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2. Building a space map 

 

2.1 Ordinary space 

The word “ordinary” may be misleading as it often appears in a demeaning way, to describe 

something as trivial or uninteresting. In that sense, there is nothing ordinary about ordinary space.  

Philosophers have argued for over two thousand years on the nature of space. Some of the debate 

centered on whether space, as we think of it, really exists at all, or is it just a product of our 

minds. Perhaps a more approachable question is whether space exists independent of what fills it. 

Does “empty space” have any meaning at all?   

 

From grade school we are exposed to notions like forces acting across a distance. We have 

learned from Isaac Newton that the motion of the earth around the sun can be accounted for by 

assuming that earth and sun pull on each other in direct proportion to their masses and in inverse 

proportion to the square of their distance. What is most intriguing is that the force that planets and 

stars exert on each other supposedly acts across vast regions of empty space.  On a smaller scale, 

we all have experienced the force that a magnet exerts on another magnet across a distance. We 

are so used to these concepts that we do not question them. They seem natural and reasonable. 

Yet, these concepts were foreign to the very scientists that developed the foundations of modern 

physics. The concept of empty space was particularly hard to accept. So hard that Gottfried 

Leibniz, the mathematician who laid the foundations of infinitesimal calculus in the late 17
th
 

century, constructed the theory of a universe filled with special entities, the monads, without any 

space between them. The idea of a wave is so connected to the undulatory motion of a body of 

water or air, that until recently physicists were convinced that light and other electromagnetic 

waves propagated within an invisible and mysterious substance called “ether”. It took a long time 

and some crucial experiments to accept that a wave of pure energy may indeed travel across 

empty space.  

 

Another critical concept is that of absolute space. Is there a point of view in which space can be 

considered as standing still? Modern physics teaches otherwise. When we sit on an airplane, the 

video screen mounted on the ceiling of the economy class section is fixed. The space around us in 

the cabin has many fixed points. However, to an observer on earth, these points are rapidly 

translating with the airplane. Over any interval, this observer sees these points as forming line 

segments.  You can see one of the most compelling effects of changing viewpoint by placing a 
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fixed camera on long pole so it looks down at a merry-go-round.  Long ago, we (RS and SMI) left 

the lab that we shared at Cambridge, Massachusetts and walked down the Charles river to a park 

that happened to have a merry-go-round.  We brought a few tennis balls and sat across each other 

on the merry-go-round.  As the carousel spinned, we threw balls at each other.  Instead of moving 

straight, we saw the ball curving opposite to the motion of the carousel.  And yet, if we had a 

video camera, it would show that the ball moved along a perfectly rectilinear path. The reader is 

encouraged to see examples of these movies and animations by searching the web for “Coriolis 

effect”. 

 

While we are interested in presenting some of the mathematical foundations of the concept of 

space, we will not dwell on the rich philosophical debate on the topic. The interested reader can 

find a concise summary of this debate, in relation to Neuroscience, in the first chapter of “The 

Hippocampus as a cognitive map” by John O’Keefe and Lynn Nadel (1978).  Instead, we will 

take a rather pragmatic approach by developing a detailed mathematical model of a simplified 

space and of a similarly simplified visual system
i
.  

We want to represent some of the computational tasks from the perspective of a hypothetical 

organism moving inside an environment and receiving incomplete and distorted images of its 

surroundings. This is a simplification of the gerbil’s viewpoint of the previous chapter.  How can 

this organism’s brain develop a sense of space? Or, in more modern terms, how does it develop 

an internal model of the space by combining sensor data with movement commands? We will 

address this question from the viewpoint of a Mongolian gerbils that we will call “G”. 

 

2.2 A simple model 

The first challenge for G’s brain as it moves inside an environment populated by various 

landmarks is to construct a representation of space from information captured by its eyes. The eye 

is a complex organ, where images are projected on a curved surface with an uneven distribution 

of neural elements that transform photons into electrical impulses. We do not want to develop a 

realistic model of this wonderful neural and optical machinery. We only wish to capture the idea 

that the information about space comes from projections on a curved element. So, let us begin by 

simplifying the dimensionality of the problem. Ordinary space is three-dimensional and the 

surfaces of the eyes are two-dimensional. The math becomes manageable if we assume that the 

space is two dimensional – G is a flat gerbil - and, accordingly, that G’s idealized eye is a 
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circular, 1-dimensional line. This geometrical expedient, which we will shamelessly call “eye”, is 

depicted in Fig. 2.1.   

          

Figure 2.1. A simple eye. This is a projection model that maps points in the plane (L) into 
images over a one-dimensional “retina” in the shape of a circle centered at O. The 
heading direction is indicated by the arrow attached to N. The image of L on this retina is 

the arc 'NL . Assuming that the radius ( 'OL  ) has unit length, this arc measures in 

radians the angle NOL . 
 

In our model, the two-dimensional space is populated by “landmarks”, that is, by points of 

particular significance. As G moves around, the landmarks are projected on the circumference of 

its eye. Now, we need to introduce something that makes this picture less “even”, less symmetric. 

Ordinary space is isotropic: all points are identical and all directions are equivalent. However, our 

view is oriented because we have a body and we face the direction in which we move.  That is, to 

us and to our eye all directions are not equivalent. G’s heading direction is indicated in the figure 

by an arrow that intersects the eye at a point N , which stands for “North”. If L is a landmark in 

the external space,  the projection of the landmark on the simplified 1-dimensional “retina” (the 

circle) is obtained by tracing the segment LO  joining the landmark to the center of the circle and 

by taking the intersection, L’, of the segment with the circle. The point L’ is for our purposes a 

perspective image of the landmark.  

 

2.3 Points and lines 

So far, we have not introduced a metric notion, such as a measure or distance. At a very basic 

level, geometry, and particularly projective geometry, does not use distances. Projective geometry 

is only about objects, such as points, lines and surfaces. Much of its original raison d’être is the 

need to represent three-dimensional reality within the confines of two-dimensional paintings. 

Here, we consider perspective in the opposite (or “inverse”) sense. We want to regenerate the 

reality of space from lower-dimensional pictures in our eyes.  And we want to see this 

reconstruction as a combination of senses and motion. This is indeed the way in which the 

neurons in the hippocampus and in its main input structure, the entorhinal cortex behave:  they 

combine visual memory and self-motion information for generating a neural activity that code for 

the position of the body in the environment. But before developing a quantitative theory we may 

ask what information can be extracted about the environment, without recourse to metric 

concepts.  Is it possible for G’s brain to understand that three or more distinct points are on the 
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same straight line? The task would be easy if G could measure the distances between these points. 

G could take advantage of the well known fact that the shortest distance between two points is 

measured along the straight segment that joins them. But what if one does not know how to 

measure distances? Then, G can make use of a simpler notion, the notion of “order”. This is the 

intuitive idea of a point sitting “in between” two others. The order relation was formalized first by 

Moritz Pasch and subsequently by David Hilbert in a set of axioms known as Hilbert axioms. Can 

G’s brain exploit the order of images on the sensor circle to infer something about the structure of 

the external space?    

