasonable estimates of saccade parameters for 

small amplitudes, but fails for larger amplitudes.  The reason is that with a quadratic temporal 

cost, with passage of time the cost of time grows (derivative is increasing, as in Fig. 11.7).  If we 

consider a linear cost of time, an approach that was suggested by Chris Harris and Daniel Wolpert 

(2006), once again we can produce reasonable estimates of saccade parameter for small amplitude 

saccades, but the simulations fail for larger amplitudes.  However, in the case of a hyperbolic cost 

of time we can account for durations of both small amplitude as well as large amplitude saccades.  

Indeed, the fact that movement durations increase faster than linearly as a function of movement 

amplitudes is consistent with a hyperbolic cost of time, but not linear or quadratic. 

 

11.5 Cost of time and temporal discounting of reward 

 

Why should the brain impose a hyperbolic cost on duration of movements?  The answer, in our 

opinion, is that this cost expresses how the brain temporally discounts reward.  We saw examples 

of temporal discounting of reward in the response of dopamine neurons (Fig. 11.2B), in the 

response of LIP neurons (Fig. 11.2C), and in the decisions that people made regarding money 

(Fig. 11.1A) or water (Fig. 11.1B).  Suppose that the brain penalizes movement durations because 

passage of time delays the acquisition of reward.  If this hypothesis is true, then it follows that 

movement kinematics should vary as a function of the amount of reward.  For example, if we 

make a movement in response to a stimulus that promises little reward,   in Eq. (1) is small and 

the motor and accuracy costs become relatively more important.  As a consequence, when our 

brain assigns a low value to the stimulus, our movement toward that movement should be slow.  

To explore this idea, let us consider what happens to saccades when we alter the value of the 

stimulus  .  Movement durations depend on the rate at which reward value is discounted in time 

(Eq. 11.31).  That is, movement duration depends on the derivate of cost pJ .  This derivative is:  

 
 

2
1

pdJ

dp p







 (11.32) 

As   decreases, so does the derivative of the reward discount function.  Fig. 11.9A plots this 

derivative for various  .  We see that the optimal movement duration increases as stimulus value 

  decreases.  An increase in movement duration coincides with a decrease in peak movement 

speed.   
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For example, the opportunity to look at a face is a valued commodity, and physical attractiveness 

is a dimension along which value rises (Hayden et al., 2007).  As   increases, durations of 

simulated saccades decrease, resulting in higher velocities.  This potentially explains why people 

make faster saccades to look at faces (Xu-Wilson et al., 2009). 

 

A hyperbolic function is a good fit to discharge of dopamine cells in the brain of monkeys that 

have been trained to associate visual stimuli with delayed reward (Kobayashi and Schultz, 2008).  

That is, the response of these cells to stimuli is a good predictor of the temporally discounted 

value of these stimuli (Fig. 11.2B).  In Parkinson‟s disease (PD), many of the dopaminergic cells 

die.  Let us hypothesize that this is reflected in a devaluation of the stimulus, i.e., a smaller than 

normal  .  In Fig. 11.9B we have plotted velocity-amplitude data from a number of studies that 

have examined saccades of people with moderate to severe PD.  The saccades of PD patients 

exhibit an intriguing property: the peak speeds are normal for small amplitudes, but become much 

slower than normal for large amplitudes.  If we simply reduce stimulus value  , the model 

reproduces velocity-amplitude characteristics of PD patients (Fig. 11.9B). 

 

If an abnormally small stimulus value can produce slow saccades, then an abnormally large value 

should produce fast saccades.  In schizophrenia, saccade velocities are faster than in healthy 

controls (Mahlberg et al., 2001).  Schizophrenia is a complex disease that likely involves 

dysfunction of generation and uptake of many neurotransmitters including dopamine, glutamate, 

and GABA.  Stone et al. (2007) suggested that in the striatum of schizophrenic patients, there is 

greater than normal dopamine synthesis.  Kapur (2003) noted schizophrenics assign an unusually 

high salience to stimuli so that “every stimulus becomes loaded with significance and meaning”.  

