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3. The space inside 

In the previous two chapters we have considered how the brain forms maps of the environment as the 

body moves in it. Now and in the following chapters, we will discuss how the brain forms maps of the 

body in relation to the external world. As we move and act on the environment, our brain is like a crane 

operator that must act on a myriad of levers for commanding the motions of the limbs. Even the simplest 

actions, like reaching for a glass of water, require the coordinated control of about 35 arm and hand 

muscles. These muscles are divided in smaller compartments, each compartment operated by single motor 

neuron. In the end there are thousands of little levers that our body-crane operator must act upon 

successfully for conducting the simple gestures. The body-crane operator receives information about the 

state of motion of each limb, and about the forces applied by the muscles. There are two geometries for 

this scenario: the geometry of the body (of its motors and sensors), and the geometry of the world outside. 

We already encountered this duality in the navigation problem, where the geometry of the images 

projected on the eyes is different from the geometry of the surrounding space. Here, as well as in the 

navigation, what matters is that the two geometries are mutually connected. 

3.1 Geometry v. Dynamics 

Consider the situation depicted in Fig. 3.1A. It describes an experiment carried out by Pietro Morasso 

(1981) while he was visiting the laboratory of Emilio Bizzi at MIT.  The sketch is the top view of a 

subject holding the handle of a planar mechanism that was designed by Neville Hogan to study the 

reaching movements of the hand. We can describe the subject’s geometry in two alternative ways. We can 

focus on his hand or we can focus on his arm. In the first case, the position of the hand on the plane is 

determined by the two coordinates ( , )x y , of its center, taken with respect to a Cartesian system. An 

alternative way (not the only one) is to look at the two joint angles, the shoulder angle,  , and the elbow 

angle  . These different points of view are related to the different perspective that one may have.  

Traditional motor physiologists, before Morasso’s time,  focused on the movements of individual body 

segments. And, most often, of one body segment at a time, for example the upper arm motions about the 

elbow. On the other hand, robotics and artificial intelligence placed the focus on the goals of behaviors, 

for example, moving objects. Morasso came from the school of robotics and artificial intelligence. In his 

experiments, he paid attention to the motion of the hand.  

In the planar configuration of Fig. 3.1A, the hand coordinates ( , )x y  and the joint coordinates  ,   are 

connected by simple trigonometry: 
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where 1l  and 2l  are the lengths of the two arm segments. What is the geometrical interpretation of this 

relation between angular coordinates of the joints and Cartesian coordinates of the hand? First, it is a non-

linear relation. Suppose that we need to move the arm from an initial configuration  ,I I  to a final 

configuration  ,F F  of joint angles. A simple way to do so, is by setting 
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Here, F I      , F I      and ( )u t  is an arbitrary function of time that varies from 0 to 1 

between the start and the end of the movement. In other words, we may drive the two joint synchronously 

from start to end locations. In this case it is easy to see – by eliminating ( )u t - that the two angles are 

linearly related to each other: 
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We can apply the same logic to the movements of the hand in Cartesian coordinates and derive a 

rectilinear motion from  ,I Ix y to  ,F Fx y .   

The two rectilinear motions are not generally compatible. This is illustrated in Fig. 3.1B, where we see 

that straight line in hand coordinates correspond to curved lines in joint coordinates and vice-versa.  The 

diagram in this figure, however, is somewhat misleading. We know that it is appropriate to use Cartesian 

axes to describe the ordinary space in which the hand moves. We have seen in Chapter 2 that Cartesian 

coordinates capture the metric properties of Euclidean space and, in particular, the independent concepts 

of length and angle. If we have two points P, Q, their Cartesian coordinates may change, depending on the 

origin and on the orientation of the coordinate axes. But the distance computed with the sum-of-squares 

rule remains invariant.  

What can we say about using Cartesian coordinates for the joint angles,   and  ? If angles are 

represented by real numbers what prevents us from placing these numbers on two lines and call them 

Cartesian coordinates of an “angle space”? In principle, this could be done (and is routinely done by 

scientists). However, by doing so, one neglects the critical fact that 0, 2π, 4π, etc. are not really different 

angles. The numbers are different, but the angles are not. Because of their cyclical character, angular 

variables are better represented over circles than over lines.  Angles have curvature! But then how do we 

represent two angular variables, as in our case of shoulder and elbow joint coordinates? As shown in Fig. 

3.2, the natural geometrical structure for describing a two-link planar mechanism, like a double pendulum 

or our simplified arm, is a doughnut-shaped object known as a torus.   

A torus, like a sphere is a two-dimensional geometrical object. A fundamental theorem by John Nash 

(1956) establishes that this type of objects can be placed inside an Euclidean space of higher dimension 

by an operation called an isometric embedding
i
 . By this operation, we can represent the two angles of the 

arm in Fig. 3.1A as coordinates over a torus inside a three-dimensional Euclidean space (Fig. 3.2). 