 

G can use the order relation, because it has a motor system that allows him to move around its 

environment. Let us start by accepting that given two points A and B, we can find a third point C 

such that C is between A and B. Then, the segment AB  is simply the collection of all points that 

are between the two extremities, A and B.  Points that belong to the same segment are said to be 

collinear.  Consider now the situation depicted in Fig. 2.2. There are four collinear landmarks that 

are ordered as A, B, C, D, or equivalently as D, C, B, A.  We say that A, B, C, D and D, C, B, A 

are equivalent orders because they only differ by the “reading direction” that is by a reflection. In 

this sense A, B, C,  D and, say, A, C, B, D are not equivalent orders. The same order relation is 

consistently present in the projected images A’, B’, C’, D’. This is true for almost any position 

and heading of the eye. We say “almost” because one must only exclude the “singular” sensor-

landmarks configurations at which A, D and O (the center of projections) are collinear.  There, all 

landmarks project onto the same image. However, if the landmarks lie on a straight line, the order 

of their projections is never altered. Collinearity is preserved as G moves around. Conversely, if 

collinearity is preserved as G’s position changes, G’s brain can conclude, without need for 

measures of length or distance, that the landmarks lie on the same straight segment. This is of 

fundamental importance, because we have now derived the notion of straightness of a line 

without using any metric concept of length. As we shall see later, the collinearity relation gives us 

information on the affine structure of the external space.  

 

Figure 2.2. Recognizing straightness. If the four points are on a common straight line, the 
projections preserve the order relation as the observer moves in the environment. There 
is only a complete reversal, a “mirror symmetry”  when the projections cross the midline.  
 

In our example, the eye is a 1-dimensional circle while the external space is 2-dimensional. There 

is an imbalance of dimensions and this imbalance is reflected by order relations of the projected 

http://en.wikipedia.org/wiki/Moritz_Pasch
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images, which change with the position of the eye in space.  In Fig. 2.3, the four landmarks are 

not collinear. We may place them in different orders over different curved lines passing through 

all the landmarks. As a consequence, the relative order of their images changes for different 

positions of G relative to the landmarks.  This is a cue that G may use to establish that the 

external world has more than one dimension and that the landmarks are not placed along a 

straight line.  Summing up, it is possible to extract important information about space based only 

on relations of order between projected points, without recourse to metric operations. However, 

as we will see next, if one can measure lengths and distances one can learn more about the 

structure of external space.   

 

Figure 2.3. Recognizing straightness. The images of the four non collinear landmarks are 
ordered in a way that depends on the observer’s location and orientation.   
 

2.4 Distance and coordinates 

Let us look again at G’s simplified eye in Fig. 2.1. It has three particularly important points: the 

center, O, the “North pole”, N, and the “South pole”, S. The two poles break the symmetry of the 

circle. One may say that the poles exist to signify that all directions are not equivalent.   

 

Animals, as well as most human-made vehicles, have a front and a back. Front is sometimes, but 

not always, defined by the location of the eyes. With some exceptions the orientation of the eyes 

corresponds to the preferred direction of motion: it is safer to advance where one can see. This 

forward or frontal direction is what we call “heading”. It defines the point N and its opposite, S. 

Both the anatomical structure and the behavioral preference to move forward contribute to 

establish a set of particular points on the optical sensor.  

 

Consider two additional stipulations. First, as G moves forward without changing direction, 

stationary landmarks that project on one side of the NS  axis will continue to do so.  This is 

simply because a stationary point in a flat environment moves with respect to us parallel to the 

NS  axis. If we see a point crossing this axis as we move, G may safely conclude that the 

corresponding landmark is not at rest. 

 

Second, our movements do not affect the state of the objects around us, unless we come in 

physical contact with them. Things do not get smaller or bigger because we move. While this is 
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entirely obvious, it has some profound consequences. The perceptual separation between “us” and 

“environment” is essential for our understanding that the space around us is Euclidean. As G 

moves, it performs two operations on the positions of the objects relative to itself: translations and 

rotations. Or - better said - objects that are at rest in the environment rotate and translate relative 

to G. And G’s brain can safely assume that the objects do not change in size or shape. Two 

objects with the same shape and size are said to be congruent, and a transformation that preserves 

shape and size is called an isometry.  A related observation is that an object that G is not 

contacting and is at rest before G starts moving will likely remain at rest. Therefore, in 

constructing an internal model of the environment, G’s brain can take these simple facts (or 

axioms) into account for extracting spatial information from sensory-motor data. 

 

As G moves forward, the projections of the external landmarks change their position on the eye. 

G knows that the space around it is more than one-dimensional because it observed that the order 

of fixed landmark projections over the eye may change as it moves.  Now G needs to construct a 

representation of the landmarks as they are located in the external space. Like the gerbils in 

Collett’s experiments in the previous chapter, G wants to form an extrinsic representation: a 

representation obtained from its own motion but one that remains invariant as G moves.  To this 

end, G’s brain carries out two concurrent operations: a) keep track of G’s location and b) estimate 

the distances between G and the landmarks. By combining these two operations the brain, as a 

sailor tracking along a coast line, builds and maintains a stable representation of the world. 

 

We begin by establishing a measure of distance that will place the scale of the environment in 

relation to G’s own scale.  We associate each landmark projection L’  (Fig. 2.1) with a number 

expressing the length of the arc 'NL  in units of radius length. This corresponds to measuring the 

angle 'L ON  in radians. Call this angle  .  We now construct a Cartesian coordinate system 

o oOx y centered on the origin of the circle (Figure 2.4 - Left).  The origin, O, is the center of the 

eye, the axis 
Oy  points in the north direction and the axis 

Ox  points to the right (toward the 

local “east”). The superscripts refer to the particular origin to which the axes are attached.  The 

concept of Cartesian coordinates is a familiar one and does not need to be discussed here in more 

detail. Its critical importance lies on the possibility to calculate distances between points using 

Pythagoras’ theorem. If two points 1 1 1[ , ]TP x y  and 2 2 2[ , ]TP x y  are given in terms their 

Cartesian coordinates
ii
 , their distance, according to Pythagoras is 
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2 2

1 2 2 1 2 1( , ) ( ) ( )d P P x x y y     (2.1) 

Let us begin by assuming that we have an estimate of where we are with respect to a fixed point  

M in our internal model of the space (Figure 2.4 Right). We also assume that our internal 

representation of space is constructed as a 2-dimensional Cartesian coordinate system 
M MMx y . 

These assumptions will be discussed further below. Our estimated position in this coordinate 

system is 0 ,
T

M M M
O Ox y 

 
r . Figure 2.4A illustrates the view in the sensor’s reference frame. At 

all times we know the value L  associated with the landmark L. This value is 2LO    . The 

projection of the landmark over the sensor is captured by a function that maps the coordinates of 

the landmark ,
T

O O

L Lx y   to the angle/arc-length L : 

 arctan arctan
O O

L L
L O O

L L

x x

y y


   
      

   
 (2.2) 

 

Figure 2.4. Space representation based on metric information. (Left) A Cartesian coordinate 

system, centered on the eye (O) yields ordered pairs of numbers to identify the location of the 

landmark relative to the observer. (Right) A second coordinate frame, centered on a fixed point in 

the environment provides an allocentric reference, the observer can recover the location of the 

landmark in this stationary framework by combining the egocentric representation with a record 

of motions from M to its current location. 

 
 

 

In more concise and general (but less informative) terms we see that this is a function mapping 

two spatial coordinates into a single sensor coordinate: 

 ( , )O O

L Lf x y   (2.3) 

This function is a non-linear coordinate transformation, with multiple points mapping to the same 

projection. Because it maps two variables into one, it does not have a unique inverse. This is 

another way to state that all points that are collinear with the segment OL map to the same sensor 

coordinate L . Points on OL  are equivalent
iii
 with respect to the coordinate transformation.  We 

obtain a linear transformation by taking the temporal derivative of Eq. (2.3), that is by computing 

how the velocity of a point in space translates into the velocity of its projection on the “retina”:  
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0

0 0

0 0 0 0 0

L

L L

L L L L L

xd
x y

dt x y x y y

    


     
      

      
. (2.4) 

The 1x2 matrix 0 0

0 0
J( , )L L

L L

x y
x y

   
  

    

is the Jacobian of the coordinate transformation, 

which results in: 

 

       

00 0

2 2 2 2 00 0 0 0

LL L

LL L L L

xy x

yx y x y


 
 

    
    
 

 (2.5) 

Note that this transformation contains nonlinear terms inside the Jacobian. However, unlike Eq. 

