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12 Optimal feedback control 

 

Suppose you would like to retire wealthy and live in some tropical island.  Currently, however, 

you are a young student taking classes at some university.  What actions should you take today so 

that in 30 years, you will have reached your goal?  Well, you have data which suggest a 

relationship between actions and consequences.  This data comes from what you have read about 

other people‟s lives, from what you have experienced about your own actions and their 

consequences, and from what you have observed in your friends and family.  This is your forward 

model: it gives you a way to predict what might be the result of any potential action.  Given your 

goal (retire in Bahamas), this forward model (actions and their predicted consequences), and your 

current state (young student taking classes), you compute an optimum set of actions that describe 

your plan to get from your current state to your goal.  (Perhaps, the fact that you are reading this 

book is part of this optimum sequence of actions!)  However, your goal is very far away in time 

and it would seem rational to re-evaluate your plan occasionally.  That is, as your state changes, it 

makes sense for you to reconsider what might be the best sequence of actions to get you to your 

goal. 

 

Because the state you are in is not only influenced by your actions, but also by unforeseen and 

possibly unforeseeable events, it is probably not very productive for you to compute a specific 

sequence of actions that you would want to do in the future.  Instead, you need to devise a policy 

that specifies what actions should be performed for each possible state that you might find 

yourself in.  Ideally, for each time point in the future, the policy specifies the action that you 

would perform for each possible state.  This is called a feedback control policy, as the actions that 

are performed at any given time depend on your belief
1
 about your state at that time.  In effect, 

feedback control policies are instructions about how to get to the goal from any state, at any time 

in the future. 

 

It may seem hard to believe, but the problem of generating motor commands, say to move your 

arm, is really not that different from the problem of retiring in Bahamas.  The objectives and 

timeframes are different, but the basic problem is similar:  

                                                 
1
 The idea that feedback depends upon a belief sounds like an oxymoron, because in the ordinary use of the 

word, beliefs are somewhat antagonistic to the concept of evidence or sensory information. One believes in 

a God regardless of any external evidence. Similarly, ideological belief is a construct that is not much 

affected by external inputs.  However, here we use the term „belief‟ in the Bayesian sense, i.e., a belief is a 

combination of prior knowledge and current evidence. 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 2 

 Reaching the goal has a cost: The money you need to spend for retiring to the Bahamas 

or the effort that your muscles must make to reach a target. 

  A forward model specifies what to expect from your actions: Where you will end up 

retiring or the sensory consequences of your motor commands, and 

  In both cases you have a sensory system that provides you with information about your 

state.   

The basic framework is summarized in Fig. 12.1.  Given the goal of the task, and our belief about 

our current state, we generate some motor commands.  These commands change the state of our 

body and our environment.  Using our forward model, we predict what these state changes should 

be.  We observe the state changes via our sensors.  We combine what we predicted with what we 

observed to form a belief about the current state of the body/environment.  Based on our current 

belief about our state, we apply our policy and form a new set of motor commands.  The process 

continues until we reach our goal. Note that the sensory information may also lead to changes in 

the forward model. We may see, for example, that investing money on a particular stock may not 

be a good idea for retiring to the Bahamas and this will lead us to revise our policy. This kind of 

change, however occurs over a slower time scale, compare to the scale of our instantaneous 

decisions. 

 

Whereas in the previous chapter we computed a sequence of motor commands while ignoring the 

sensory feedback, here we want to consider forming feedback control policies that continuously 

adjust the motor commands in response to the sensory feedback.  Our rationale is that our 

movements can be perturbed, and we want to have in place a policy that provides us with the best 

possible motor commands, regardless of where we end up during the movement.  That is, we 

want to compute a time-varying sensory-motor transformation that, given an estimate of state -  

based on the integration of predictions with observations, -  we can compute the motor commands 

that are optimal in the sense that they will provide us with the best possible way to get to the goal. 

 

12.1 Examples of feedback dependent motor control 

 

In the previous chapter we focused on saccadic eye movements partly because these movements 

are so brief that sensory feedback appears to play no role in their control (Keller and Robinson, 

1971;Guthrie et al., 1983).  However, this does not mean that the state of the eye is not monitored 

during a saccade. Indeed, there is data suggesting that the motor commands that move the eyes 

during a saccade benefit from an internal feedback system, possibly a forward model that 
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monitors the motor commands and predicts their sensory consequences.  Let us consider some of 

the evidence regarding this state and goal-dependent process of generating motor commands. 

 

Saccades are sometimes accompanied by blinks.  In a blink, the eyelids close and reopen in a 

movement that takes about 100ms (Fig. 12.2).  However, during a blink the brain sends motor 

commands to not just the lids, but the eyes as well: as the brain sends the commands to the lid 

muscles, it also sends commands to the extra-ocular muscles, causing a displacement of the eyes.  

(Indeed, the motion of the eyes during a blink is not due to a mechanical interaction between the 

lid and the eyes, but rather it is due to the specific motor commands to the eyes.)  Thus, a blink 

during a saccade is a natural disturbance that affects the states of the eyes.  Klaus Rottach, John 

Leigh, and colleagues (1998) used a „search coil‟ technique (which relies on a contact lens that is 

placed on the eyes) to measure eye and lid motion during a horizontal saccadic eye movement.  

They noted that a blink that occurred during a saccade significantly altered the kinematics of the 

saccade, slowing it initially and then producing an over-shoot in the trajectory of the eyes (Fig. 

12.2).  Remarkably, they found that at saccade end the eyes were accurately stopped at the target: 

“accuracy is almost unaffected” by the blink, they wrote.  A more recent study in monkeys 

confirmed that despite the absence of visual feedback, blink-disturbed saccades were corrected 

mid-flight, producing near normal endpoint accuracy (Goossens and Van Opstal, 2000).  

Importantly, the motion of the eyes during a blink-disturbed saccade was not simply a 

combination of commands that produced a blink and commands that produced a normal saccade.  

Rather, the data suggested that when the motor commands that initiated a saccade were corrupted 

by additional commands that were associated with a blink, the motor commands that followed 

responded to the state of the eye in a process resembling feedback control, effectively steering the 

eyes to the target. 

 

A second example of this mid-flight correction of saccades comes from an experiment in which 

transcranial magnetic stimulation (TMS) was used to perturb an ongoing movement.  TMS is 

usually placed over a specific part of the brain in order to briefly disturb the activity of a small 

region directly beneath the stimulating coil.  However, Minnan Xu-Wilson, Jing Tian, Reza 

Shadmehr, and David Zee (2011) discovered that no matter where they placed the coil on the 

head, it always disturbed an ongoing saccade (Fig. 12.3).  The discharge of the TMS coil 

appeared to engage a startle-like reflex in the brain that sent inhibitory commands to the saccadic 

system, resulting in a disturbance to the eye trajectory at a latency of around 60ms (with respect 

to TMS pulse), and lasting around 25ms.  Interestingly, despite the fact that the task was 
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performed in the dark and the target was extinguished after saccade onset, the TMS-induced 

disturbance was immediately corrected with additional motor commands that guided the eyes to 

the target.  This is consistent with a view that as the saccadic motor commands are generated by 

one part of the brain, another part receives a copy and estimates the resulting state of the eye.  

When a TMS pulse is given to the head, it engages a startle-like neural system that inhibits the 

ongoing motor commands.  The system that monitors the oculomotor commands responds to this 

perturbation and corrects for the motor commands so the eye will arrive near the target.  

Therefore, the motor commands to the eyes during a saccade are not pre-programmed in some 

open-loop form, but depend on internal monitoring and feedback.   

 

A third example of this mid-flight correction of saccades comes from an experiment in which the 

target was predictably moved at saccade onset.  Haiyin Chen-Harris, Wilsaan Joiner, Vincent 

Ethier, David Zee, and Reza Shadmehr (Chen-Harris et al., 2008) performed an experiment in 

which people were shown a visual stimulus at 15
o
 on the horizontal meridian, i.e., at (15,0).  As 

soon as the saccade started, the target was removed and a new target appeared at 5
o
 vertical 

displacement, i.e., at (15,5) (Fig. 12.4).  Therefore, the saccade completed with an endpoint error.  