Indeed, currently available antipsychotic medications have one common feature: they block 

dopamine D2 receptors.  The reward temporal discount function in schizophrenia has a higher 

slope with respect to controls (Heerey et al., 2007;Kloppel et al., 2008), implying a greater 

discount rate.  In our framework, this produces a faster rise in the cost of time, increasing saccade 

speeds. 

 

Consider another curious fact regarding saccades: as we age, the kinematics of our saccades 

change.  Children produce faster saccades than young adults (Fioravanti et al., 1995;Munoz et al., 

2003).  According to our theory, the differences in saccade kinematics should be a consequence 

of the way the child‟s brain temporally discounts reward.  The availability of dopamine in the 

brain declines with age.  For example, rhesus monkeys exhibit a 50% decline in dopamine 
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concentrations in the caudate and putamen from youth to old age (Collier et al., 2007), and 

squirrel monkeys exhibit a 20% decline (McCormack et al., 2004).  Green et al. (1999) measured 

the temporal discount rate of reward in both young children and adults and found that the initial 

slope of the discount function was 2-3 times larger in children than adults.  They would rather 

take a single cookie now, than wait for a brief period in order to receive two cookies.  Shadmehr 

et al. (Shadmehr et al., 2010) showed that by increase the slope of the temporal cost function (via 

parameter  ) by a factor of two, the resulting saccades share the velocity-amplitude relationship 

found in children‟s saccades.   

 

Let us now consider the fact that saccade velocities differ across species.  For example, rhesus 

monkeys exhibit velocities that are about twice as fast as humans (Straube et al., 1997;Chen-

Harris et al., 2008).  Although there are small differences in the eye plants of monkeys and 

humans, such differences cannot account for the remarkably faster saccades in monkeys 

(Shadmehr et al., 2010).  One possibility is that the differences in saccades are related to inter-

species differences in valuation of stimuli and temporal discounting of reward.  Indeed, some 

rhesus monkeys exhibit a much greater temporal discount rate than humans: when making a 

choice between stimuli that promise reward (juice) over a range of tens of seconds, thirsty adult 

rhesus monkeys (Kobayashi and Schultz, 2008;Hwang et al., 2009) exhibit discount rates that are 

many times that of thirsty undergraduate students (Jimura et al., 2009) (compare Fig. 11.2A with 

Fig. 11.1B).  If we take into account this higher slope of the temporal discount rate, the simulated 

monkey saccades will have velocities that were fairly consistent with the velocities that have been 

recorded from this specie (Shadmehr et al., 2010). 

 

11.6 State dependent value of a stimulus 

 

Animals do not assign a value to a stimulus based on its inherent properties, but based on their 

own state when the stimulus was encountered.  For example, birds that are initially trained to 

obtain equal rewards after either large or small effort, and are then offered a choice between the 

two rewards without the effort, generally choose the reward previously associated with the greater 

effort.  Tricia Clement and colleagues (Clement et al., 2000) trained pigeons to peck at circles.  

During training, on some trials a white circle would appear and after the pigeon pecked it once, 

two circles appeared (red and yellow), as shown in Fig. 11.10A.  If the red circle was pecked, 

food was given.  On other trials, the white circle had to be pecked 20 times before green and blue 

circles appeared.  Pecking the green circle resulted in food.  So the idea was to test whether after 
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pecking 20 times would the green circle have greater value than the red, even though they both 

gave the same food.  On test trials, some pigeons saw a white circle and after pecking it once they 

saw red and green circles.  In about 70% of the trials, they pecked the green circle (Fig. 11.10B).  

Other pigeons saw a white circle and after pecking it 20 times they saw red and green circles.  