Figure 3.1. Arm kinematics. Top: Sketch of a subject in the experiment by Morasso. The subject 
holds the handle of a manipulandum that is free to move over the horizontal plane. The subject 
maintains the arm on the same plane. The manipulandum records two Cartesian coordinates, x 
and y, that describe the position of the hand with respect to the shoulder. Since the lengths of 
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the subject’s upper arm and forearm are known, we can derive the joint angle of the shoulder 
(Φ) and of the elbow (θ) corresponding to the Cartesian coordinates of the hand. Bottom panels: 
straight solid lines traced by the subject hand  (left) map onto curved solid line in joint angle 
coordinates (right). Vice versa straight dashed lines in angle coordinates map onto curved 
dashed line traced by the hand. Note that there is one exception. The line that intersects the 
subject’s shoulder is straight in both coordinate systems. (Modified from Morasso, 1981)  
 

Figure 3.2. Riemannian structure. The configuration space of a two-joint planar mechanism, 
analogous to the arm in Morasso’s experiments, forms a torus (left), a 2-dimensional curved 
manifold embedded in the Euclidean 3D space, reminiscent of the surface of a doughnut. The 
light gray mesh forms orthogonal geodesics (minimum path length excursions) spanning the 
torus. The four panels on the right contain trajectories of the endpoint of the arm’s endpoint, 
marked by the thick black lines. The letters of each panel correspond to the trajectories on the 
torus.  
  
If we take two points, A and B, there is a unique line on the torus that has the smallest length. This is 

called a geodesic line. The linear joint interpolation of Equation (2.2) defines such a geodesic line. Since 

the concept of a manifold is a generalization of the concept of a surface, the Euclidean plane is also a 

manifold, whose geodesics are straight lines. Summing up, the Cartesian coordinates of the hand ( , )x y  

and the angular coordinates  ,   describe two geometrical domains with different geodesic properties.  

If we move the hand between two points over a plane, what type of geodesic do we tend to follow?  

Morasso addressed this question by asking his subject to move their hand between targets on the plane 

and he found that movements tend to occur along straight lines- that is along Euclidean geodesics (Fig. 

3.3). Tamar Flash and Neville Hogan (1985) interpreted this finding as evidence that the nervous system 

seeks to optimize the smoothness of hand movements by moving along trajectories that minimize the 

integrated amplitude of the third time derivative of hand position, or “jerk”: 
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Figure 3.3. Reaching movements. Left, hand trajectories between the targets shown on the top 
panel of Figure 3.1.  Left. Joint angles (Top, e: elbow, s: shoulder) and angular velocities  (Middle) 
corresponding  to the trajectories labeled c, d and e on the left panel.  The traces in the bottom 
panel are the speed of the hand calculated from the sum of squares of the x- and y- components 
of hand velocity. Note how the variety of shapes in joint angle profile corresponds to similar bell-
shaped curves for the hand speed. Also note that movements D and E had reversals of joint 
motions. Movement C is the only one that does not show any reversal. This is consistent with the 
observation (see Fig. 3.1) that straight lines of the hand that pass by the shoulder joint map to 
straight lines in joint coordinates. (From Morasso, 1981)  
 
The idea that there is a separation between the geometry of movement – the “kinematics” – and its 

dynamical underpinnings did not go unchallenged and is still an object of controversy.  Yoji Uno, Mitsuo 
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Kawato and Suzuki (1989) suggested that, instead of optimizing the smoothness of hand motions, the 

nervous system was concerned with minimizing variables that are more directly connected with effort. 

Then, they considered, as cost function, the integral of the net torque-changes over each movement: 
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  (2.5) 

The term i  represents the joint torque produced by one of the n arm muscles. One can intuitively see the 

similarity between the two formulations. Consider a point mass. By Newton’s law, the point mass 

accelerates in proportion to the applied force. If one takes one more time derivative, one obtains a relation 

between the jerk and the rate of change of the force.  This explains why the two optimization criteria yield 

relatively similar predictions of arm trajectories. There is however an important difference between 

kinematic and dynamic criteria. The outcome of the dynamical optimization depends on properties such 

as the inertia of the moving arm. The minimization of the cost integral (2.5) requires knowing the relation 

between forces and motions, as expressed by the limb’s dynamical equations. These equations are quite 

complex and grow in complexity as more degrees of freedom are introduced.  The reader can find explicit 

forms for two-joint dynamics in standard robotics handbooks. Here, we do not want to get into excessive 

detail and we limit ourselves the describe dynamics as a second-order non-linear ordinary differential 

equation (ODE), whose general form
ii
 is 

 ( , , ) ( )tD q q q Q  (2.6) 

The generalized coordinate [ , ]T q  is the configuration of the arm and the corresponding generalized 

force is a joint-torque vector [ , ]T

  Q . Thus, with the vector notation of Equation (2.6) we are 

representing a system of two coupled non-linear ODEs .  The optimization by Uno and colleagues 

requires us to calculate the torque vector based on these ODEs. On the other hand the kinematic approach 

of Flash and Hogan is strictly geometrical and does not involve forces (i.e., dynamics).  Unlike dynamic 

criteria, the geometrical optimization predicts that neuromuscular activities are coordinated by the brain to 

generate a rectilinear motion of the hand or of whatever other element plays the role of a controlled 

“endpoint element” and this result will not be affected by changes in the dynamical structure controlled 

by the muscles.  