Trial after trial, the motor commands adapted in response to this endpoint error, moving the eyes 

away from the stimulus at (15,0) and toward (15,5).  However, the result of adaptation was not a 

straight trajectory toward (15,5).  (A straight trajectory is the normal response to a control target 

that appears at 15,5 or elsewhere, as shown by the trajectories labeled control in Fig. 12.4.)  

Rather, in this target-jump condition, saccades developed a curvature.  (The saccades remained 

curved whether or not the target jumped on a particular trial, so we can be sure that the curvature 

was not due to visual input during the saccade.)  The motor commands that moved the eyes 

appeared to be corrected as they were executed.  The authors interpreted this data as evidence for 

a forward model that learned from endpoint errors: it learned to predict that a consequence of the 

motor commands was a displacement of the target.  In effect, this internal feedback acted as a 

mechanism that steered the eyes toward the predicted position of the target. 

 

In addition to internal feedback via a possible forward model, there are also instances in which 

sensory feedback affects the control of eye movements.  A good example of this is in the case of 

natural eye movements in which both the eyes and head are free to move.  Indeed, most eye 

movements are not done in isolation, but accompany head movements.  An example of a natural 

(i.e., head-free) gaze shift is shown in Fig. 12.5A.  The gaze shift begins with the eyes making a 

saccade, and the head soon follows.  For a target at 40
o
, the gaze (sum of head and eye positions) 
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is on the target by around 90ms and maintains the target on the fovea, yet the head continues to 

rotate toward the target while the eyes rotate back to re-center with respect to the head.  These 

natural gaze shifts are a good example of a coordinated motion in which multiple body parts 

cooperate in order to achieve a common goal: maintain the position of the target on the fovea.  

Emilio Bizzi, Ronald Kalil, and Vinenzo Tagliasco (1971) used this simple movement to answer 

a fundamental question: were the motor commands to the eyes pre-programmed and open-loop, 

or did these commands depend on the sensory feedback that measured the state of the head?  To 

answer this question, they devised an apparatus that on random trials held the head stationary by 

applying a brake.  They found that if the head was not allowed to move, the eyes made a saccade 

to the target, but did not rotate back.  This was the case even if the visual stimulus was removed 

at saccade onset and the gaze shift took place in darkness.  The experiment was later repeated by 

Daniel Guitton and Michel Volle (1987), whose data are shown in Fig. 12.5B.  On a randomly 

selected trial the target was shown at 40
o
 but the head was not allowed to rotate.  The eyes made a 

saccade, but because the head was not allowed to move, the eyes did not rotate back.  When the 

target was shown at 80
o
, normally the eyes make a 30

o
 saccade as the head rotates toward the 

target.  However, when on a randomly selected trial the head was not allowed to rotate (brake 

condition, Fig. 12.5B), the eyes made a larger amplitude saccade as compared to when the head 

was free (Fig. 12.5A), and the eyes did not rotate back until the brake was released and the head 

was allowed to move.  The fact that the eyes exhibited a larger displacement during head-braked 

trials is summarized in Fig. 12.5C.  Together, these data demonstrate that during head-free eye 

movements, the motor commands to the eyes are not „open-loop‟ but depend on the state of the 

head. 

 

These examples are consistent with the idea that the motor commands that move our body rely on 

two forms of feedback: internal predictions regarding state of the body/environment (Figs. 12.2-

4), and sensory observations (Fig. 12.5).  Let us now show that the feedback gains are also a 

reflection of available resources and expected rewards.  That is, motor commands that are 

produced in response to sensory feedback are optimized with respect to some cost function.  Joern 

Diedrichsen (Diedrichsen, 2007) considered a reaching task in which the two arms cooperated 

and shared a common goal.  In one version of the task (one-cursor condition, Fig. 12.6A), there 

was a single cursor that reflected the average position of the left and the right hand.  In this one-

cursor condition, the goal was to move the cursor to the single target.  There was also a two-

cursor condition in which there was a cursor associated with each arm.  In the two-cursor 

condition, the goal was to move each cursor to its own target.  Joern‟s idea was that the feedback 
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gains associated with how each arm responded to a given perturbation should be different in these 

two conditions.  In the two-cursor condition, the right arm should not respond to a perturbation 

that displaced the left arm, whereas in the one-cursor condition, the right arm should respond to 

this perturbation.  The reason is that in the one-cursor condition (but not the two-cursor 

condition), the two arms have a common goal.  This common goal should translate into 

cooperative behavior in which a perturbation that affects one arm should be handled by a reaction 

by both arms.  In Fig. 12.6B we see that following a left-ward perturbation to the left hand, the 

right hand moved slightly to the right in the one-cursor condition but not the two-cursor 

condition.  This is illustrated better in the velocities of the left and the right arms in Fig. 12.6C 

and 12.6D: about 200ms after move onset, the right arm responded to the perturbation to the left 

arm (Fig. 12.6D).  That is, the right arm takes up some of the correction when the left arm is 

perturbed, but only if the two arms are working together in a task in which they share a common 

goal.   

Suppose that in the one cursor condition, a perturbation is given to the left arm.  Suppose 

that this perturbation would require 2 N to compensate.  Further suppose that motor commands 

cost us proportional to the squared magnitude.  So if the left arm alone compensated for this 

perturbation, it would cost us 4 N
2
.  The optimum thing to do for this particular cost is to have the 

left and right arms each produce 1N.  Now the cost is 1 N
2
 + 1 N

2
, or 2 N

2
.  Cooperation leads to 

a smaller total cost.  If we think of the force that each arm produces in response to the 

perturbation (a displacement) as a feedback gain, these results provide us with two ideas: 1) in the 

one-cursor task the feedback gain of the left arm should be smaller than in the two-cursor task, 

and 2) in the one-cursor task the feedback gain of the right arm should depend on the state of the 

left arm, whereas in the two-cursor task this feedback gain should depend only on the state of the 

right arm.  What we need is a principled way to set these feedback gains so that the limbs 

cooperate to generate motor commands and bring the cursor to the goal in some efficient way. 

 

In summary, during a movement the motor commands depend on the state of the body part that is 

being controlled, as well as the overall goal of the task.  How does one generate motor commands 

that depend on the state of the body while simultaneously optimizing some long-term goal?  We 

will consider this question in this chapter. 

 

12.2 A brief history of ideas in biological control 
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Early theories of motor control stressed feedback mechanisms as the dominant circuits for 

voluntary movements. Sir Charles Sherrington (1923) looked at movements as “chains” of 

reflexes. He wrote: “Coordination, therefore, is in part the compounding of reflexes… This 

compounding of reflexes with orderliness of coadjustment and of sequence constitutes 

coordination, and want of it incoordination.”  His idea was to explain all the richness of motor 

behavior as a combination of simpler and automatic transformations of senses into actions. As we 

discussed in Chapter 3, developments in robotics shifted the focus of motor neuroscientists from 

feedback to preprogrammed, or “feedforward”, control. The nonlinear dynamics of our limbs and 

the relatively long delays of sensory feedback would make it hard or impossible to generate stable 

movements without some form of anticipatory mechanism to compensate for inertial forces. 

Therefore the brain must be able to prepackage motor commands based on implicit knowledge of 

the body‟s mechanics.  As it often happens in science one extreme view was replaced by another. 

First, it was all reflexes, and then it became all open-loop control. But while there is evidence for 

the brain preprogramming movement patterns, there is also equally strong evidence for our ability 

to correct movements “on the fly” in response to incoming information. This is common sense 

and it has also been demonstrated by numerous studies of reaching movements, where the target 

is suddenly changed after the movement starts or the limb perturbed during the movement.  

 

So, while movements are executed based on prior beliefs, our brain also pays attention to the 

incoming stream of sensory information.  But how does it respond to sensory information? The 

idea of simple fixed reflexes is clearly inadequate.  For example, recall that Cordo and Nashner 

(1982) showed how the muscles at the ankle became active when subjects are pulling on a handle, 

but did not show activity with the same pulling action if a bar insured stability to the body (Fig. 

4.1). The ides is that the response to sensory information is modulated by prior knowledge about 

the environment in which we move.  