(2.2), the transformation in Eq. (2.5) is linear in the velocity coordinates of the landmark, 

,
T

O O

L Lx y   .  In general, with a non-linear coordinate transformation for the representation of a 

point, one obtains a linear local transformation for the velocity vector representing the motion of 

the point. The dependence of the Jacobian upon the point at which it is calculated indicates that 

linearity is achieved locally.  As the position of the landmark changes, so does the Jacobian.  

 

2.5 Deriving the environment from noise-free sensor data 

Now, we wish to use Eq. (2.5) to obtain the position of the landmark from the observed motion of 

its projection on the sensor. This task falls in the broader class of “inverse optics” problems. First, 

we simplify our problem by making some assumptions: 

1. That we move along the heading direction, i.e. the y-axis of the local frame 
o oOx y . 

2. That the landmark is fixed in the environment. This corresponds to the concept that our 

own motion does not affect the state of the external world. As a consequence, if we move 

along the heading direction with a speed v the relative velocity of the landmark in the 

sensor frame of reference is  -v. 

3. That our dead-reckoning system is accurate. That is we know the position and orientation 

of the frame 
o oOx y within the environment frame 

M MMx y . 

The first and last hypotheses will later be relaxed to consider translation and rotations and to 

allow for errors caused by uncertainty about our own state of motion.  We take advantage of the 

first two assumptions to simplify Eq. (2.5) as 

 

0 0 0

2 2 2

0
L L L

L

L L L

y x x
v

v


  

   
      

  
.      (2.6) 

Here, we have also taken advantage of the fact that    
2 2

0 0

L L Lx y  
 
is the distance of the 

landmark from the center of the sensor along the projecting direction.  We know our speed, v, the 
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projection angle of the landmark, L , and the rate of change of the projection angle L . In 

alternative to the information on the temporal derivatives of the landmark and of its projection 

angle, we may use the changes of these two variables over some small but finite time interval. In 

this case, however, the greater these changes, the greater the approximation error associated with 

Eq. (2.6) expressed in terms of finite differences,  and 
O

Ly v t   . We substitute the 

numerator on the right side of Eq. (2.6) with its expression in terms of the projection angle, 

sin( ).O

L L Lx     Then, the unknown distance of the landmark from the eye center, O is 

 
sin( )L

L

L

v





         (2.7) 

A finite approximation for L  is 

 

0

sin( ) L
L L

L

y
 




 


       (2.8) 

Note that there are two critical situations in which Eq. (2.7) cannot be used, both related to the 

vanishing of the image speed, L . One is when the landmark is in the heading direction. Then, 

0L L    and the landmark position can be anywhere along the heading line, either in the N or 

in the S direction. The other condition ( 0 , 0L L    ) corresponds to the landmark being very 

far away, ideally at infinity along the ray at L radians from the heading direction. If either 

condition occurs, it is impossible to form a model of the landmark location. Otherwise, the local 

landmark coordinates are 

 

0

0

sin( )

cos( )

L L L

L L L

x

y

 

 

  



         (2.9) 

These coordinates are combined with the dead-reckoning information about the position and 

heading direction of the sensor to form a stable representation of the landmarks in the external 

space. This representation does not depend upon G’s state of motion with respect to the 

landmarks. The position of the sensor center is a vector 
T

M M M

O O Ox y   r . The heading 

direction is the angle   of the oriented ON  line with respect to the north direction of the model 

space. This is also expressed as a unit vector  sin( ) cos( )
T

  .  The unit vector describing 

the sensor x-axis in terms of the model axes is  cos( ) sin( )
T

  . Combining this information 
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with the local coordinates of the landmark, we obtain the landmark coordinates in the external 

space model: 

 

 
cos( ) sin( ) sin( )cos( ) cos( )sin( )

sin( ) cos( ) sin( )sin( ) cos( )cos( )

M M O O M

L O L L O L L L L

M M O O M

L O L L O L L L L

x x x y x

y y x y x

       

       

      


     

 (2.10) 

This expression can be written in a more compact form, using a vector/matrix notation: 

  M M O

L O LR  r r r
                      

 (2.11) 

where we introduced the rotation matrix 

  
cos( ) -sin( )

sin( ) cos( )
R

 


 

 
  
 

.      (2.12) 

This is a special type of matrix, as will be further discussed, which describes rotations over a 

plane.  The behavior of a rat’s place cell is consistent with this operation, as the cell fires when 

the rat passes at a spatial location that is referred to a fixed frame of reference.  

 

2.6 Rigid motions and homogeneous coordinates 

Rigid motions are combination of translations and rotations. These motions are called “rigid” 

because they do not affect the distances between points in space. In mechanics, a rigid body is a 

solid object whose points remain always at a fixed distance with respect to each other. Such an 

object can only undergo translations and rotations, which are therefore called rigid 

transformations. When we move around a room, everything else remains at rest – assuming that 

we are not colliding with any object. Therefore, if we look at things from our perspective, we see 

the stationary environment moving with respect to us as a big “rigid body”. But how can we take 

advantage of this basic element of knowledge to derive our own motion from what we observe?   

 

To approach this issue it is useful to introduce an algebraic tool that was first conceived by 

August Ferdinand Moebius, a mathematician known to many for the homonymous Moebius strip, 

a two-dimensional surface in which up and down cannot be distinguished.  Less broadly known is 

the fact that Moebius introduced homogeneous coordinates to simplify problems of projective 

geometry. Homogeneous coordinates also provide us with a single framework to describe in 

matrix form both rotations and translations. It is a nice trick. Consider a point P in a 2-

dimensional Cartesian space, with coordinates x  and y . We can do two types of operations in 
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the Cartesian framework that will change the coordinates. We can apply a transformation such as 

a stretch, a shear or a rotation, while the origin of the coordinate system remains fixed. These 

transformations are represented by 2x2 matrices, so that in the new system, the new coordinates 

of P, x  and y   are linear transformations of the old coordinates: 

 
1,1 1,2

2,1 2,2

m mx x

m my y

    
     

    
. (2.13) 

Transformations of this kind form an important group, called the general linear group, GL. We 

obtain a second type of transformation simply by moving, or translating, the origin of the 

reference frame. If we displace the origin by a vector b  with coordinates xb
 
and yb , then 

every point in the plane will have new coordinates  

 
x

y

bx x

by y

    
      

     
. (2.14) 

Combining a transformation of GL with a translation of the origin and using a more compact 

notation, one obtains a general affine transformation: 

 M b r r  (2.15) 

with   ,
T

x yr  and  ,
T

x yr .  While this expression looks quite simple, Moebius managed 

to make it simpler by introducing homogeneous coordinates. In homogeneous coordinates, the 

general affine transformation is reduced to a single matrix operation. 

 

Figure 2.5. Affine space. (Top) In affine geometry a vector is a translation that brings a 
point into another; (Bottom) If the landmarks (L1 and L2) are stationary, the motion of 
the observer is equal and opposite to the motion of each landmark relative to the 
observer. 
 