Randy Flanagan and Ashwini Rao (1995) performed a simple and elegant variant of Morasso’s 

experiment. They asked a group of volunteers to control a cursor by moving the hand over a plane. 

However, in this case, the position of the cursor was not an image of the position of the subjects’ hand but 

was in direct relation to their shoulder and elbow angle. This task was difficult and somewhat confusing 

for the subjects. However after some practice, they learned to move the cursor onto the targets. Most 

remarkably, as they learned to do so, they gradually but consistently and spontaneously learned to 

produce rectilinear movements of the cursor, at the expenses of more curved motions of the hand (Fig. 

3.4). This result is incompatible with the notion that the nervous system attempts to minimize a dynamic 

criterion, such as the minimum-torque-change of Eqn. (2.5).  

Figure 3.4. Subjects move in straight lines over the visual space. Motion paths represented in 
hand (left) and joint (right) coordinates for movements between targets presented in either hand 
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coordinates (top) or joint coordinates (bottom). In both cases, subjects learned to organize 
coordination so as to produce straight line motions path in the observed space.  (from Flanagan 
and Rao, 1995).  
 

3.2 Does the brain compute dynamics equations? 

Until the late 1970s, the study of neurobiology was mostly limited to the control of single muscles or of 

muscle pairs acting on a single joint. A large volume of work was dedicated to the control of eye 

movements, where six extrinsic muscles are responsible to move the eye and to control the direction of 

the gaze. The engineering frameworks for oculomotor control and for the control of limb movements 

derived from the theory of linear control systems and of feedback control in particular. Computational 

models were abundant in “box diagrams” such as the one in Fig. 3.5. Robotics research and, in particular, 

the theory of robot manipulators brought to the neurobiology of motor control a new awareness of the 

dynamical complexity of multiarticular structures such as the human arm. Let us compare the inertial 

dynamics of the upper arm about the elbow joint and the inertial dynamics of the two-joint arm of Fig. 

3.1. The first are described by the equation 

 Iq Q . (2.7) 

 

Figure 3.5. Block diagram based on control engineering to describe the operation of the 
oculomotor system in response to a visual target.  (From David Zee, Lance Optican , Jay Cook, 
David Robinson and King Engel, 1976)  
 

This is a straightforward translation of ma F in angular terms. Here, I , is the moment of inertia of the 

forearm about the axis of rotation of the elbow, q  is the angular acceleration about the same axis and Q  

is the corresponding joint torque vector. In the two-joint case, we have two angles that we call 1q  and 2q  

(instead of  and  , for notational convenience) and two corresponding torques, 1Q and 2Q . The inertial 

dynamics look like this: 
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The reader who is not acquainted with this equation can find its derivation at 

www.shadmehrlab.org/book/dynamics.pdf. Here, we wish to focus the attention not on the detailed form 

of these equations but on a few relevant features. First, note how the transition from Eq. (2.7) to Eq. (2.8) 

has led to a disproportionate increase in size.  In the first we have a single multiplication, whereas in the 
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second one counts 15 additions, 42 multiplications and a couple of trigonometric functions. It is not a 

pretty sight. If we were to write the detailed equations for the entire arm in 3D, we would fill a few pages 

of text.  To put some logical order in these equations, we may start by noticing that some terms contain 

accelerations and some contain velocities. The terms that contain acceleration are the first two in each 

equation. They may be written in vector-matrix form as the left end term of Eq. (2.7), i.e. 
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I q q  

This is called the inertial term. The acceleration appears linearly, as it is typical of all mechanical systems 

derived from Newton’s equation. However, the inertia matrix I  depends on arm configuration, unlike the 

inertial term of Eq. (2.7), which is constant.  In addition to this term, the two-link arm equation also 

contains terms that depend on the angular velocities. These are the “centripetal” terms, depending on the 

squares of the velocities and the “Coriolis” term depending on the product of the velocities. We may 

collect these terms in a single vector ( )G q,q  and the dynamical equation assumes the much less 

intimidating form 

 ( ) ( )I q q + G q,q = Q  (2.9) 