 

Optimal feedback control provides a framework to move beyond the antagonism of feedback vs. 

feedforward toward a view in which both prior beliefs and sensory-based actions coexist. In this 

view, a fundamental outcome of motor learning is to shape feedback, by establishing, on the basis 

of experience, how the brain must respond to incoming sensory input. Through learning, we 

acquire knowledge of the statistical properties of the environment; we learn how sensory inputs as 

well as motor commands are affected by uncertainty and how uncertainty itself has structure, for 

instance being larger in some directions than others. This knowledge is essential to tune future 

motor responses to sensory information. How can this tuning of feedback parameters be done 
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optimally, so that we can reach our goals with minimal error and effort? Unfortunately the 

mathematical tools at our disposal are limited and the answer to this question can be only be 

given for simple systems and simple forms of uncertainty. Nevertheless, answers in these simple 

cases can guide us toward the development of methods with broader range of applications. In the 

following sections we show how the combination of optimal control and optimal state estimation 

provide us with a way to relate feedback gains to the dynamical properties of a linear control 

system and to the statistical properties of signal dependent noise in motor commands and sensory 

signals. 

 

12.3 Bellman optimality principle 

 

Our aim is to produce motor commands so that they not only achieve a goal in some optimal 

sense (e.g., minimize a cumulative cost), but also respond to feedback, i.e., we want the motor 

commands to be the best that they can be no matter which state we find ourselves in.  A 

framework that is appropriate for solving this problem is optimal feedback control: we have a 

goal that we wish to achieve, and the goal is specified as a cost per unit of time (e.g., accuracy 

cost and effort cost).  For example, suppose that we have a state specified by vector x , and motor 

commands specified by vector u .  For simplicity, we assume that effort is a linear function of the 

command vector. Engineers use the term “control cost” because machinery is not yet endowed 

with a sense of effort. We have a cost per unit of time (i.e., cost per step) that depends on our 

state (which includes the goal state), and effort:  

 ( ) ( ) ( ) ( ) ( ) ( )k k T k k T k kL T  u u x x  (12.1) 

The above cost is quadratic, but our discussion at this point does not require any specific form for 

the cost per step.  So without loss of generality, suppose that the cost per step is of the form 

shown in Eq. (12.1).  We will assume a finite horizon to our goal, which means that we wish to 

achieve the goal within some specified time period p .  Our objective is to find a policy 

 ( ) ( )k ku x  such that at each time step k , we can transform our state ( )k
x  into motor 

commands ( )k
u .  If this policy is optimal, depicted by the term * , then it will minimize the 

sum total of costs ( )

0

p k

k


  from our initial time step 0k   to the end step k p .   

 

To find this policy, we will rely on a fundamental observation of Richard Bellman (1957) (his 

chapter 3.3), who wrote the following:   
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The Principle of Optimality.  An optimal policy has the property that whatever 

the initial state and initial decision are, the remaining decisions must constitute 

an optimal policy with regard to the state resulting from the first decision. 

To explain his idea, suppose that we start at the last time point p .  We find ourselves at state 

( )p
x .  What is the optimum action ( )p

u  that we can perform?  Because we are at the last time 

point, we have run out of time, and nothing that we can do now will have any bearing.  Therefore, 

the optimum thing to do from a cost standpoint (Eq. 12.1) is nothing, ( ) 0p u .  So the optimal 

policy for the last time point is  * ( ) 0p x .  Using Eq. (12.1), let us assign a value to the state 

that we find ourselves at time point p , given that we are using policy * :  

  ( ) ( ) ( ) ( )
*

p p T p pv T x x x  (12.2) 

The function *v  assigns a number to each state, typically implying that the closer we are to the 

goal state (which is a part of the vector ( )p
x ), the better.  [In a bit of confusing terminology, the 

smaller the value v  for some state, the more valuable that state is for us. At this point, the 

concept of value seems identical to the concept of cost.  The difference will become clearer at the 

next step.]  Now let us move back one step to time point 1p  .  If we find ourselves at state 

( 1)p
x , what is the best action that we can perform?  Suppose our policy  ( 1)p 

x  instructs us 

to perform action ( 1)p
u .  How good is this policy?  Well, given that we are at state ( 1)p

x  and 

have performed action ( 1)p
u , we will have incurred a cost specified by ( 1)p   for that time 

step.  Furthermore, the action ( 1)p
u  will have taken us from state ( 1)p

x  to ( )p
x  with 

probability  ( ) ( 1) ( 1),p p pp  
x x u .  This probability is specified by the dynamics of the system 

that we are acting on.  The state ( )p
x  has a value.  It seems rational that the goodness of our 

policy should be related to both the cost it incurs on the current time step 1p  , and the value of 

the state it takes us to in the next time step p .  More precisely, according to Bellman, the value 

of any given state is the cost that we incurred in reaching that state (by whatever policy) plus the 

expected value produced by the optimal policy from that state to the goal. The reader may want to 

pause for a moment and see how this elegant concept is a reformulation of the optimality 

principle.  More importantly, this idea can be directly translated into an equation.  Thus, we 

assign a value to state ( 1)p
x  as follows: 
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      ( 1) ( 1) ( ) ( ) ( 1) ( 1) ( )
* ,p p p p p p pv v p d      x x x x u x  (12.3) 

The right most term in Eq. (12.3) is the mean value of the state that the optimal motor command 

takes us to:  

    ( 1) ( 1) ( ) ( 1) ( 1)
* ,p p p p pv E v      

  
x x x u  (12.4) 

If our policy  ( 1)p 
x  was optimum, then it would produce motor commands ( 1)p

u  that 

minimize the sum of current cost ( 1)p  , plus the value of the state that it takes us to, i.e., 

minimize Eq. (12.4).  [This is because the value of the next state is the smallest cost that we can 

incur if we were to perform the optimal policy at the next step.]  Therefore, the optimum policy at 

time step 1p   has the following property: 

     * ( 1) ( 1) ( ) ( 1) ( 1)
*

( 1)

argmin ,p p p p p

p

E v    



  
  u

x x x u  (12.5) 

And so, if our policy was optimal, then the value of the state ( 1)p
x  would be related to the value 

of the state ( )p
x  as follows:  

     ( 1) ( 1) ( ) ( 1) ( 1)
* *

( 1)
min ,p p p p p

p
v E v    



  
  u

x x x u  (12.6) 

To help de-mystify the nomenclature, in Fig. 12.7 we have plotted what we mean by the terms 

min and argmin.  The term min refers to the minimum value of a function, and the term argmin 

refers to the argument of a function for which the function has a minimum value.  In general, the 

optimal policy  * ( )k x  has the property that it produces the smallest value possible for state 

( )k
x , where „value‟ refers to the cost that is accumulated if we were to apply the motor 

commands specified by this policy starting from time step k  to the last time point p .  If we 

write the expression in Eq. (12.6) for arbitrary time step k , we arrive at what is called the 

Bellman Equation:  

     ( ) ( ) ( 1) ( ) ( )
* *

( )
min ,k k k k k

k
v E v    

  u
x x x u  (12.7) 

Eq. (12.7) implies that if we knew the optimal value associated with states at time point 1k  , i.e. 

 ( 1)
*

kv


x , then we could find the optimum motor command ( )k
u , and this would provide us 

with the value associated with  ( )
*

kv x .  That is, we could recursively solve our problem by 
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starting at some state (usually the end state ( )p
x ), form an optimal value function at this state, 

and then work backwards one step at a time.  Using the Bellman equation (Eq. 12.7), we have a 

tool to break down the problem into smaller sub-problems.  