They chose the green circle about 65% of the time.  Pigeons that were only shown red and green 

circles during test trials also preferred the green circle (Fig. 11.10B).  This paradoxical result can 

be understood in terms of a greater utility (i.e., relative usefulness, rather than absolute value) for 

the reward that was attained following a more effortful action.  The green circle resulted in the 

same food as the red circle, but the food associated with the green circle was attained during 

training after 20 pecks.  This phenomenon is called state-dependent valuation learning, and is 

present in a wide variety of species from mammals to invertebrates (Pompilio and Kacelnik, 

2010).    

 

The state-dependent valuation of stimuli allows us to consider a curious fact: kinematics of 

saccades to target of a reaching movement are affected by the load on the arm.  For example, the 

peak speed of a saccade is higher when there is a load that resists the reach, and lower when the 

load assists the reach (van Donkelaar et al., 2004).  Why should varying the effort required to 

perform a reach to a target affect saccade velocities to that target?  A reaching movement that is 

resisted by a load arrives at the target after a larger effort than one that is assisted.  The more 

effortful state in which the reward is encountered favors assignment of a greater utility for that 

stimulus.  This greater utility may contribute to a faster saccade. 

 

11.7 Why hyperbolic discounting of reward? 

 

Why should passage of time discount reward in a hyperbolic fashion?  Other than the fact that a 

hyperbolic function seems to fit the empirical data better (Myerson and Green, 1995), is there a 

rationale for this pattern?  Alex Kacelnik (1997) has considered this question and made the 

following suggestion: perhaps the choices that people make regarding time and reward is a 

reflection of a more fundamental normative law in which the objective is to maximize reward per 

unit of time.  For example, suppose that you are given a choice between reward 1  now and 

reward 2  at delay t .  Further suppose that you are asked to make these choices at intervals   

(this would represent an inter-trial interval).  If your objective is to maximize reward per unit of 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 22 

time, then you would compare two quantities: 1
1J




  and 2

2J
t







.  You should pick the 

choice that gives you the larger reward rate.  Let us show that if you choose in this way, you are 

implicitly discounting hyperbolically.  Suppose that given the choice between 1  now and 2  at 

t , you choose each at around 50% probability.  This would imply that:   

 1 2

t

 

 



 

Which implies that 1  declines with time at a rate of 
1 

:   

 2
1 11 t




 



 (11.33) 

Therefore, a policy that maximizes the rate of reward would result in a hyperbolic temporal 

discounting of reward.   

 

We can use this idea to reformulate the costs in our motor control problem.  Suppose that we 

perform actions in such a way as to maximize reward per unit of time, while minimizing the 

effort expended per unit of time.  That is, what matters is the difference between the reward that 

we hope to attain and the effort we expect to expend, per unit of time.  If  Pr 1 ( )r p u  

represents the probability of acquiring reward that has value  , given motor commands u  that 

produce a movement of duration p , and uJ  represents the effort costs associated with these 

commands, then the motor commands should be chosen to maximize the following:  

 
 

1

Pr 1 ( )

1

ur p J
J

p



 

 




u
 (11.34) 

In the numerator, the probability of success would generally increase as movement duration p  

increases.  The term  
1

11 p


  is a decreasing function of p , resulting in a cost J  in Eq. 

(11.34) that will have a maximum at a particular movement duration.  It remains to be seen 

whether maximizing the rate of reward is sufficient to explain movement patterns in biology, as 

well as the economic decision making processes that are reflected in temporal discounting of 

reward. 

 

11.8 Summary 
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Suppose that the objective of any voluntary movement is to place the body at a more valuable 

state.  Further suppose that the value associated with this state is not static, but is discounted in 

time: we would rather receive the reward now than later.  The value that one assigns a stimulus, 

and the rate at which this value declines, forms a reward temporal discount function.  The 

temporal discounting of reward forms an implicit cost of time, i.e., a penalty for the duration of 

the movement.  This penalty is a hyperbolic function.  If one assumes that motor commands are 

programmed to minimize effort while maximizing reward, and if one further assumes that reward 

loses value hyperbolically as a function of movement duration, then one can mathematically 

reproduce the relationship between movement duration, amplitude, and velocity in saccades.   