Figure 3.6. The dynamics of a reaching movement. A: Shoulder and elbow angle traces 
corresponding to the hand movement in B. Different components of the shoulder (C)  and elbow 
(D) torque were derived by applying the equation of motions to the observed kinematics. Solid 
lines: net torque at each joint. Dotted line: shoulder inertial torque. Dot-dashed line: elbow 
inertial torque. Dashes: centripetal torques. Two-dots with a dash: Coriolis torque at the 
shoulder. (From Hollerbach and Flash, 1982)  
 
While this simple algebraic representation provides a valid description for more complex structures, such 

as a typical robotic manipulator or the whole human arm, it highlights the most relevant difference 

between the dynamics of a single joint and the dynamics of multiarticular limb and points to some 

computational challenges. One such challenge stems from the dependence of the torque on one joint from 

the state of motion of another. These dynamics cannot be simplified by treating each dimension 

independently of the others. How important are these cross-dependencies in natural arm movements? 

Equations (2.8) provide us with a simple and direct way to answer this question. It is sufficient to record 

the trajectory of a reaching arm movement, derive the corresponding angular motion of the shoulder and 

elbow joints, take the first and second derivatives and plug these data in the equations. John Hollerbach 

and Tamar Flash (1982) performed this experiment, using the same apparatus and task of Morasso. When 

they calculated the different contributions to the net torques at the shoulder and elbow, they were able to 

conclude that the interaction components that are summarized by the non-linear term ( )G q,q  are quite 

substantial compared to the pure inertial terms. As an example, consider the trajectory in Fig. 3.6A and B, 

which is similar to the movement labeled as “e” in Fig. 3.3. The movement time is about half a second, 

corresponding to a relatively rapid but not unusual speed.  The different components of the torque profiles 

at the shoulder and elbow joint are plotted in Fig 3.6C and D respectively. Note the amount of toque that 
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is due to centripetal and Coriolis terms, and also the amount of inertial torque at the shoulder, due to the 

acceleration at the elbow and vice versa. Most importantly, the same motion of the hand between two 

different targets would lead to qualitatively different torque profiles.  This evidence was sufficient to 

conclude that arm movements cannot be controlled by some linear feedback mechanism, such as the one 

depicted in Fig. 3.5 for the oculomotor system.  

3.3 The engineering approach 

Let us briefly switch our perspective from neuroscience to robotics. Control engineers are primarily 

concerned with the concept of stability. Loosely speaking, a system is stable if, given some unexpected 

perturbation it will eventually go back to its unperturbed state. However, “eventually” is not strong 

enough of a requirement for practical applications. A stronger form of stability requires the system to 

converge exponentially in time to the unperturbed state. One of the objectives, if not the main objective, 

of feedback control is to insure stability against uncertainties that arise from limited knowledge of the 

environment and of the controlled “plant”. Importantly, robotic engineers have some good prior 

knowledge of their own devices. So, for example, they would know to good accuracy the parameters in 

Equation (2.9). Given this knowledge, we now want to write the right-hand term, the torque vector, as the 

driving control input to the arm. As we are dealing with feedback control, we think of Q  as a function of 

the state of motion – i.e. the vector  
T

q,q - and of time. A physical system whose dynamics equations do 

not depend upon time is said to be autonomous. For such system the future is entirely determined by a 

measure of the state at some initial instant. For example, the equation of a simple oscillator, like a mass 

attached to a spring is  

 mq kq   (2.10) 

 The solution of this equation is  

 cos
k

q A t
m


  

     
  

 (2.11) 

The phase and the amplitude are determined by the initial position 0 0( )q q t and  velocity 0 0( )v q t . 

Therefore, by setting (or measuring) these initial conditions, we know how the oscillator will behave for 

all future times. However, if we add an external input, as in  

 ( )mq kq u t    (2.12) 

then, the trajectory of the system is no longer determined by the initial state alone and depends upon the 

future values of ( )u t  as well
iii
.  

Now, consider the stability problem. Suppose that we have a robotic arm, governed by a feedback 

controller that attempts to track a desired trajectory, ˆ ( )tq . Then, the combined system+controller 

equation takes the form 

 ˆI(q)q +G(q,q) = Q(q,q,q(t))  (2.13) 
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Our goal is to design the control function ˆQ(q,q,q(t))  so that the resulting movement is exponentially 

stable about the desired trajectory. As we stated before, a robotics engineer would have a good model of 

the controlled mechanical arm. The model would contain the two terms 

 
ˆ   and

ˆ

I(q) » I(q)

G(q,q) » G(q,q)
 (2.14) 

We can use these terms to design the control function as 

 ˆˆˆ Q(q,q,q(t)) = I(q) a(q,q,t) +G(q,q)  (2.15) 

Substituting this in Equation (2.13) with the assumptions of Equation (2.14) we get the simple double-

integrator system: 

 ( )tq a q,q,  (2.16) 

It is important to observe that the symbol   is not the ordinary equal sign, but an approximate equality.  