 

12.4 Control policy 

 

We are going to imagine that in order to make a movement, our brain formulates a goal in terms 

of a rewarding state that it wants to achieve.  It has a model of how the motor commands 

influence the state of the body (i.e., a forward model), and if the movement is slow enough, the 

brain has access to sensory feedback during the movement.  In reality, we do not know how the 

cost of achieving the goal is represented, or what costs may be involved in formulating the motor 

commands.  However, there is some evidence that the rewarding state is discounted in time, i.e., it 

is better to get to the rewarding state sooner than later (Shadmehr et al., 2010).  There is also 

some evidence that the efforts associated with the motor commands carry a cost, and the form of 

this effort cost is approximately quadratic (O'Sullivan et al., 2009).  In the last chapter we showed 

that for control of very simple movements like saccades, motor commands that optimize the 

following cost function are fairly successful in accounting for movement kinematics:  

 ( ) ( ) ( ) ( )

0

1
( ) 1

1

p
p T p k T k

k

J p T L
p






 
    

 
x x u u  (12.8) 

In the above expression, the first term describes a cost for the distance to the goal state at the end 

of the movement, the second term describes a cost for the accumulated effort, and the last term 

describes a cost of time (a function that grows with movement duration).  In our previous chapter 

we assumed that movements were open-loop (i.e., no feedback of any kind).  For a given 

movement duration p  we computed the sequence of motor commands that minimized the above 

cost.  We then found the optimum movement duration by searching among the various total costs 

( )J p  for the one with the minimum cost.  Here, we will assume that there is feedback during the 

movement.  We are no longer interested in computing the optimum motor commands.  Rather, we 

wish to compute the optimum policy, something that transforms each state that we might 

encounter during the movement into the motor commands.  For a given movement duration p , 

our cost per step is:  

 ( ) ( ) ( ) ( ) ( ) ( )

1

k k T k k k T kT L
p





  


x x u u  (12.9) 
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The last term in Eq. (12.9) is the average cost of time per step, i.e., the last term in Eq. (12.8) 

divided by p .  [The term ( )kT  may be zero for all time steps except the last.]  We will consider a 

system in which the motor commands produce signal-dependent noise, and the sensory 

observations also suffer from noise.  We will estimate the state of the system using a Kalman 

filter.  Our objective is to apply Bellman‟s theory in order to formulate a control policy in which 

the motor commands depend on our current estimate of the state of the system.  Emanuel 

Todorov (2005) considered this problem and was first to describe a solution for the case in which 

the noise was signal dependent (which appears to be the case for biological systems).  The 

derivations in this chapter are based on his work.  Once we derive the solution, we will apply it to 

some of the movements that we presented in Figs. 12.2-6.   

 

Suppose that we have a system of the form:   

 
 

 

( 1) ( ) ( ) ( )

( ) ( ) ( )

k k k k
u x

k k k
s y

A B

H

    

  

x x u ε ε

y x ε ε

 (12.10) 

where xε  and yε  are zero mean Gaussian noise vectors with variance xQ  and yQ : 

 
 

 

,

,

x x

y y

N Q

N Q

ε 0

ε 0
 (12.11) 

and uε  and sε  are zero mean signal dependent noise terms, meaning that noise depends on the 

motor commands u  and state x , respectively:  

    

( ) ( ) ( ) ( )
1 11 1 1 1

( ) ( ) ( ) ( )
( ) ( )2 22 2 2 2

( ) ( ) ( ) ( )

  

0,1 0,1

0 0

k k k k

k k k k
k k

u s

k k k k
m m m n n n

i i

c u d x

c u d x

c u d x

N N

c d

 

 

 

 

   
   
   

    
   
   
   

 

ε ε

 (12.12) 

The signal dependent motor noise uε  affects the state x  and the signal dependent sensory noise 

sε  affects the observation y .  It is useful to express the signal dependent noise terms as a linear 

function of u  and x .  To do so, we define:  
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1

1 2 2

1

1 2 2

0 0 0 0 0

0 0 0     0 0

0 0 0 0

0 0 0 0 0

0 0 0     0 0

0 0 0 0

c

C C c

d

D D d

   
   

 
   
      

   
   

 
   
      

 (12.13) 

and so we have:  

 

( )( ) ( )

1

( )( ) ( )

1

 =

 =

m kk k
u i ii

n kk k
s i ii

C

D













ε u

ε x

 (12.14) 

In Eq. (12.14), m  is the dimension of the vector u  and n  is the dimension of the vector x .  

Because   and   are Gaussian random variables, uε  and sε  are also Gaussian with the 

following distribution:  

 
 
 

( ) ( ) ( )

1

( ) ( ) ( )

1

,

,

mk k k T
u i ii

nk k k T
s i ii

N C C

N D D









ε 0 u u

ε 0 x x

 (12.15) 

And so our system has the following dynamics:  

 

   
   

( )( 1) ( ) ( ) ( )

( )( ) ( ) ( )

,     ,

0,1          0,1

kk k k k
x i ii

kk k k
y i ii

x x y y

A B B C

H H D

N Q N Q

N N





 

    

  





x x u ε u

y x ε x

ε 0 ε 0

 (12.16) 

We estimate of the state of our system by combining our predictions with our sensory 

observations using the Kalman framework:   

 
 1 1( ) ( )

1 ( )

ˆ ˆ ˆ

ˆ ˆ

k k k k k kk k

k k k k k

K H

A B

 



  

 

x x y x

x x u

 (12.17) 

Our estimate of state at time point 1k   is simply our prior estimate at time point 1k  , 

1( 1)ˆ ˆ
k kk  x x .  In general, our estimate of state at any time point 1k   is related to our 

observations on the previous trial ( )k
y , our prior beliefs ( )ˆ k

x , and motor commands ( )k
u  as 

follows:  

  ( 1) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆk k k k k kA AK H B    x x y x u  (12.18) 
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At this point we have described a procedure for estimating the state ( )ˆ k
x .  What motor command 

should we produce at this time point?  We need to compute the policy  ( )ˆ* k x  that transforms 

our estimate ( )ˆ k
x  into motor command ( )k

u .  Let us start at the last time point and consider what 

the value function  ( ) ( )
* ˆ,p pv x x  might look like.  Our cost at this last time point is specified by 

Eq. (12.9).  At the last time point the best thing to do is nothing, that is, we will set ( )p u 0 .  

When we do so, the cost at this last time point is a quadratic function of ( )p
x , and so the value 

function at this last time point is:   

  ( ) ( ) ( ) ( ) ( )
* ˆ,

1

p p p T p pv T
p





 


x x x x  (12.19) 

In general, for linear systems for which the cost per step (Eq. 12.9) is quadratic in state, the value 

of the states under the optimal policy is also quadratic.  For this reason, Todorov (2005) 

hypothesized that the value function for any given time step has the following form: 

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
* ˆ ˆ ˆ,

T
k k k T k k k k k k k k

x ev W W w     x x x x x x x x  (12.20) 

For the last time point, Eq. (12.20) certainly seems reasonable because if we set ( ) ( )p p
xW T , 

( ) 0p
eW  , and ( )

1

pw
p







, we simply get the cost ( )p  under the optimal policy of 

( )p u 0 .  If our policy was optimal, then the value function in one step would be related to the 

value function in the next step via the Bellman equation: 

     ( ) ( ) ( ) ( 1) ( 1) ( ) ( ) ( )
* *

( )
ˆ ˆ ˆ, min , , ,k k k k k k k k

k
v E v     

  u
x x x x x x u  (12.21) 

To find the optimal control policy we will proceed in the following three steps: 

1. Starting at time step 1k  , we will assume that the value function  ( 1) ( 1)
* ˆ,k kv

 
x x  has 

the form specified by Eq. (12.20).  We will apply the Bellman equation (Eq. 12.21) and 

compute  ( ) ( )
* ˆ,k kv x x .   

2. Next, we will find the motor commands ( )k
u  that minimize  ( ) ( )

* ˆ,k kv x x .   

3. By finding these motor commands, we will be able to check whether  ( ) ( )
* ˆ,k kv x x  has 

the form specified by Eq. (12.20).  That is, by having ( )k
u , we will check whether the 
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value function at time step k  is in fact a quadratic function of states.  If it is, then we will 

have found the optimal motor commands for one time step.  

 By stepping back another step and so on, we will have found the optimal policy for all time 

steps.  In the end, because we assume that we are controlling a linear system (Eq. 12.10), the 

value function will turn out to be quadratic both in the estimated state and in the motor command.  

Furthermore, the optimal policy will turn out to be linear in the state estimated at each step: 

 ( ) ( ) ( )ˆk k kG u x  

Our goal is to derive the gain matrix 
( )kG  from the statistical properties of the motor and sensory 

processes, both of which are affected by signal dependent noise (Eq. 12.14).  At the end of our 

story, our policy will be the sequence of gain matrices 
( )kG  for time steps 0, ,k p , allowing 

us to produce motor commands for whatever state x̂  we happen to find ourselves at. 