 

Research over the last two decades indicates that the reward temporal discount function is 

affected by disease, is affected by development and aging, and is affected by evolution (inter-

species differences in the brain).  There appears to be a correlation between changes in the reward 

temporal discount function and changes in duration and velocities of saccadic eye movements.  

This correlation suggests that the motor commands that move the eyes reflect a specific cost of 

time, one in which passage of time discounts reward.  Here, we used open-loop optimal control to 

describe a cost function that includes effort and reward, and then modeled control of eye 

movements to ask why saccades have their particular duration and velocities, and why these 

kinematics change as stimulus value or discounting of reward changes in the brain.  The motor 

commands that move our body may be a reflection of an economic decision regarding reward and 

effort. 
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Figure 11.1.  Temporal discounting of reward in people.  A. Value of $1000 as a function of time 

to acquisition of the money.  For example, on average, undergraduate students would accept $400 

now or $1000 at 4 years at equal probability.  The best fits to the data via a hyperbolic function or 

an exponential function are shown.  Exponential functions tend to fit poorly particularly for long 

delays.  (Data from (Myerson and Green, 1995)).  B. Temporal discounting of water for thirsty 

undergraduate students.  The volunteers were given a choice between a small amount of water 

now and a larger amount some seconds later.  The points show subjective equality.  For example, 

students would take about 8ml of water now than wait 30s for 16ml.  (Data from (Jimura et al., 

2009)). 

 

Figure 11.2. Behavioral and neural correlates of temporal discounting of reward in rhesus 

monkeys.  A.  Monkeys were trained to fixate a center dot on a monitor while two visual stimuli 

appeared on the left and right side of the fixation point.  One stimulus was associated with a small 

reward that would be available now, and the other stimulus was associated with a larger reward 

that would be available some seconds later.  The animal made a saccade to one of the stimuli to 

indicate its choice.  The data summarizes the choices made by the animals via a temporal 

discounting function.  (Data from (Kobayashi and Schultz, 2008))  B. Discharge of dopaminergic 

cells in the substantia nigra in response to stimuli that were paired with a given amount of reward 

at some time in the future.  In the task, the animals were trained on five visual stimuli that each 

was paired with a constant amount of reward delivered immediately, at 2s, 4s, etc.  The plot 

shows the response of the population of dopamine cells to presentation of the visual stimulus. 

(Data from  (Kobayashi and Schultz, 2008))  C. Behavioral temporal discounting of liquid reward 

for a monkey, along with normalized activity of cells in the LIP area of the same monkey during 

the decision making task.  The animal made a choice between small reward now vs. a larger 

reward that would be available some seconds later.  The animals indicated its choice by making a 

saccade to the visual stimulus associated with that reward/delay.  In the period before the saccade, 

LIP cells that had their receptive field on the eventual choice responded by discharging 

proportional to the subjective value of the stimulus.  (Data from (Louie and Glimcher, 2010))  D. 

Same as in part C, but for a different monkey. 

 

Figure 11.3.  Change of mind and hyperbolic vs. exponential discounting of reward.  A. 

Hyperbolic discounting.  At time zero, the discounted value associated with the later event (black 

line) is higher than the sooner event (gray line).  Therefore, at time zero you pick the later event.  

However, as time passes and we get closer to the time of the sooner event, its discounted value 
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becomes greater than the later event.  This produces a change of mind.  B.  Exponential 

discounting.  If at time zero the discounted value of the sooner event is less than the later event, 

its value will remain smaller of the two choices at all times, preventing a change of mind. 

 

Figure 11.4.  A one dimensional model of the eye plant.  Models in A and B are equivalent. 

 

Figure 11.5.  Saccades to a target at 50deg were generated for a noise free system (Eq. 11.15), 

and for a system with signal dependent noise (Eq. 11.22), under a policy that minimized endpoint 

variance and effort.  The velocity profile is asymmetric in the case of a system with signal 

dependent noise, showing a high initial velocity and then a slower tail.  This is because endpoint 

accuracy depends more strongly on the motor commands that arrive later in the movement than 

those that arrive earlier.  Asymmetric velocity profiles during large amplitude saccades arise in 

optimal control of a system that suffers from signal dependent noise.   