To obtain this result we need to change the representation of the points by adding one component 

to each of them. Here, we will not go into much detail about the significance of this extra 

component in projective geometry.  However, to understand the concept of affine geometry, we 

need to make a distinction between points and vectors (Fig. 2.5).  A space (or a plane) is a 

collection of points. A vector is the transformation that leads from a point to another. Therefore, a 

pair of points, A and B, defines the vector AB  that transforms A into B. The combined notions 

of points and vectors constitute what is known as the affine space. Homogeneous coordinates 

represent points on a plane by three coordinates, which we place into a column vector for 
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performing algebraic operations. The three coordinates are graphically obtained by considering a 

family of parallel planes intersecting the z-axis at different distances, w, from a center of 

projection, P. Consider the plane at 1w  . Over this plane, a point with Cartesian coordinates 

( , )x y  has homogeneous coordinates  , , 1
T

x y  . In projective geometry this point is 

equivalent to the points on other planes, along the same ray from P. These equivalent points have 

coordinates  , ,
T

wx wy w where 0w   is an arbitrary positive number. Thus, for example, 

we can represent the point (3 ,3 )x y  as  3 , 3 , 1
T

x y or, equivalently, as 
1

, ,
3

T

x y
 
 
 

.  

Thus, the third component of the homogeneous vector is a scaling factor for the coordinates of the 

point lying on the plane at 1w  .  On this plane, the point at infinity along the direction of 

 ,
T

x y has homogeneous coordinates  , ,0
T

x y .  To represent all points in the Euclidean plane at 

finite distance from the origin, we set 1w  . Consider a point 1P  with coordinates 1 1[ , ,1]Tx y  and 

a point 2P
 
with coordinates 2 2[ , ,1]Tx y .  The vector d  that joins them is  

 
2 1

2 1

x x

y y

 
  

 
d  (2.16) 

and the distance between the two point is simply the  Euclidean norm of d , namely 

 
Td d d .               (2.17) 

Starting from the original representation of a point in two dimension as  ,
T

x yr , we write the 

representation in homogeneous coordinates as  , , 1 1
TT Tx y    r .  We then derive the 

general affine transformation in 2 dimensions by building the matrix 

 

1,1 1,2

2,1 2,2
0 1

0 0 1

x

y

m m b
M

H m m b

 
  

    
   

b
 (2.18) 

Applying H to the point in homogeneous coordinates we obtain: 

 
1 0 1 1 1 1

M M
H

         
           

         

r b r r b r
 (2.19) 

which is analogous to Eq. (2.15).  Thus, we are now able to express all affine transformations as 

matrix operations on points in homogeneous coordinates. 
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Rigid transformations are particular affine transformations that do not affect the distance between 

points.  Consider, again, the points 1P  and 2P  with their distance d  as in Eq. (2.17) . This 

distance should not change after a rigid transformation. The coordinates of the two points, after 

an affine transformation become 

 
1 2

   and  
1 1

M M    
   
   

r b r b
 (2.20) 

with    , 1,2
T

i i ix y i r .  Therefore the new difference vector is  

 2 1( )M M  d r r d  (2.21) 

and the distance is 

 M M T Td d d  (2.22) 

The requirement that d = d  is evidently satisfied by any translation, since the vector b does 

not appear in Eq. (2.21).  As for the matrix M, the invariance of distances corresponds to 

requiring that 

 1TM M   (2.23) 

This is the definition of an orthogonal matrix and is satisfied by rotation matrices,  as in Eq. 

(2.12).   As a result, any rigid motion combines a rotation and a translation and is represented by a 

single matrix in homogeneous coordinates: the product of a translation matrix and a rotation 

matrix: 

 

 

0

0 1 0 1 0 1

Rigid MotionRotation Translation

M I M     
     

     

b b
 (2.24) 

What insight do we derive from this? Consider how the order of two rigid motions affects the 

final result. Take a step forward and then turn to the left by 90 degrees. Make a note of your 

position and orientation and start again. Turn left by 90 degrees and then take a step forward. It is 

evident that we are now in a position that is quite different from the previous one. The two 

combinations of rotation and step only differ by their order.  This effect of the order is typical of 

matrix multiplications.   In general, the product of two matrices is not commutative, i.e., 

AB BA  with the exception of some particular cases.  

 

Let us now consider what happens when a generic rotation R and a translation T , both in the 

plane, are described by the two homogeneous matrices: 
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1 0

0 1

R
R

 
  
 

 (2.25) 

and 

 
1

0 1

I
T

 
  
 

b
 (2.26) 

 

In Eq. (2.25), 1R  is a 2x2 matrix of the form in Eq. (2.12), and 1b  is a 2x1 vector.  To derive the 

effect on a vector of a translation followed by a rotation, we write a cascade: 

 
1 1 1 1 1

0 1 0 1 0 1

R I R R
RT

     
      
     

0 b b
 (2.27) 

The reverse sequence – rotation followed by translation is: 

 
1 10

0 1 0 1 0 1

I R R
TR

     
      
     

b b
. (2.28) 

This illustrates that in the step-turn/turn-step example, we end up with the same orientation but in 

different locations.   This lack of commutativity creates an ambiguity that is resolved in a 

continuous movement where small rotations and small translations along the heading directions 

are repeated in time. In fact, if we consider very small motions, we see that rotations and 

translations commute.  With a small angle,  , the homogeneous rotation is approximated by 

 

1 0

1 0

0 0 1

R



 

 
 


 
  

 (2.29) 

and with a small translation in the heading direction, y , the homogeneous translation is 

 

1 0 0

0 1

0 0 1

T y 

 
 


 
  

. (2.30) 

Then, combining the two we obtain 

 

1 1 0

1 1

0 0 1 0 0 1

y

R T y y T R

   

       

      
   

    
   
      

 (2.31) 

The approximation corresponds to neglecting second order terms. 
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2.7  Updating the space model. 

As we move, we can safely assume that most objects around us remain stationary with respect to 

each other. Thus they collectively form a frame of reference that we can use to derive and update 

a model of space.  Suppose that our gerbil now takes a small step, l , in the heading direction 

and that it also rotates by a small angle  . How would this added rotation affect G’s estimate of 

the landmark locations?  To derive the coordinates of the landmarks in Eq. (2.9) we assumed a 

pure translational motion. Now we want to allow for both rotations and translations, under the 

hypothesis that all landmarks in sight are stationary. Therefore, in G’s field of view, the 

landmarks will all move by the same amount, equal and opposite to G’s motion. Using Eq. (2.31), 

we derive where G expects to see the landmark at time t: 

 

1 0 ( 1)

( ) 1 ( 1) ( 1) ( 1)

1 0 0 1 1 1 1

O O O O

i i i i

O O O O

i i i i

x x x y t

y t l y t y t x t l

 

   

         
        

                  
                

 (2.32) 

The change in each landmark’s location relative to G is   

 

( 1)

( ) ( 1)

1 1

O O

i i

O O

i i

x y t

y t x t l

 

  

    
   

       
   
   

 (2.33) 

We can now abandon the homogeneous coordinate notation, which has fulfilled its role of 

combining rigid motions. We place the movement commands, l and  , in a single command, 

or “input” array:  
T

l u . With this, the relative motions of the landmarks become 

 ( ) ( 1) ( ( 1)) ( )O O O

i i it t M t t   r r r u  (2.34) 

where  

 
0 ( 1)

M
1 ( 1)

O

i

O

i

y t

x t

 
  

   
 

Let us go back to the expression in Eq. (2.5)  for the Jacobian of the landmark projections. We 

use it now to derive the expected change in the projection of landmark i caused by the motion 

command: 

 
   

2 2

2 2 2 2

sin
O OOO O O
i iii i i i

i O

i i i i ii

y xyy x x
l l

x l

 
    

     

   
        

    
  

From this we obtain the new expression for the distance of the landmark: 
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 sini i

i

l
 

 



 (2.35) 

This simply says that in deriving the distance of each landmark one should subtract the projection 

change   associated to our own rotation. Indeed our own rotation cannot carry any 

information about the distance of an object, since the effect is the same for all objects on the same 

projective line!  