 

Step 1. 

To simplify the notation, we define the difference between our estimate of state and actual state 

as an estimation error:  

 
( ) ( ) ( )ˆk k k e x x  (12.22) 

By combining Eqs. 12.16 and 12.18, we write the dynamics of error in our estimation of state as:  

 
  ( )( 1) ( ) ( ) ( )

( )( ) ( ) ( )

kk k k k
x i ii

kk k k
y i ii

A AK H B C

AK AK H D





    

 





e e ε u

ε x

 (12.23) 

We re-write Eq. (12.20) as:  

  ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
* ˆ,k k k T k k k T k k k

x ev W W w
          x x x x e e  (12.24) 

To minimize Eq. (12.21), given that we are at state ( )k
x  and ( )ˆ k

x , and have produced motor 

command ( )k
u , we need to compute the expected value of the above value function.  To do so, 

we will need the expected value and variance of ( 1)k
x :  

 

( 1) ( ) ( ) ( ) ( ) ( )

( 1) ( ) ( )

ˆ, ,

var

k k k k k k

k k k T T T
x i ii

E A B

Q BC C B





   
  

   
   

x x x u x u

x u u

 (12.25) 

We will also need the expected value and variance of ( 1)k
e : 
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 ( 1) ( ) ( )

( 1) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

var

k k k

k k k T T T k k T T
x i i yi

k k k T T T k T T
i ii

E A AK H

Q BC C B AK Q K A

AK HD D H K A





   
  

    
  







e e

e u u

x x

 (12.26) 

With the above expressions we can compute the expected value of Eq. (12.24):  

 
 ( 1) ( 1) ( ) ( ) ( ) ( 1) ( 1) ( 1)

*

( 1) ( 1) ( 1) ( 1)

ˆ ˆ, , ,k k k k k k T k k
x

k T k k k
e

E v E W

E W w


    

   

   
     

  
  

x x x x u x x

e e

 (12.27) 

Recall that the expected value of a scalar quantity that depends on the quadratic form of a random 

variable x  is:  

      var
TTE A E AE tr A       

x x x x x  

Therefore, the expected value terms on the right side of Eq. (12.27) are: 

 
   

 

( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( 1) ( )

T
k T k k k k k k k

x x

k k T T T k k
x x i x ii

E W A B W A B

tr W Q C B W BC

   

 

    
  

  
  

x x x u x u

u u

 (12.28)  

 

   

 

 

 

( 1) ( 1) ( 1) ( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( )

( ) ( 1) ( )

( ) ( ) ( 1) ( ) ( )

T
k T k k k T k k k k

e e

k k k T T
e x y

k T T T k k
i e ii

k T T T k T T k k k
i e ii

E W A AK H W A AK H

tr W Q AK Q K A

C B W BC

D H K A W AK HD

   







    
  

  
  









e e e e

u u

x x

 (12.29) 

We can now write the Bellman equation in a form that we can use to find the optimal motor 

command at time point k :  

  
( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( 1) ( 1) ( 1) ( ) ( ) ( )
*

( 1) ( 1) ( 1) ( 1)

1

ˆ ˆ, min , ,
k

k T k k T k k

k k k T k k k k k
x

k T k k k
e

L T
p

v E W

E W w







  

   

 
  

 
       
   
    
 

u

u u x x

x x x x x x u

e e

 (12.30)  

 

Step 2 
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To find the optimal motor command at time point k , we find the derivative of the sum on the 

right side of Eq. (12.30) with respect to ( )k
u  and set it equal to zero.  Using Eq. (12.28) and Eq. 

(12.29), we can write Eq. (12.30) as:   

  

 

 

   

 

( )

( ) ( 1) ( 1) ( 1) ( )

( ) ( 1) ( 1) ( ) ( ) ( 1) ( )

( ) ( )
*

( ) ( ) ( 1) ( ) ( )

( 1) ( 1) ( ) ( )

1

2
ˆ, min

k

k T k k T k k
x e x

k T T k k k k T T k k
x e x

k k

T
k T k k k k

e

k k k k T T
x x e x y

L C C B W B
p

A W A T D A W B

v

A AK H W A AK H

tr W Q tr W Q AK Q K A







  

  



 

   


   



  

     
    

u

u u

x x x u

x x

e e

( 1)kw 

 
 
 
 
 
 
 
 
 
 
 

(12.31) 

with the following shortcuts:  

 

( 1) ( 1)

( 1) ( 1)

( 1) ( ) ( 1) ( )

k T T k
x i x ii

k T T k
e i e ii

k T T k T T k k
e i e ii

C C B W BC

C C B W BC

D D H K A W AK HD

 

 

 













 (12.32) 

After we find the derivative of sum in Eq. (12.31) with respect to ( )k
u  and set it equal to zero, we 

have:  

  
1

( ) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( )

k k k T k T k
x e x x

k k k

G L C C B W B B W A

G


      

 u x

 (12.33) 

The above expression is our control policy for time step k .  In practice, the state ( )k
x  is not 

observable and can only be estimated, and therefore the best that we can do is replace it with 

( )ˆ k
x :   

 
 ( ) ( 1) ( 1) ( 1) ( 1) ( 1)

( ) ( ) ( )

ˆ ˆ ˆ

ˆ

k k k k k k

k k k

A AK H B

G

       

 

x x y x u

u x

 (12.34) 

Notice that the gain ( )kG  is inversely proportional to L , a variable that penalizes the effort 

expended on the task.  Eq. (12.33) implies that the greater the effort cost, the smaller the feedback 

gain.  A second point to notice is that the feedback gain ( )kG  depends on ( 1)k
eC  , which in turn 

depends on ( 1)k
eW  .  This matrix is a weight that penalizes the „squared‟ state estimation 

error ( ) ( )ˆk kx x  in Eq. (12.20).  As we will see below, the estimation error depends on the 

Kalman gain ( 1)kK  , implying that the feedback gain ( )kG  will also depend on the Kalman gain.  

The Kalman gain depends on the noise properties of the system, describing the uncertainty 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 18 

regarding our estimate of states.  In summary, our policy, described as a time-dependent feedback 

gain, transforms our estimate of state into motor commands.  This policy depends on the cost 

function that we are trying to minimize, as well as the uncertainties that we have regarding our 

estimate of state. 

 

Step 3. 

As our final step, we need to show that when we apply the policy in Eq. (12.33), the resulting 

value function  ( ) ( )
* ˆ,k kv x x  remains in the quadratic form that we assumed for 

 ( 1) ( 1)
* ˆ,k kv

 
x x .  We insert ( ) ( ) ( )ˆk k kG u x  from Eq. (12.33) into Eq. (12.31) and we have: 

 

 

   

 

 

( ) ( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( 1) ( )
*

( ) ( ) ( 1) ( ) ( )

( ) ( ) ( 1) ( 1) ( )

( 1) ( 1) ( ) ( )

ˆ ˆ ˆ ˆ, 2

1

k k k T k T T k k k T k T T k k
x x

T
k T k k k k

e

k T k T k k k
x e

k k k k T T
x x e x y

v G B W A G B W A

A AK H W A AK H

T A W A D

tr W Q W Q AK Q K A
p







 



 

 

 

  

  

    
   

x x x x x x

e e

x x
 (12.35)  

Using the identity    ˆ ˆ ˆ ˆ ˆ2
TT T TZ Z Z Z    x x x x x x x x x x , we can simplify the first line of the 

above expression and remove the dependence on the interaction between ( )ˆ k
x  and ( )k

x .  When 

we do so, we arrive at the observation that the value function at time step k  is quadratic: 

 

 

   

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
*

( ) ( ) ( 1) ( ) ( ) ( 1)

( ) ( ) ( 1) ( 1) ( ) ( 1)

( ) ( 1) ( 1) ( ) ( )

ˆ,

1

k k k T k k k T k k k
x e

T
k k k k k T T k

e e x

k k T k k k T T k
x x e x

k k k k k T T
x x e x y

v W W w

W A AK H W A AK H G B W A

W T A W A D G B W A

w tr W Q W Q AK Q K A
p







 

  

 

  

   

   

    
   

x x x x e e

 (12.36)  

With Eq. (12.36), we have used induction to prove that our policy is optimal as it satisfies the 

Bellman equation.   