We will come back to this in a little while but for the next few lines we will use the standard equality. We 

begin by giving a particular form to the term ( , )ta q,q . Starting from the desired trajectory, we calculate 

the desired velocity, q̂( )t , and acceleration, q̂( )t , by taking the first and second time derivatives of q̂( )t .  

Then, we set 

 ˆ ˆ ˆ( , ) ( ) ( ( )) ( ( ))dt t t t  P D da q,q q K q -q K q -q  (2.17) 

and  

 ˆ( , ) ( )t tη q q-q  (2.18) 

The last equation defines the tracking error as a function of the current position and time. The two 

matrices, PK and DK contain gain coefficients that multiply the position and velocity errors
iv
. By 

combining Equations (2.18), (2.17) and (2.16) we finally obtain a linear second order differential equation 

for the error function: 

 0  D Pη K η K η . (2.19) 

From calculus we know that by setting 
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we can re-write Equation (2.19) as N decoupled equations  

 
22 0i i i i     , (2.21) 

whose general solution is 

 1, 2,( ) it

i i ic c t e
 

  . (2.22) 

Therefore, with the appropriate choice of the two gain matrices, we can insure that the tracking error will 

go to zero in exponential time.  This type of dynamic stability was observed in reaching movements by 

Justin Won and Neville Hogan (1995). They asked subjects to execute reaching movements of the hand 

while holding a planar manipulandum (Fig.  3.7).  Most of the times, the manipulandum allowed for free 

motion of the hand in the plane and the subjects moved along straight lines from start to end target.  In 

some random trials, one of the joints of the manipulandum was blocked at the onset of the movement, by 

an electromagnetic brake. As a consequence in these test trials the movement of the hand was initially 

constrained to remain on a circular arc (dotted line). Shortly after start, the brake was released. The 

resulting motion of the hand converged rapidly to the unperturbed path, thus demonstrating a dynamic 

stability of the planned movement trajectory, similar to the exponential stability discussed above. 

But now remember that in Equations (2.21) and  (2.22) instead of = we should have used   as the model 

of the arm dynamics can at most approximate the actual value of the parameters.  However, for small 

deviations, the uncertainty of the model can be regarded as an internal perturbation that does not critically 

compromise stability. The essential point is that if we have an internal representation of the dynamics, a 

control system can generate behaviors that are stable, in the face of uncertainties concerning the 

environment, and the controlled structure. 

Figure 3.7. Dynamic stability. Right: Subjects practiced moving the hand from A to B while 
holding the handle of a planar manipulandum. In most trials the manipulandum could be moved 
freely over the plane and the subjects moved on straight paths (dashed line). In some trials, 
however, electromagnetic brake blocked the motion of one manipulandum joint at the onset of 
the reaching movement. In these perturbed trials, the hand was constrained to remain on a 
circular path (dotted line) until brake was suddenly released. Right. Constrained and released 
hand trajectories. The arrow indicates approximately where the release took place.  The hand 
moved almost instantaneously toward the planned straight trajectory from A to B.  (From Won 
and Hogan, 1995) 
 

 

3.4 Does the brain represent force? 

The idea of model-based control was born as an engineering idea. What can it tell us about the brain? One 

of the fathers of computer technology, the mathematician John von Neumann, was driven by the desire to 

create an artificial brain. And some of the earliest computational neuroscientists, like Warren Mc Culloch 

and Walter Pitts, described neurons as logical gates. But it is hard to capture the intricacies of biology 

within the confines of engineering and mathematics. And the idea that the brain computes something like 
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the dynamics equations for the limb it controls has encountered – and still encounters, to this day - some 

strong resistance. One of the strongest counterarguments to the idea of explicit computations comes from 

the observation that ordinary physical systems behave in ways that may be described by equations but do 

not require solving equations with calculus-like rules. If you drop a stone, the stone will follow a simple 

and regular trajectory that you can derive by integrating the equations of motion in the gravitational field.  

Yet the stone does not compute integrals! In the same vein, an important concept in science is to seek for 

principles that can explain observations based on simple rules of causality.  

Consider another example. Take the two opposing springs and dampers connected to a mass (Fig. 3.8A).  

These are physical elements that generate forces acting on the point mass. The two springs define a static 

equilibrium point. If an external agent places the point mass away from this equilibrium, the physical 

system will eventually bring it back there, because the equilibrium is stable.  This behavior can be readily 

implemented by analog or digital elements (Fig. 3.8B) that produce forces in response to measured 

position and velocity of the point mass.  Thus, we have a physical system and a computational system 

(which is nothing but another type of physical system!) that do the same job. In 1978 Andres Polit and 

Emilio Bizzi published a finding that physiologists of that time found hard to digest. They trained 

monkeys to reach a visual target by a movement of the upper arm about the elbow. The monkeys could 

not see their arm as it was moving under an opaque surface and were rewarded when they pointed 

correctly to the visual target. Not surprisingly, the monkey learned the task. However, the monkeys were 

able to perform the task after they were surgically deprived of all sensory information coming from their 

arm. And they successfully reached the targets even if the arm was unexpectedly displaced by a motor 

before starting the movement. If one were to think of movement control according to the scheme drawn in 