 

Figure 11.6.  The effect of quadratic and hyperbolic discounting of reward on saccade durations.  

A.  Costs of a saccade to a target at 20 deg.  For the quadratic discount, 
2

pJ p , 

51.8 10   .  For the hyperbolic discount, 
41.15 10    and 3  .  All other parameters are 

equal for the two simulations.  Optimum saccade duration for both simulations is around 75ms.  

B. Expected value of the cost for various saccade amplitudes.  The optimum saccade duration is 

noted by the gray line.  Parameter values are unchanged from part A. 

 

Figure 11.7.  The optimal movement duration is one that satisfies Eq. (11.31), i.e., a duration at 

which the derivative of the effort/accuracy cost is equal to the derivative of the temporal cost.  

The intersection between the derivative of the effort/accuracy cost and temporal cost is the 

optimal movement duration.  When we set the quadratic, linear, and hyperbolic temporal costs to 

produce similar optimal movement times for one saccade amplitude (in this case 20 deg), they 

produce very different duration-amplitude relationships for other amplitudes.  Quadratic: 

51.8 10   .  Linear: 
42.4 10   .  Hyperbolic: 

41.15 10   , 3  . 

 

Figure 11.8.  Optimal saccade durations as a function of amplitude for various temporal discount 

functions (quadratic, linear, and hyperbolic).  The data points are mean and SD of saccade 

durations in healthy people (Collewijn et al., 1988).  The gray line is for reference.  The thin 

black lines are simulation results for various stimulus values, with the largest value producing 
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shorter duration saccades.  While linear and quadratic discounting schemes can account for 

durations of short amplitude saccades, they underestimate durations of long amplitude saccades.  

Simulation values are as follows.  Quadratic: 
5(1,2,3) 10   .  Linear: 

4(2,2.5,3.0) 10   .  

Hyperbolic: 
3(8.5,9.5,11.5) 10   , 3  . 

 

Figure 11.9.  Effects of changing the stimulus value   on saccade durations and saccade peak 

velocities for a hyperbolic temporal discounting of reward.  A. Optimal saccade duration is the 

intersection of the derivative of the accuracy/effort cost (dashed lines) and the derivative of the 

temporal cost (solid lines).  As   decreases (indicated by the arrow), the optimal saccade 

duration increases.  Simulated values are: 
3(8,10,12,14) 10    and 3  .  B.  Peak saccade 

velocity as a function of amplitude for various stimulus values  .  Simulation results are shown 

by the lines for 
3(6 13.5) 10     and 3  .  For each line, the stimulus value   was kept 

constant.  Reducing stimulus value decreased saccade speeds, but the changes in speed were 

much bigger for large amplitude saccades than small amplitudes.  Data from various papers are 

shown by the numbers in healthy controls and in patients with Parkinson‟s disease.  These data 

are from Shibasaki et al. (1979), Collewijn et al. (1988), White et al. (1983), Blekher et al. 

(2000), and Nakamura et al. (1991). 

 

Figure 11.10.  The value of a given reward depends on the state of the animal at the time that 

reward was attained.  A. Pigeons were trained to peck at circles.  During training, on some trials a 

white circle would appear and after the pigeon pecked it once, two circles appeared (red and 

yellow).  If the red circle was pecked, food was given.  On other trials, the white circle had to be 

pecked 20 times before green and blue circles appeared.  Pecking the green circle resulted in 

food.  B. On test trials, some pigeons saw a white circle and after pecking it once they saw red 

and green circles.  In about 70% of the trials, they pecked the green circle.  Other pigeons saw a 

white circle and after pecking it 20 times they saw red and green circles.  They chose the green 

circle about 65% of the time.  Pigeons that were only shown red and green circles during test 

trials also preferred the green circle.  Data from (Clement et al., 2000). 
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