 

In summary, we start at time point p  and set  ( ) ( )p p
xW T , ( ) 0p

eW  , and ( )

1

pw
p







.  

From this we compute ( 1)pG   (Eq. 12.33).  We then use Eq. (12.36) to compute ( 1)p
xW  , 
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( 1)p
eW  , and ( 1)pw  .  From these weights we compute ( 2)pG  , etc.  As a result, we have a 

recipe to compute the feedback gains.  Our feedback control policy is:   

  ( ) ( ) ( )ˆ ˆ* k k kG  x x  

 

12.5 The interplay between state-estimation and control policy 

 

In Chapter 4 we considered the problem of state estimation for a system that had signal dependent 

noise, as in the system of Eq. (12.16).  We found that the Kalman gain on step 1k   was affected 

by the size of the motor commands on step k .  Let us briefly review that result, as it has an 

impact on our ability to compute an optimal control policy.  We found that if on step k  our prior 

state uncertainty is 
( 1)k k

P


, then the Kalman gain ( )kK  has the following form:  

  
1

( 1) ( 1)( ) ( ) ( )ˆ ˆ
k k k kk T T k k T T T

y i ii
K P H HP H Q HD D H


 

   x x  (12.37) 

The state uncertainty has the following form:  

 
 ( ) ( 1) ( )

( 1 ) ( ) ( ) ( )

k k k k T k T

k k k k T k k T T T
x i ii

P P I H K

P AP A Q BC C B





 

   u u

 (12.38) 

It is because of signal dependent noise that the Kalman gain is a function of the state estimate x̂ .  

Furthermore, because state uncertainty depends on the motor commands, as motor commands 

increase in size so does state uncertainty.  Therefore, the state uncertainty increases with the size 

of the motor commands, and the Kalman gain decreases with the size of the state.  The 

implication being that if we are pushing a large mass (producing relatively large motor 

commands), then we will have a larger uncertainty regarding the consequences of these 

commands (as compared to pushing a small mass with a smaller amount of force).  As a result, 

when we are producing large forces, the Kalman gain will be large, and we should rely more on 

the sensory system and our observations and less on our predictions. 

 

Note that according to Eq. (12.37), the Kalman gain ( )kK  depends on 
( )ˆ kx , which according to 

Eq. (12.34) depends on ( 1)k
u .  When we minimized the value function in Eq. (12.31), we took 

the derivative of the sum with respect to ( )k
u .  That sum had the term ( )kK  in it.  Because ( )kK  

does not depend on ( )k
u , our derivative is valid.  However, we face a practical issue: in order to 
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compute the sequence of feedback gains (0) (1) ( ), , , pG G G , we need to know the sequence of 

Kalman gains (0) (1) ( ), , , pK K K .   

 

Emo Todorov (2005) considered this issue and suggested the following.  Say that we compute a 

sequence of control gains (0) (1) ( ), , , pG G G , which are optimal for a sequence of fixed Kalman 

gains (0) (1) ( ), , , pK K K .  These Kalman gains would not depend on the motor commands.  

Rather, ( )kK  will be computed so that for a given sequence of control gains, it will minimize the 

expected value of the future state  ( 1) ( 1)
* ˆ,k kE v

  
  

x x .  Once a sequence of fixed Kalman 

gains had been computed, we then re-compute the sequence of control gains.  He showed that this 

iterative approach was guaranteed to converge.  Indeed, in practice the approach converges within 

a few iterations.  The recipe for computing the Kalman gain is as follows.  We begin at time step 

0k  , set  (0)
eS  to be the prior uncertainty, and (0) (0) (0)ˆ ˆ T

xS  x x , and compute the following 

sequence of Kalman gains: 

 

 

 

 

   

( 1) ( ) ( ) ( ) ( ) ( ) ( )

1
( ) ( ) ( )

( )( 1) ( ) ( ) ( ) ( )

( 1) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆk k k k k k k

k k T k T
e e y

k Tk k k k k T
e x e i x ii

T
k k k T k k k

x e x

A AK H BG

K S H HS H Q

S Q A AK H S C G S G C

S AK HS A A BG S A BG









   

 

   

   



x x y x x

 (12.39) 

To summarize, one begins by computing a set of Kalman gains (0) (1) ( ), , , pK K K .  These gains 

can be computed from Eqs. (12.37) and (12.38) with the signal dependent noise component set to 

zero.  One then computes a set of control gains 
(0) (1) ( ), , , pG G G  using Eqs. (12.33) and 

(12.35).  One then re-computes the Kalman gains using Eq. (12.39), and the re-computes the 

control gains.  The Kalman and control gains converge within a few iterations. 

 

12.6 Example: control of eye and head during head-free gaze changes 

 

In many laboratory experiments on eye movements, the head of the subject is kept at rest and 

only the eyes are allowed to move. But in more natural, unconstrained conditions the head 

participates by redirecting the gaze. When we look around a room, searching for our keys, our 

eyes and head move in fairly complex and well coordinated patterns. As we shift the gaze from 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 21 

one point to another, the eyes tend to start the movement with a saccade (Fig. 12.5A).  During the 

saccade, the head starts rotating.  While the head is still moving, the saccade ends and the eyes 

roll back in the head.  If the motion of the head is perturbed, the saccade is altered in mid-flight 

(Fig. 12.5B).  For example, if a brake is applied to the head for 100ms at saccade onset, the 

saccade is longer in duration and amplitude as compared to when the head is free to rotate, 

implying that the motion of the eyes during the saccade is affected by the state of the head.  Let 

us show that all of these behaviors are consistent with a very simple goal: keep the target on the 

fovea, and keep the eyes centered in the head.  We will express this goal as a cost function, and 

then use optimal feedback control theory to produce movements that best achieve the goal, i.e., 

minimize the cost.  We will perturb the motion of the simulated system and test whether it 

produces movements that resemble the recorded data. 

 

Our model of the eye dynamics is identical to the one that we used in the previous chapter.  We 

have a third order system where ex  represents eye position in the orbit, and ef  is the torque on 

the eye.  We also assume that when 0ex   the eye is in the central neutral position in its orbit. 

The third order system has three states 1 ex x , 2 ex x , and 3 ex f .  We have  

 

1 1

2 2

3 3
2

1
1

0 1 0
0

1
0

1

0 0

e e
e

e e e

x x
k b

x x u
m m m

x x





 
  
     
     

         
           
    

  

 (12.40) 

The parameters of the eye plant are set so that the resulting system has time constants of 224, 13, 

and 4 ms.  So we set 1ek  , 1 2eb    , 1 2em   , 2 1  , and 1 0.004  , where 1 0.224   

and 2 0.013  .  We represent Eq. (12.40) as:  

 e e e e eA u x x b  (12.41) 

Our head model is similar to the eye model, but with time constants of 270, 15, and 10 ms.  The 

head position, hx , is an angle that we measure with respect to a stationary frame in the 

environment. Therefore, the direction of gaze in the same stationary frame is e hx x .  The noise-

free version of our dynamical system in continuous time is:  
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 (12.42) 

Suppose that g  represents the position of our target.  We translate our continuous time model 

into discrete time with time step   as follows.  Set the state of the system to be:  

  
T

e h gx x x  (12.43) 

In Eq. (12.43), g  represents the goal location, described as an angle in the same coordinate 

system in which we measure position of our head.  Define the following matrices using matrix 

exponentials:  

 

  6 1

3 1

3 1

exp

0 1

0 0

c

e
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





  
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 

 
 


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b 0
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 (12.44) 

 The discrete version of our model is:  

 

   
   

( )( 1) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( )
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 (12.45) 

The H matrix in Eq. (12.45) implies that we can sense the position of the eye ex , as well as the  

position of the target on the retina.  The position of the target on the retina is the difference 

between the goal location and the sum of the eye and head positions:  e hg x x  .  What we 

want is to place the target at the center of the fovea, so we assume a cost per step that penalizes 

the distance of the target to the fovea.  We also want to keep the eyes centered in their orbit, and 

so we will penalize eccentricity of the eye.  Finally, we want to minimize the motor commands to 

eye and head.  Our cost per step is: 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k T k k k T k

k T T k k k T k

T L

H T H L

  

 

y y u u

x x u u

 (12.46) 
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Suppose that we want gaze position e hx x  to arrive at target at time step 1k .  The state cost 

matrix T  is zero until time step 1k , and then is kept constant until end of simulation period p .  