Fig. 3.8B, this result would not make any sense, because now the lines carrying the information about 

position and velocity were cut! But, the scheme of Fig. 3.8A is perfectly consistent with the finding of 

Polit and Bizzi: if the muscles act upon the arm, as opposing viscoelastic elements, then all what the 

nervous system has to do is to set their equilibrium point to the target. No need to monitor the position 

and state of the arm in order to correct for errors. Instead, in order to move a limb the brain can set the 

equilibrium point so as to follow a desired movement trajectory.  

This idea had been pioneered in 1966 by Anatol Feldman. Then, as well as in more recent works, 

Feldman proposed that we move our bodies by setting the equilibrium postures specified by reflexes and 

muscle mechanical properties. Does this make dynamic computations unnecessary? Answering this 

question is not quite as simple as it seems.  

Figure 3.8. Spring-like behavior in physical (A) and computational (B) systems. The forces 
generated by springs on a mass are reproduced by a control systems that multiplies by a gain (K) 
the difference between the measured position of the mass (M) and a commanded equilibrium 
position  (u). The output of the K is then added to another feedback signal proportional to the 
measured velocity of the mass and the resulting force is applied to M. The presence of delays 
along the feedback lines in the system B may cause unstable oscillations that are not observed in 
A.  
 

One may ask if to move your arm your brain must represent forces, as defined by Newton. Consider the 

equation that represents the behavior of a spring-mass-damping system, such as the one shown in Fig 3.8: 
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 ( ( )) 0M x B x K x u t     (2.23) 

We derive this by substituting the expression of the forces generated by the spring and damper in 

F m x . As a result the equation does not contain force at all. It has only the state (position and velocity) 

its derivative (acceleration) and an external input, ( )u t , that sets instant by instant the equilibrium point 

of the springs. The situation is not different from the one described in the previous paragraph to derive the 

controller for a robotic arm. We may not need to represent forces to derive a trajectory produced by the 

input function, but we need to know how the system reacts to applied forces. These are the terms that 

appear in Equation (2.23). This equation allows us to derive the trajectory ( )x t  that results from the 

commanded equilibrium-point trajectory ( )u t .  And the same equation allows us to derive the 

equilibrium-point trajectory from the desired movement. The only condition for this to be possible is 

0K  . Then, given a desired trajectory ˆ( )x t  with first and second time derivatives ˆ( )x t  and ˆ( )x t  the 

commanded equilibrium point-trajectory is 

 
1 1ˆ ˆ ˆ( ) ( ) ( ) ( )u t K M x t K Bx t x t     (2.24) 

Figure 3.9. Movement simulations. A and C: Movements of the arm obtained by shifting the 
static equilibrium point from left to right along a straight line with two different speeds. The 
equilibrium point motions follow a bell-shaped speed profile with durations of 2 seconds (slow) 
and .8 seconds (fast). B and D: movements of the equilibrium points that would produce a 
straight line motion of the hand with the slow and fast speed profiles.  
 

This is not substantially different from what we have done in deriving the engineering controller of 

Equation (2.17). The only new element here is the focus on representing the control signal as a moving 

equilibrium point that drives the controlled “plant” along the desired trajectory.  Intuitively, if K is 

sufficiently large and if the motion is smooth and slow, the first two terms in Equation (2.24) may be 

small enough to be ignored and then all what one needs to do is to move the equilibrium point along the 

desired trajectory. This is the attractive promise of equilibrium-point control: there is no need to compute 

dynamics. The mechanical properties of the body and, in particular, the viscoelastic properties – 

responsible for the K and B terms -  of the neuromuscular system may provide a way to avoid complex 

computations altogether. Interestingly, this viewpoint emerged vigorously at the same time in which the 

robotics viewpoint on inverse dynamic computations was becoming influential in the neuroscience of the 

motor system.  But is it true that dynamics computations may be avoided?  

Consider the simple movement of the right arm illustrated schematically in Fig. 3.9.  This is a simulation 

of a simplified model of the arm, based on Equation (2.8). The numerical parameters are listed in the box. 