 

Once we have an initial model of the space and the landmarks, we can ask how G can maintain 

this model by collecting additional information. The problem of deriving a map of space and to 

localize oneself in this map is an important problem in robotics (Dissanayake, Newman, Clark, 

Durrant-Whyte, & Csorba, 2001; Thrun, Fox, Burgard, & Dellaert, 2001). Practical applications 

include the development of autonomous vehicles capable of moving unmanned in a mine, inside a 

harbor or other dangerous environments to collect and transport items. The environment is 

populated by various objects and by people moving around. It may be possible, however, to place 

beacons or other fixtures at a variety of locations. Then the task for the vehicle becomes quite 

similar to the task faced by the gerbils when looking for seeds in relation to fixed landmarks. 

Often, robotic engineers have explored these problems from a biomimetic perspective.  

“Simultaneous localization and map building” or SLAM  (Dissanayake, et al., 2001) is a term to 

describe how the problem of navigation is dealt in the mathematical framework of optimal state 

estimation (we will get to this topic in chapter 4).  Here, we merely introduce the general issues 

encountered in forming and maintaining a map of space.   

 

We build and update G’s model of space in the reference frame of the fixed landmarks. This 

reflects the observation that space coding cells in the hippocampus and in the entorhinal cortex 

respond to moving into locations of space that are fixed in some external reference frame. 

Without getting into the modeling style of artificial neural networks, here we wish only to present 

some mathematical problems associated with the formation of a spatial map. We begin by 

establishing an external frame of reference, centered at some point that may either be one of the 

landmarks or any element of the scene that is stationary with respect to the landmarks. In what 

follows, we make the assumption that all coordinates are referred to this fixed frame. Thus, the 

extrinsic description of the space model has a state vector 

  1 1 1, , , , , , , , , , ,
TT T T T

O O N N O Nx y x y x y     s r r r  (2.36) 
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The state vector includes our position and heading direction together with the position of the N 

fixed landmarks.  In this extrinsic frame, when G makes a movement,  ,
T

l  its position 

changes by a translation along the heading direction  : 

 
sin ( 1)

( ) ( 1)
cos ( 1)

O O

l t
t t

l t

 

 

   
    

  
r r  (2.37) 

and then the heading direction is updated: 

 ( ) ( 1)     t t      (2.38) 

  
This can be re-written in a compact matrix form as 

 

sin ( 1) 0

( ) ( 1) cos ( 1) 0

0 1

O O

O O

x x t
l

y t y t t







 

      
      

           
           

 (2.39) 

By definition, in the extrinsic reference the landmarks do not move. Therefore, the state of the 

environment is governed by the following Eq.: 

 ( ) ( 1) ( ( 1))t t B s t   s s u  (2.40) 

where we have introduced the ( 3) 2N    matrix  

 

sin ( 1) 0

cos ( 1) 0

0 1

0 0

t

t

B





  
 


 
 
 
 
  

 (2.41) 

Eq. (2.40) has a deceptive linear appearance. However, it is not a linear equation because the 

“control matrix” B depends upon one of the state variables, the heading direction. This limits the 

possibility to apply known linear methods even in this very simple case. 

 

We consider two elements that contribute to the updating of the internal model of the 

environment. We have described how G expects its position with respect to the fixed landmarks 

to change in time based on how it thinks it is moving. This is called the “process”.  The other is a 

model of the expected sensation caused by G’s motion.  This is called the “observation”. The 

observation may come in two flavors.  One may assume to know how objects generate projected 

images in the eye and have a model of how such sensations are formed. Alternatively, we have a 

model like the one described here earlier, which generates images of the objects based on 
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sensations from the eye. This is a model of perception, and is the kind of observation model that 

we consider here. The perception model has the useful geometrical property of generating 

mathematical objects of the same type as the mathematical objects produced by the process 

model. Both perception and process models generate hypotheses about the state of navigation. 

Thus, we can compare their results.  

 

The observation model provides an estimate of the current locations of the landmarks relative to 

us, in our own frame of reference, ( )O

i tr . We may readily transform these data into an estimate 

of the positions of the landmarks in the external frame, M : 

 ˆ ( ) ( , , ( ), ( ))i i it H l t t   r  (2.42) 

The hat superscript indicates the data obtained from the observation.  To derive this expression 

more explicitly, we need to know the heading direction and the step s along this direction. We 

can apply Eq. (2.11). Using the homogeneous coordinate notation: 

  

 

2

( ) ( , , )
( , , ( ), ( ))

0 1 1

sin ( )

cos( ) sin( ) cos( ) sin( )

sin( ) cos( ) sin( ) cos( ) sin( )cos( )

0 0 1
1

 =

O O

M i i i

i i

i

O O i
M M

O O

M M i i

i

R R r t r l
H l t t

l

x y
l

x y

    
   





   


     





 
   

    
   

 
 

    
  

     
  

   
 
 

  

 

2

2

sin ( )cos( ) sin( )cos( )sin( ) cos( ) sin( )

sin( )cos( )cos( ) sin ( )sin( ) sin( ) cos( )

1

O O

i i i M M

i

O O

i i i M M

i

l
x y

l
x y

      



      



 
   

 
 

   
 
 
 
 

 (2.43) 

Note that the displacement term, ,O O O

M M Mr x y     is the location of the fixed reference landmark 

in G’s moving frame of reference. Therefore, G’s own location is derived by transforming its 

origin from its own frame (i.e. the point  0 0 1
T

) to the external frame (Fig 2.4): 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 19 

 
0

cos( ) sin( )0
( ) ( )

r sin( ) cos( )0
0 1 1

11

O O

M MO O

O OM M

M M

x y
R R r t R r t

x y  

 

   

    
                    
      

   

 (2.44) 

Eq. (2.40) and Eq. (2.42) are two ways for computing the same thing: the structure of the space 

around G in terms of the landmarks and G’s location at different instants of time. The first 

method is based on predicting how things will look when G moves. The second uses G’s 

observation of the landmarks and of the reference point. Both methods use some form of prior 

knowledge about the landmarks being stationary and about self motion. But they do so in 

different ways. If everything is working then the predictions from the process model and the 

actual observation must coincide, as shown in Fig. 2.6. The leftmost panel displays the paths as 

we are moving. The environment has three fixed landmarks, plus a reference point, indicated by a 

small square. The reference direction (North) is shown by the arrow in Fig. 2.6.  As we move in 

this space we form two models, one based on the observation model of Eq. (2.42) and the other 

based on the predictive model of Eq. (2.40).  The outcomes of the prediction models are shown 

on the top panels of Fig. 2.6. The outcomes of the observation models are shown in the lower 

panels.  