The motor cost L  is diagonal with equal costs for eye and head motor commands.  We assumed 

non-zero signal dependent motor noise 1 2 0.01c c   (as in Eq. (12.13)), but zero signal-

dependent sensory noise 0id  . 

 

Fig. 12.8A shows the behavior of our model for a target at 40
o
.  The gaze arrives at target at 

around 100ms, as our cost function had implied, and this is accomplished through a cooperation 

of the eye and head systems.  The gaze change begins with motion of the eye, making a 25
o
 

saccade, and is accompanied with motion of the head.  The saccade amplitude is consistent with 

the data in Fig. 12.5C.  Upon saccade completion the eyes roll back in the head as the head 

continues to move toward the target.  The gaze change begins with motion of the eye because the 

dynamics of the eye present a lighter system to move, and therefore it costs less in terms of effort 

(squared motor commands) than moving the head.  When the gaze is at the target, i.e., target is on 

the fovea, the eyes roll back.  This is because we incur a cost for not having the eyes centered 

with respect to the head.  These two costs, gaze on target, eyes centered, are sufficient to produce 

the coordinated motion of a natural gaze change. 

 

Now let us consider a situation in which head motion is perturbed during the gaze change.  To 

simulate this, we prevented the head from moving for 50, 100, or 200ms at start of the gaze 

change (Fig. 12.8B).  We find that the saccade made by the eye is lengthened so that the gaze still 

arrives near the target at around 100ms, but that the eyes no longer roll back unless the head is 

allowed to move toward the target.  The increased saccade amplitude is consistent with the data in 

Fig. 12.5C, in which we see that in the head-braked condition saccade amplitudes are increased.  

In the experimental data, the head-brake (Fig. 12.5B) also prevents the roll back of the eyes after 

saccade completion, consistent with our simulation results. 

 

12.7 Limitations 

 

The real advantage of using a cost function to describe the goal of a movement is that it removes 

the burden of having to describe the desired kinematics of the task in some a priori format.  That 

is, we do not need to describe how we wish for the eyes and the head to move in order to produce 

a gaze change.  We do not have a desired trajectory that specifies a sequence of positions and 
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velocities that we wish for the eyes and the head to achieve.  Our control system does not have 

feedback gains that are arbitrary attractors around this desired trajectory.  Rather, we have a fairly 

simple goal (put the target on the fovea, keep the eye centered), and then we leave it up to the 

optimization process to find the controller that achieves this goal as well as it can be done. 

 

However, there are potential problems with our simulations and the general framework.  Let us 

highlight some of the limitations here. 

 

In our present simulations we assumed a desired time at which gaze should arrive on target.  

Where does this desired time, i.e., desired movement duration, come from?  One possibility is 

that movement duration carries a cost because passage of time discounts rewards of the task.  We 

used this idea in the previous chapter to show that head-fixed saccade durations reflect an 

optimization process in which passage of time discounts reward.  A recent work showed that the 

duration of gaze changes in head-free movements can also be explained by a cost function like 

that of Eq. (12.9) in which movement durations carry a cost that has a hyperbolic form (Shadmehr 

et al., 2010).  So in principle, a cost that involves three components (keep the target on the fovea, 

keep the eye centered, and get to the target as soon as possible) can account for the kinematics 

and timing of head-fixed and head-free gaze changes.   

 

Following this line of thinking implies that before a movement begins, our brain considers all 

possible movement durations, and given the current cost and reward conditions per step, arrives at 

a control policy that carries a minimum total expected cost.  Putting aside the fact that we have no 

idea how such an optimization process might biologically take place, our framework arrives at a 

specific movement duration for which we implement a control policy.  However, if our 

movement is perturbed, does the perturbation alter our desired movement duration?  It certainly 

seems like it should.  For example, say that during a movement a perturbation alters the position 

of the target.  Our control policy has no trouble with this and will respond to the altered goal 

position.  However, it will do so approximately in the same desired movement period as before.  

This is inconsistent with experimental data (Liu and Todorov, 2007).  People allow more time to 

correct for a perturbation than is expected in our finite-horizon formulation of the problem.  This 

hints that the framework of finite-horizon optimization is probably inappropriate and will need to 

be abandoned for a more general approach. 
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A second, more troubling problem is with the general theme of optimality devoid of evolutionary 

history.  Our framework has proceeded with the assumption that biological behavior can be 

understood as minimization of a cost function in which we usually do not consider the constraints 

that are imposed by the history of the animal.  To illustrate the problem, consider the task of 

trying to explain swimming behavior in seagoing mammals.  Marine mammals swim by beating 

their horizontal tail flukes up and down.  However, fishes swim by moving their tail flukes from 

side to side.  How could there be two seemingly orthogonal but still „optimum‟ ways of 

swimming in water?  In considering this question, Stephen J. Gould (1995) writes: “the 

explanation probably resides in happenstances of history, rather than in abstract predictions based 

on universal optimality.”  In particular, marine mammals evolved from animals that used to run 

on land.  Locomotion of these animals involved flexing their spinal column up and down.  He 

writes: 

Thus, horizontal tail flukes may evolve in fully marine mammals because 

inherited spinal flexibility for movement up and down (rather than side to side) 

directed this pathway from a terrestrial past.  The horizontal tail fluke evolved 

because whales carried their terrestrial system of spinal motion to the water. 

 

Clearly, the mathematics can be expanded to represent constraints that are imposed by 

neuroanatomy and biomechanics.  For example, we can incorporate models of local controllers as 

may be present in the spinal cord, and more detailed models of muscles and biomechanics.  What 

is unclear, however, is whether our cost per step (Eq. 12.9), or our description of the system‟s 

dynamics (Eq. 12.45), need to incorporate some measure of the history of the species. 

 

The brain finds a better way to clear a barrier 

 

We have been spending the entirety of this book examining relatively simple movements like 

saccades and reaching, movements that probably have not changed much in the past few million 

years of evolution.  During the last century, however, the human brain has made fundamental 

breakthroughs in finding better ways to clear a barrier.  The new ways of performing this task are 

real-world examples of better solutions to an optimal control problem. 

 

In the high-jump you are asked to clear the highest hurdle possible.  The task has been a part of 

track and field competition since the advent of such competitions in the modern Olympics.  The 

earliest techniques were to hurdle over the bar: approach at an angle, scissoring the legs over the 
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bar and land on the feet (Fig. 12.9A).  In the late part of the 19
th
 century the technique was 

improved by taking off like the scissor but extending the back and flattening out over the bar.  By 

mid 20
th
 century, the most successful approach was a straddle technique called the “western roll” 

or the “straddle”, in which one begins by running toward the bar at a diagonal, and then kicks the 

outer leg over the bar and crosses the bar face down (Fig. 12.9B).  In all these cases the feet cross 

the bar first, and there is at least a theoretical possibility of landing on your feet.  Starting in the 

early 20
th
 century all competitions included a landing area made of sand, sawdust, or woodchips.  

In the late 1960s, however, there was a revolutionary change in the way athletes jumped over the 

bar, and the change occurred because of the brain of one kid, Richard Fosbury, a high school 

sophomore in Medford, Oregon.  [Our source for this story is an article by Richard Hoffer, Sports 

Illustrated, Sept. 14, 2009.] 