We re-write the dynamics equations to include the viscoelastic terms and make it formally similar to 

Equation (2.23): 

 ( ) ( , ) ( - ( )) 0t   I q q G q q Bq K q u  (2.25) 

An appealing idea is to simply move the equilibrium point along the desired trajectory of the hand. The 

panels on the left illustrate the outcome of this approach. If the movement is sufficiently slow, for 

example if one takes two seconds to move the equilibrium point about 40 cm across, the hand moves in a 
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nearly rectilinear path. However the deviation from the desired trajectory increases as the planned motion 

becomes faster (0.8 sec) and when the movement is more proximal to the body (Fig. 3.9C). Then, we may 

ask what would it take to change the equilibrium trajectory, ( )tu , in such a way to obtain the desired 

straight motion of the hand. We can certainly move our hand in a nearly straight 40 cm line within less 

than one second. To find the equilibrium point trajectory that achieves this goal, we begin by 

transforming the desired rectilinear trajectory of the hand,  ( ) ( ), ( )
T

t x t y tr into the trajectories of the 

shoulder and elbow joints,  1 2( ) ( ), ( )
T

t q t q tq with their first and second time derivatives.  Then, we 

solve Equation (2.25)algebraically to obtain  

  1( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t u K I(q )q +G(q ,q ) Bq +q  (2.26) 

The results of this simulation are shown in the left panels, B and D for the distal and proximal arm 

configurations.  Only a small correction of the equilibrium point trajectory is sufficient to “straighten” the  

movement at low speed (2 sec). However, as the movement becomes faster (0.8 sec) the equilibrium point 

must take a quite distorted path in order to keep the hand on track. It is evident that we could not derive 

this complex equilibrium trajectory by performing a simple linear manipulation on the errors – shown on 

the left panels -  that we would make by moving the equilibrium on the straight path. Here, to derive the 

motion of the equilibrium point that produces a desired actual movement of the hand we have explicitly 

solved an inverse dynamics problem. Our brain is likely using some different method. But, as we are 

indeed capable to move our limbs with dexterity, this method must effectively solve the same inverse 

dynamics problem.  

3.5 Adapting to predictable forces 

So far, we have described the basic computational idea of an internal model. Is there a more stringent 

empirical basis for this idea?  Perhaps the first empirical evidence came from an experiment that the 

authors of this book performed in the early 90s, while we both were in the laboratory of Emilio Bizzi at 

MIT. We asked volunteers to move their arm while holding the handle of a planar manipulandum (Fig. 

3.10A). They performed reaching movements of the hand, as in Morasso’s experiments. The robot, 

designed by Neville Hogan, was a light weight two-joint device, equipped with position sensors and with 

two torque motors. The motors were “backdrivable”, meaning that when they were turned off, they 

generated only minimal resistance to motion. And the manipulator itself was made of light aluminum 

bars, so that the whole thing did not impede appreciably the free motion of the hand.  

Figure 3.10. Learning to move in a force field. A: A subject holds the handle of a manipulandum. 
The computer monitor displays a cursor indicating the position the hand and presents targets to 
the subjects. Two torque motors are programmed to apply forces that depend upon the velocity 
of the handle, as shown in B.  C: When the motors are inactive, subjects perform straight 
reaching movements to the targets. D: In random trials the force field shown in C is unexpectedly 
activated. The movement trajectories are strongly perturbed and display a pattern of 
characteristic hooks. At the end, the movement terminate in the proximity of the targets. (From 
Shadmehr and Mussa-Ivaldi, 1994) 
 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 13 

Therefore, with the motors turned off the hand trajectories were rectilinear and smooth (Fig. 3.10B). After 

acquiring unperturbed movement data, the motors were programmed to generate a force, F , that 

depended linearly upon the velocity of the hand, r : 

 F = B r  (2.27) 

This force field was equivalent to a controlled change in the dynamics of the subjects’ arm. During the 

initial phase of the experiment, the subjects dynamics were as in Equation (2.13).  Without making any 

assumption about the control function, ,tQ(q,q )  that a subject used to perform a particular trajectory 

( )tAq  the dynamics equations are reduced to an algebraic identity over this trajectory. If the force field 

(2.27) is introduced without changing the control function, then the new limb dynamics are  

 ( )t    TI(q) q +G(q,q) J (q) B J(q) q = Q q,q,  (2.28) 

where J(q)  is the Jacobian of the kinematic map from joint angles to hand position in Cartesian 

coordinates. With [ , ]Tx yr  and 1 2[ , ]Tq qq  the Jacobian is a 2x2 matrix of partial derivatives: 

 
1 2

1 2

( )

x x

q q

y y

q q

  
  
 
  

   

J q  (2.29) 

The Jacobian is a function of the arm configuration (i.e. the joint angles) as the kinematic map is non-

linear. We derived Equation (2.28) from the force field equation (2.27) and from the expression of the 

Jacobian, by combining the transformation from joint to hand velocity, 

 r = J(q) q  (2.30) 

with the transformation from hand force to joint torque 

 Tτ = J (q) F  (2.31) 

We can therefore regard the field as an unexpected change on the function G(q,q) : 

    TG'(q,q) = G(q,q) J (q) B J(q) q  (2.32) 

The solution of Equation (2.28) is a new trajectory ( ) ( )t tB Aq q . Figure 3.10C shows the response of a 

subject to this sudden dynamic change.  It is important to observe that the force field and, accordingly, the 

change to G vanishes when the hand is at rest. This has two consequences. First, the subjects could not 

know if the field is on or off before starting to move and, second, the field does not alter the static 

equilibrium at the end of each movement. Therefore, we were not surprised to see that the effect of the 

unexpected force field on the trajectories was to cause a hook-shape deviation, with the hand landing 

eventually on the planned target. While further studies revealed the presence of online corrections, these 
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are not needed to maintain the final position unchanged by the force field.  In the second part of the 

experiment, subjects were continuously exposed to the force field, with only sporadic “catch trials” in 

which the field was unexpectedly suppressed.  