 
Figure 6. A simple navigation. Top Left: The external space. The simulated gerbil (G) moves 
within a planar environment populated by landmarks. These are indicated as points with letters 
A, B, C . A small square (R) and an arrow indicate a reference point in the environment and the 
actual “North” direction. The point R can be thought of as a particular landmark or as point in 
space with some particular salience. Top Middle: Space model obtained from the projected 
images of the landmarks and of the reference on the eye model (Top Right).  The scales of the 
model and of the space are deliberately different in this figure.  The locations of the landmarks 
and G are derived from the motions of their projections on the eye after a small translation of 
the agent in the heading direction.  In the model all locations are referred to the image of the 
reference, which becomes the origin of the model’s coordinates. Bottom: Noise effects as G 
moves in the environment (Bottom-Left). The four “process” panels represent four internal 
models of the environment obtained from the iteration of the process model. The models are 
corrupted by Gaussian noise of increasing amplitude from left to right. The four “observation” 
panels are model reconstructions based only on the observation of the landmarks. These models 
are also corrupted by Gaussian noise of increasing amplitude from left to right. The leftmost 
observation and process models have zero noise. Note that, without noise, the observation 
model has a minimal amount of error, revealed by the slightly larger images of the landmarks. 
This is because the observation model has a nonlinear inverse perspective transformation that is 
affected by the discrete approximation of the positional increments.   
Error sources 

Why can there be a discrepancy between what G expects to observe and what it actually sees? 

The answer is deceivingly simple: because of noise. But what is noise? This is a more complex 
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question. We can call noise whatever causes unexpected behaviors. If we know exactly the 

structure of the process, the command that we are issuing and their effect on our movement, and 

if the images have no blur or unexpected distortion, there would be no question about the fidelity 

of our internal representation of the environment. Unfortunately, things are not so simple. Any 

model is likely to have some structural errors. For example, one normally integrates small but 

finite movements instead of infinitesimal displacements. Figure 2.6 illustrates the effect of 

increasing amounts of uncertainty on G’s position and on the placement of the landmarks within a 

model of space.  The top row demonstrates what would happen if G’s  model were built only 

based on what G knows a priori about its movement. Here, G starts from an initial estimate of the 

landmarks and its own location. It assumes that this initial estimate is correct. Then, each time G 

takes a step it calculates a new position for itself and for the landmarks, using Eq. (2.40). 

However, now there is an unexpected term ( )s tε . A random variable representing the uncertainty 

of the predictions:  

 ( ) ( 1) ( ( 1)) ( )st t B t t    s s s u ε  (2.45) 

The random variable may follow some unknown distribution. However, most analyses assume 

that noise is drawn from a normal distribution with known variance, Q . When the state variable 

is a vector quantity, the variance is replaced by a covariance matrix of the same dimension. The 

process noise that was used in the examples of Fig. 2.6 had two components, one for position 

uncertainty and one for heading uncertainty. In practical situations, process uncertainty derives 

not only from a limited knowledge of the actual value of the commands, but also and more 

importantly from the unexpected external factors that may affect the outcome of each command. 

Factors like rough terrain and wind gusts would cause variable degrees of uncertainty on G’s 

predicted position. We are safe to assume that the position of the landmarks is constant. However, 

knowledge of this position could also be affected by some degree of uncertainty. In generating the 

trajectories of Fig. 2.8, the process model assumed that the uncertainty about each landmark 

position was the same as the uncertainty on G’s position.  Alternatively, one may assume a lower 

amount of uncertainty for elements that are known to be stationary. But the really critical issue 

here is the shape of the expected error distribution. One approach to random variables of 

uncertain origin is to consider them as normally distributed, with zero mean and variance Q : 

 ε (0, )s N Q  (2.46) 

This choice has its main rationale in the central limit theorem of probability theory, which states 

that the mean of any random variable tends to be normally distributed, as the number of 

observations grows larger. However, one can be sure that the effect of friction on the movement 
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of a vehicle is always opposite to the direction of motion. Therefore, when looking at this effect 

as a random variable, it could hardly be described as a noise with zero mean with symmetric 

distribution. Nevertheless, the standard assumption of Eq. (2.46) has significant computational 

advantages and it is common practice in mathematics to make simplifications of this type. In such 

cases it remains important to keep in mind what elements of reality are being ignored. Back to 

Fig. 2.6, the variance Q  for the positional noise was varied from .25 to 4 units. This being a 

simulation, the entity of a unit is somewhat arbitrary. To give an idea of the dimensions at play, 

the distances between pairs of landmarks was about 90 units. The variance for the heading 

direction varied between 1 and 9 degrees.  

 

Noise is also present in the observation process, starting from the signals originating from sense 

organs. In our case, G observes the locations of the landmarks and infers its own position by 

looking at the projections of the landmarks and knowing that the landmarks are fixed in space. In 

a perception model, one observes variables that are related at all times to one’s own state of 

motion. We have derived a particular expression, Eq. (2.43), for the observation process that 

gives the location of the landmarks as a function of G’s state of motion.  As it was the case for the 

process model, we now add a random variable r  to the deterministic component of the 

observation model:  

 ˆ ( ) ( , , ( ), ( )) ( )i i i rt H l t t t       r  (2.47) 

An additional noise term,  appears inside the function H . This represents the uncertainty on 

the “retinal” signals, , which results into an uncertainty on the reconstructed landmark locations. 

The observed data about the positions of the landmarks relative to G are then reflected into the 

uncertainty on G’s position. The effects of observation noise are illustrated in the lowest portion 

of Fig. 2.6. We generated these examples with the retinal noise varying  from .05 to .2 degrees , 

the position noise from .5 to 1.5 and the heading noise from .5 to 1.5 degrees. 

 

2.8 Combining Process and Observation models 

We have considered two models. One generates a prediction about the next state and the other 

makes an observation of the same state. The two models include some amount of randomness that 

causes uncertainty on their outcome. Methods of optimal estimation (more details in Chapter 4) 

are based on the idea of combining the outcomes of these two models and a particular way to do 

so is to require that the combination be convex. A convex combination of two points is a third 
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point that lies between them. The most general form for a convex combination of a point P1 and 

P2 is a point P3 that lies on the segment joining them: 

 3 1 1 2 2 1 2     with    1P P P          (2.48) 

Note that this rule applies to points in any number of dimensions. Let us begin by considering a 

simple one-dimensional case, in which the process model generates the estimate ( )s t  and the 

observation generates another estimate ˆ( )s t . Both are one-dimensional real numbers.  It seems 

plausible that the true unknown value may likely fall between these two estimates.  However this 

is not always the case. So, instead of considering individual trials, we should consider collections 

of “equivalent” trials. This is easy to do in a simulation, although it is time consuming.  All one 

needs is to repeat each prediction and each observation multiple times and collect some statistics 

of the outcomes. In doing so, one implicitly assumes that the process under study is ergodic. By 

this, we mean that one can infer the statistical properties of the process from a large number of 

samples at each point of time. In our case, we repeat each step of the process a number of times 

and calculate the mean and covariance of the predicted and observed states. Suppose that the 

observed state has very little variability compared to the predicted state. Because we have 

assumed that the noise has a Gaussian distribution with zero mean, we could safely conclude that 

the true state is likely closer to the observed state. Conversely, if the observations are more 

variable than the predictions, the true state is likely closer to the predicted state. Therefore, 

variance appears to be a reasonable criterion to establish the position of the final estimate 

between the observed and the predicted state. One simple way to do so is to give the more weight 

to the process with smaller variance. That is, let 
2

1
O

O




  be the inverse of the variance of the 

observation ˆ( )s t  and 
2

1
P

P




 be the inverse of the variance of the prediction model, ( ).s t  Then, 

we generate the normalized coefficients  
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and we derive the state estimate from the convex combination 

 

2 2

2 2 2 2
ˆ( ) ( ) ( )O P

E

O P O P

s t s t s t
 

   
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 
. (2.49) 
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A simple algebraic manipulation leads to an expression for the estimated state that is a correction 

of the predicted state based on the difference between observed and predicted state: 

 

 

2 2 2 2

2 2 2 2 2 2 2 2
ˆ( ) ( ) ( ) ( )

ˆ     ( ) ( ) ( )

O P P P
E

O P O P O P O P

s s t s t s t s t

s t K s t s t

   

       
        

   

   

 (2.50) 

with  

 

2

2 2

P

O P

K


 



 (2.51) 

We see that the estimated state is obtained from the predicted state with a correction proportional 

to the difference between predicted and observed states.  If the variability of the prediction is 

much larger than the variability of the observation, then the gain K will be close to 1. In the 

opposite case, K will be close to zero.  