 

Fosbury was a tall kid who in eight and ninth grade was still using the scissor jump to clear the 

bar.  When he entered high school in the tenth grade, his coach insisted that he try the more 

modern western roll.  However, Fosbury had trouble adapting his style.  Rather than improving 

on his previous records, at his first meet as a sophomore he did not clear the opening height and 

failed on all three chances.  The repeated failures continued that year until something amazing 

happened in a meet of a dozen schools near the end of the sophomore year in 1963 at Grants Pass, 

Oregon.  Feeling desperate, Fosbury‟s coach had given him permission to revert back to the 

scissor technique.  On his first jump that day he cleared 5‟4”, the height that he had achieved a 

year earlier.  Richard Hoffer writes:  

 The other jumpers were still warming up, waiting for the bar to be set at 

an age-appropriate height, while Fosbury continued to noodle around at his junior 

high elevations.  If they, or anyone else, had been interested though, they might 

have seen an odd transformation taking place.  Fosbury was now arching 

backward ever so slightly as he scissored the bar, his rear end now coming up, 

his shoulder going down.  He cleared 5‟6”.  He didn‟t even know what he was 

doing, his body reacting to desperation.  His third round, his body reclined even 

more, and he made 5‟8”.  On his fourth attempt Fosbury took a surprisingly 

leisurely approach to the bar and … he was completely flat on his back now, 

cleared 5‟10”.  The high jump was an event that measured advancement by 

fractions of an inch, sometimes over a year.  Fosbury, conducting his own 

defiance, had just improved a half foot in one day. 
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Fosbury was crossing the bar head first, and landing on his neck and back on the sawdust and 

woodchips (Fig. 12.9C).  Fortunately, in his junior year the school replaced the pit with foam and 

he reached 6‟3” by the end of that year and 6‟5.5” by the end of his senior year.  After graduation, 

he enrolled in Oregon State University in the engineering program.  By his second year, he had 

improved his record to 6‟10”.  He was still not a world class jumper, but he would become one by 

his third year, consistently crossing the 7 foot barrier.  In the 1968 Olympics in Mexico City he 

was the only jumper to go over the bar head first.  He won by crossing 7‟4.25”, an Olympic 

record.   

 

In looking back at the change that Fosbury brought, we see two important ideas.  First, the scissor 

technique had evolved into the western roll and the straddle, techniques in which you cross the 

bar face down.  These are control policies that are now viewed as sub-optimal in the sense that 

they are local minima.  Fosbury, starting from the scissor evolved it into a jump in which you 

cross the bar facing the sky.  By effectively re-starting the search process for a better control 

policy, he was able to stumble upon a better solution.  Second, his solution was made possible 

because there was a critical change in the cost function: kids were no longer jumping into piles of 

sawdust and woodchips, but had the luxury of landing on foam.  The margin of safety and 

comfort was significantly increased if you happened to land on your neck.  As a result of a 

healthy disrespect for history, and being present when technology altered the cost of the task, an 

engineering student found a fundamentally new solution to an old optimal control problem, and 

took home the Olympic gold for his genius. 

 

Summary 

 

We make movements in order to improve the state of our body and the environment.  To make 

the movement, we must spent effort.  We can express the purpose of the movement as obtaining a 

more rewarding state, while spending as little effort as possible.  Mathematically this is 

formulated as a cost function in which the state at the end of the movement is afforded a value 

(e.g., the closer we end up to the rewarding state, the better), discounted by the accumulated 

effort.  Together this describes a cost function.  The best movement is one in which the motor 

commands achieve the least cost.  To produce these motor commands, we do not wish to pre-

program them at movement start, because movements can be perturbed and we wish to be able to 

respond to sensory feedback.  Rather, we wish to form a policy that produces motor commands 

based on our current belief about our state.  This belief comes from our ability to make 
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predictions about sensory consequences of our motor commands, and combine them to the actual 

sensory feedback.  An optimal feedback controller describes a feedback dependent policy that 

produces motor commands that minimize a cost regardless of the state that we may find ourselves 

during the movement. 

 

In this chapter we used Bellman‟s optimality principle to compute the policy that minimized a 

quadratic state and effort cost for a linear system with signal dependent motor and sensory noise.  

Our work followed the approach described by Todorov (2005).  We applied the result to control 

of head-free gaze changes in which the eyes and the head cooperate to keep a target stimulus on 

the fovea.  The motor commands to these two systems respond to sensory feedback, and we 

simulated conditions in which the head was perturbed, demonstrating how it affects the ongoing 

saccade of the eye. 
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Figure Legends 

Figure 12.1.  A general framework for goal directed behavior.  Motor commands are generated in 

order to achieve a goal.  The goal is expressed as a cost function.  The motor command generator 

is a feedback controller that produces motor commands as a function of the current belief 

regarding the state of the body and the environment.  This feedback controller is optimum in the 

sense that it produces motor commands that achieve the goal, i.e., minimize the cost function.  

The state of the body and environment comes from a combination of sensory measurements (via 

sensory feedback) and predictions about the outcome of motor commands (via forward models). 

 

Figure 12.2.  An eye blink that takes place during a saccadic eye movement disturbs the trajectory 

of the eyes, yet the eyes accurately arrive at the target.  (From (Rottach et al., 1998)). 

 

Figure 12.3.  TMS applied to anywhere on the head inhibits the ongoing oculomotor commands, 

but the saccade is corrected mid-flight with subsequent motor commands that bring the eye to the 

target.  A. Experimental setup and example of TMS perturbed saccades.  The arrow near saccade 

onset marks the time of a single TMS pulse.  B. TMS applied at various times after saccade onset 

inhibit the ongoing motor commands at a latency of around 60ms, as reflected in the perturbation 

to saccade velocity. 

 

Figure 12.4.  Volunteers were shown a target on the horizontal meridian at (15,0) deg.  Upon 

saccade initiation, the target was jumped vertically to (15,5) deg.  The resulting adaptation 

produced curved saccades, marked here with „target jump‟.  In contrast, control saccades to 

targets that do not jump are generally straight.  (From (Chen-Harris et al., 2008)). 

 

Figure 12.5.  The coordinated response of the eye and head to visual targets.  A.  Eye and head 

motion under head unrestrained condition.  Volunteers were shown a target on the horizontal 

meridian, with amplitude marked at start of the traces.  Head position is measured with respect to 

straight ahead.  Eye position reflects the position of the globe with respect to a centered location 

in the head.  Gaze is head position plus eye position.  B.  Eye and head motion under head 

restrained condition.  On random trials, a brake prevented motion of the head.  The period of the 

break is indicated by the heavy black line.  Motion of the eyes depends on the state of the head.  

C.  Amplitude of the eye saccade as a function of target amplitude in head free and head-braked 

condition.  In the head-braked condition, the head was restrained for 100ms at start of the gaze 
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shift.  Eye saccades are generally larger when head movement is prevented. (From (Guitton and 

Volle, 1987)). 

 

Figure 12.6.  Response to a perturbation depends on the cost function.  A. In the two-cursor 

condition, each hand controlled a cursor and the goal was to place the cursors at the two targets.  

In the one-cursor condition, the cursor position represented the average position of the left and 

right hands and the goal was to place the cursor at the single target.  Perturbations were applied to 

the left arm only.  B. Gray dots indicate left and right hand (LH, RH) positions in the condition in 

which the left hand was perturbed.  The black dots reflect the un-perturbed condition.  In the two-

cursor condition, the perturbation to the left hand produces no response in the right hand.  In the 

one-cursor condition, the perturbation to the left hand produces a small response in the right hand.  

C.  Velocity of the left hand in the perturbed (gray line) and un-perturbed conditions.  D. Velocity 

of the right hand.  In the two-cursor condition, right hand velocity is nearly identical whether or 

not the left hand was perturbed.  In the one-cursor condition, right hand velocity shows a 

corrective response when the left hand is perturbed. (From (Diedrichsen, 2007)) 

 

Figure 12.7.  Schematic description of min ( )f u  and argmin ( )f u . 

 

Figure 12.8.  Simulation results for a head-free eye/head movement with target at 40
o
.  A. An 

unperturbed movement.  B. Perturbed movements.  The head was fixed and not allowed to move 

for 50, 100, and 200ms.  Parameter values: The state cost matrix T  is zero until time step 110ms, 

and then is kept constant at 510 0; 0 300T  
 

.  Motor signal dependent noise standard 

deviation is 1 2 0.01c c  .  Motor costs are  10 0; 0 10L  .  State noise is 70.1xQ I   

where the term 7I  represents an identity matrix of size 7 7 .  Observation noise is 2yQ I .   

 

Figure 12.9.  Techniques used in the high jump competition.  A. Scissor technique, as illustrated 

by Platt Adams during the 1912 Summer Olympics.  B. Straddle techniques, as illustrated by Rolf 

Beilschmidt in 1977.  C.  Fosbury technique.  (Images from Wikimedia Commons) 
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