 

Figure 2.7.  Combining predictions and observations.  As G moves among landmarks, it forms a 
map of the landmarks and localizes itself in this map. This figure illustrates the effects of two 
sources of noise: noise in the internal model of the process and noise in the observation.  The top 
panels correspond to a condition in which the observation noise is large compared to the process 
noise.  The bottom panels describe a situation in which both noise terms are relatively large and 
similar. The panels on the left show estimated locations of landmarks and G,  obtained by the 
observation system alone. At each time step, the model used five samples of the landmark 
locations and G’s position. These are shown in light grey. The dark colored markers are averages 
of these individual samples. The second panels from the left show estimated positions obtained 
from the process model alone. Again, each dark colored marker is an average over 5 points. The 
third panels from the left show the same scenario derived from a convex combination of 
observed  and predicted locations. The combination is based on the relative variance of predicted 
and observed points, as described in the text. The graphs on the right display the overall 
reconstruction errors obtained  for each of the two noise distributions and for each 
reconstruction model. Note that form most times the combination of observation and prediction 
models provides a better estimate that either method.  
 

This approach is illustrated by the examples in Fig. 2.7.  In our case, the state is not a scalar, but 

the array (2.36) with heterogeneous positional and angular components. To preserve the flavor of 

a convex combination, we estimate independently each element of the state vector –

1, , , ,T T T

O Nr r r  -by taking the trace of the respective covariance matrices for the observed and 

the predicted values. The more rigorous approach to this type of estimate is presented in Chapter 

4.  Here, we consider two different cases, with different values for the relative variances of the 

observation and of the prediction processes. The data shown on the top row were obtained with 
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high observation noise and low prediction noise.  The trajectories and landmarks derived from the 

observation and prediction processes are shown together with the trajectory obtained from their 

combination, using Eq. (2.49). The graph on the top rightmost panel illustrates the net “space 

error”, that is the net positional error for the three landmark and for G’s position.  As expected, 

the observation model generates larger errors than the prediction model and the estimated 

combination has similar performance to the prediction model. The situation in the bottom row is 

characterized by a similar amount of variance in the prediction and observation noise. Here, the 

lower rightmost panel shows that the performance of the combined model is superior to both 

component models.  

As we pointed out earlier, an obvious drawback of this approach stems from the need to calculate 

means and variances from multiple data, when a process may only be allowed to generate one 

sample per time interval. In real life, we would not take multiple small steps, back and forth along 

any given trajectory to generate multiple samples of the landmarks and of our own position. 

Therefore, a great deal of attention has been devoted by signal and control theorists to the 

problem of estimating the statistics “on the go”, one sample at a time. The Kalman filter that will 

be discussed in Chapter 4 is a successful and fundamental algorithm that solves this problem for 

linear systems with normally distributed zero mean noise. The algorithm of the Kalman filter uses 

an update expression that is very similar in form and substance to Eq.s (2.50) and (2.51) and its 

most important and critical part is in the update of the process covariance as the data keep coming 

in.  

 

2.9 Back to the gerbils 

We have described how a simple combination of geometrical and probabilistic rules is sufficient 

to reconstruct the spatial distribution of the landmarks around G together with G’s own location. 

Of course, G is only a fictional character based on an oversimplified model of the visuomotor 

apparatus. Can this model account for real data?  Let us refresh our memory of the experiment by 

Collett and collaborators that we described in the previous chapter. They placed their Mongolian 

gerbils inside a circular arena with two distinct landmarks. They hid a seed under the gravel at a 

fixed location with respect to the landmarks. After some explorations the gerbil found the seed. 

The gerbil engaged in this search several times, with the seed at the same location. Eventually, 

the gerbil remembered the location of the seed and went straight to get it. The interesting part of 

the experiment came after this initial practice. Once the gerbil had learned to find the seed, Collett 

and colleagues played a revealing trick. They displaced the landmarks and removed the seed. So 

now, the gerbil went in the changed environment looking for food while the scientists recorded 
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where the gerbil would spend time searching. In one case, the distance between the landmarks 

was doubled. The gerbil responded to that perturbation by searching at two locations, each 

location corresponding to the learned location of the seed relative to each marker (Figure 1.3C). 

This was seen as evidence that “they treat each landmark independently when planning a path to 

the goal and formulate a separate trajectory for each landmark”. However, this finding appears to 

be at odds with the result of another experiment, where the landmarks had different appearance 

and, after training, were rotated by 180 degrees. Then, instead of searching at two locations, the 

gerbils concentrated their effort at a single location that was also rotated by the same amount 

(Figure 1,3F). As we pointed out in the previous chapter, this result implies that the gerbil’s 

internal model of space was Euclidean. We have included already this assumption in some of the 

operation of G’s rudimentary visual system. Let us now construct a single mathematical function 

capable of accounting for both of Collet’s findings.  

 

G’s navigation system has a state that combines G’s own location, 0r , and the locations of the 

markers, 1 Nr ,…,r   in a single vector. In the navigation paradigm that we have described so far, 

we did not address an important issue: how does G decide where to move? We simply assumed 

that it moves somewhere. If G were a real gerbil looking for food, we may assume that not 

knowing the food location, it would engage in some kind of random walk, stopping occasionally 

to check under the gravel. Things would change when G finds the seed. The seed is a reward that 

would cause G to store the state vector for future use. As this experience is repeated, this memory 

is likely to become stronger and more stable, and perhaps also a little blurred, because the state 

would not be identical from trial to trial. Mathematically, we can represent this memory as a 

“value” function encoding the probability of finding the reward at one or more locations of the 

space map. Now, we can formulate a rule to build the value map, given that we found a nutritious 

seed at a state 

 1 2ˆ ˆ ˆ
T

T T T
SEED

 
 

s r ,r ,r . (2.52) 

Here, 1 2  SEEDr , r , r  are the positions of the seed and of the two landmarks. We dropped the 

heading direction   since it is not relevant to the problem at hand.    

 

Figure 2.8. Representations of the seed in the reference frames of the landmark.  The 

state vector contains the position of G and of the two landmarks at the time the seed is 
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discovered. Each pair of landmarks defines a reference vector upon which the seed 

vector is projected by inner-product. The outer product operation yields the projection of 

the seed vector on the orthogonal direction 

 

 

We use the three elements of ŝ  to build two independent representations of the seed, as shown in 

Fig 2.8.  These are: 
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 (2.53) 

The only element here that is in a way extraneous to the state vector (2.52) is the term k̂ , which 

appears on the second term of 1
0s  and 2

0s . This is simply the unit vector perpendicular to the 

plane in which G moves and pointing upward. The “cross product” indicated by the symbol   is 

a standard operator of vector calculus. Given a system of unit axes in three orthogonal directions, 

ˆ ˆ ˆi, j,k , and two vectors , 1 2 3
ˆ ˆ ˆv v v  v i j k  and 1 2 3

ˆ ˆ ˆv v v  w i j k , the cross product of v and 

w is 

 1 2 3 2 3 3 2 3 1 1 3 1 2 2 1

1 2 3

ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( )v v v v w v w v w v w v w v w

w w w

 
 

       
 
 

i j k

v×w i j k  (2.54) 

We need also to remember that the cross product of two vectors is proportional to the sine of the 

angle between them: 

 v×w = v × w sin(vw)         (2.55) 

From both Equations (2.54) and (2.55) it follows that the cross product is anti-commutative: 

 v×w = -w×v .        (2.56) 

Therefore, the sign of the second components of the “seed vectors” depends on the relative 

orientation of the landmarks. This is critical for reproducing both the apparently conflicting 

results of Collett and coworkers, when they increased the distance between the landmarks and 

when they rotated the landmark pattern. 

  



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 27 

In our model, when G finds a seed it constructs a value function over the navigation space, 

expressing the probability to find the hidden reward in relation to each visible landmark.  An 

example of such function with the above two-landmark scenario is: 

  
2 2

0 0
1 1 2 20 0

1 2 2 2
| , exp expV

 

   
    

      
   
   

s s s s
s s s  (2.57) 

where 1s  and 2s  are representations of the current position of G with respect to the current 

landmarks, derived using the same transformation- Eq. (2.53) -that generated the two “seed 

vectors”,  0
1s  and 0

2s  . Each landmark, with its neighbors is an independent reference frame that 

generates an additive component of the value function. On the next navigation, G will move 

toward the places that promise the highest reward. In the landmark arrangement of Fig. 2.9A, the 

value function has two coincident “hills” (Fig. 9B). Therefore, G will search in the same place 

where it found the seed in previous trials. If the landmarks are placed at a greater distance, then 

the two exponentials in the value function will separate – the degree of separation being a 

function of the uncertainty, 
2  (Fig. 2.9C). If instead the landmarks are rotated by 180 degrees 

(or any other angle), the Gaussian contributions to the value function will also rotate accordingly 

and will map to the same location on the navigation map (Figure 2.9D).    

 

Figure 2.9 Simulation of the experiment by Collett et al. (1986). Compare with Fig. 2.3 of 

the previous chapter. A: Two landmarks and a hidden seed are arranged in a triangular 

configuration. B: As G navigates in the environment it forms a state representation of 

itself and the landmark, as in Figs. 2.6 and 2.7. Since the seed is always found at a fixed 

location with respect to each marker, the value function has a single “hill” centered at 

the seed’s location. C. If the landmarks are placed at a greater distance, the two 

representations of the seed separate by an equivalent amount. D: If the landmark array is 

rotated by 180 degrees , the value function is also rotated and its true components are 

still fully overlapped.   

 
The map of space built during navigation by combining the process and the observation models 

provides a spatial domain that offers a support for storing and retrieving memories of rewarding 

events, such as the discovery of food, as well as of adverse and dangerous situations.  It is 

therefore not surprising that episodic memory and spatial information processing share common 

territories in the mammalian brain and that damage to this territory impairs both our ability to 

remember recent facts and to orient ourselves in space. 
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SUMMARY 

 
How can we construct a mathematical map of space, starting from sensory and motor 

information?  We consider the simplified model of a gerbil, with a single 1-dimensional “eye”, 

moving over a two dimensional plane.  The first problem that we encounter is to extract 

geometrical information from the projections of the objects on the eye.  Important geometrical 

properties, such as the straightness of a line and the distance between two points on the 

navigation plane can be reconstructed from the knowledge of our own motion and from a basic 

assumption that we are looking at objects that are fixed in space.  This assumption constrains the 

relative motions of the objects on the world to be in the class of rigid motions.  

 

Homogeneous coordinates provide us with a compact representation for rigid motions by 

combining rotations and translations into a single linear operation. With this operation, we may 

update the state of the navigation environment, which includes the position of the moving gerbil 

and of the surrounding landmarks. This update constitutes the “process model”, yielding a 

prediction of the future state, given the current state and knowledge of the movement intention.   

Sensory information from the visual system also provides an evolving representation of the state 

of the navigation environment.  This is the “observation model”.  Observation and process model 

are both affected by uncertainty, caused by different forms of noise. Uncertainties result in 

variability of the corresponding models.  An intuitive way to obtain the best estimate of the state 

of navigation is by forming a convex combination of the state estimates generated by the 

observation model and the process model.  In this combination, each process contributes in 

inverse proportion of its own uncertainty.  

 

The state of navigation is effectively a map of the environment in terms of its fixed landmarks 

and the gerbil’s location. When a salient event occurs – such as finding food - this map provides a 

spatial domain upon which memory can take the form of a reward function. The reward function 

is a photograph of the location at which the event occurred. It provides a goal for the navigation 

when the same environment is encountered.  From the state of the navigation environment we 

derive multiple representations of the location of the gerbil with respect to each landmark, at the 

time the salient event occurred.  By a simple additive mechanism it is possible to construct a 

reward function that reproduces some of the experimental findings described in the previous 

chapter.  This provides a computational rationale for the interaction of spatial and episodic 

memory. 
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NOTES 

                                                 
i
 The reader may be familiar with one of the many version of a joke about extreme simplification.  We 

found this one  in the Wikipedia entry for “spherical cow”: 

 Milk production at a dairy farm was low so the farmer wrote to the local university, asking help from 

academia. A multidisciplinary team of professors was assembled, headed by a theoretical physicist, and 

two weeks of intensive on-site investigation took place. The scholars then returned to the university, 

notebooks crammed with data, where the task of writing the report was left to the team leader. Shortly 

thereafter the physicist returns to the farm, saying to the farmer "I have the solution, but it only works for 

spherical cows in a vacuum." 

The joke reflects a common process in science, in which elements of reality are removed from a problem so 

as to render it tractable with the available mathematical means.  Obviously a spherical cow model would 

not help much with understanding milk production.  But it would not be too bad if you where to calculate 

the energy at impact of a cow falling from a cliff.  Our planar gerbil with a one-dimensional circular retina 

is as extreme a simplification as the spherical cow. So, the reader should not think of it as a simplified 

model of the complex behavior of this marvelous little animal.  However, this model highlights in 

accessible terms some of the extremely complex mathematical issues that the brain must  deal to navigate 

within and localize itself  within the environment. 
 
ii
 In this book we adopt the convention, from Linear Algebra, to indicate the components of vectors as 1-

dimensional column arrays. This is useful to represent linear coordinate transformations as matrix-vector 

products and is readily extended to any number of dimensions. Thus we have 
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iii

 This is also true in formal terms.  An equivalence relation between  elements of a set (indicated by the 

symbol ~)  is a relation with three defining properties: 

1. reflexive ( a a ) 

2. symmetric ( ~ ~a b b a ), and 

3. transitive ( if  and  then a b b c a c ) 

The elements of a set that are equivalent to a given element define an equivalence class.  The elements of a 

set are partitioned  by an equivalence relation into a collection of non-overlapping equivalence classes. One 

ca easily see that he points ( , )x y that map to the same projection  form an equivalence class and that all  

points of the 2D space external to the sensor circle are partitioned into such equivalence classes. The 

equivalence class constructed in this way from a function are also called a fiber of f at  . 