Figure 3.11. Learning the field.  Left panels. Average and standard deviation of hand trajectories 
while a subject was training in the force field of Figure 10B. Performance plotted during the first, 
second, third and final 250 targets (F1, F2, F3 and F4). Left panel. After effects were observed 
when the field was unexpectedly removed during the four training sets. The four panels (C1 to 
C4) show the average and standard deviation of the hand trajectory while moving in the 
absence of perturbing forces. As the trajectories recovered the initial rectilinear shape in the 
field, they developed increasing after-effects in the catch trials. (From Shadmehr and Mussa-
Ivaldi, 1994)  
 

Figure 3.11 shows the evolution of motor performance across four consecutive blocks of trials. The four 

trajectories on the left – F1 to F4 – were produced by a subject moving in the force field. The trajectories 

on the right – C1 to C4 – were obtained from the same subject in the same four periods, but when the 

force field was unexpectedly removed. These are the catch trials, where one can observe the after-effect 

of learning, that is how the motor command evolved as the subject learned to move inside the force field.  

If one compares the first set of movements in the field (F1 and Fig 3.10D), to the last set of after-effects 

(C4) one can immediately observe that the shape of the after-effect at the end-of learning is qualitatively 

the mirror image of the initial effect of the exposure to the field. This is easily understood in the 

dynamical framework. As the subjects learn to move in the field, they compensate for the forces that are 

generated by it along the desired trajectory.  We represent this process by adding a term to the original 

controller: 

 ( ) ( , )t t     TI(q) q +G(q,q) J (q) B J(q) q = Q q,q, Δ q,q  (2.33) 

For this equation to admit the original trajectory as a solution it is sufficient that  

 ( , )t  TJ (q) B J(q) q = Δ q,q  (2.34) 

along ( )tAq . This is equivalent to perform a local approximation of the external field. In this case, if the 

external field is suddenly removed after learning, this approximation – i.e. the internal model of the field 

– becomes a perturbation with the opposite sign: 

 ( , ) ( )t t      TI(q)q +G(q,q) Δ q,q I(q) q+G(q,q) J (q) B J(q) q =Q q,q,  (2.35) 

This, however, is not the only way for our motor system to compensate for the external force. We discuss 

briefly two alternatives: stiffening up, or create a motor tape. The first consists in increasing the rigidity 

of the moving arm by co-activating opposing muscles. This is what you would do if you want to resist 

movement when someone shakes your hand. You activate the biceps and the triceps simultaneously. The 

two muscles oppose each other and the result is that the forearm becomes more rigid.  Our brains chose 

this approach whenever facing an environment that is hard or impossible to predict. For example when 

holding the rudder of a sailboat and you need to keep the heading as steady as possible.  In our force-field 
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experiment, the presence of after-effects is sufficient to rule out this type of control response: subjects 

were not merely becoming stiffer but they learned to counteract forces that – by design – were not random 

but predictable. The second possibility, instead, would be consistent with our observation of after-effects. 

Equation (2.34) does not imply that Δ  must be a representation of the force field on the left-hand side. 

The applied forces were designed to depend of the state of motion of the arm, 
T

T T  q ,q . However, to 

recover the initial trajectory it would be sufficient for   to be a pure function of time, 

 ( ) ( ) ( ) ( )t t t t   T

A A AΔ J (q ) B J(q ) q  (2.36) 

This is simply “motor tape” that plays back the forces encountered along the desired trajectory. The motor 

tape does not contain any information about the dependence of the external force upon the state variables.  

A second experiment was needed to address this possibility.  

Michael Conditt, Francesca Gandolfo and Sandro Mussa-Ivaldi (1997) tested the hypothesis of a motor 

tape with a simple experiment. They trained a group of volunteers to make reaching movements in a force 

field. The duration of each movement was typically less than one second. Therefore, after learning to 

reach targets in the field, the motor tapes would have the typical duration of each movement and would be 

“specialized” to reproduce the selectively the force sequences encountered in the training phase.  The 

hypothesis then predicts that subjects would not be able to compensate for forces encountered while 

performing different movements, like drawing a circle, a triangle or figure-eight pattern. Even if these 

drawing movements take place in the same region of space and velocity ranges as the reaching 

movements, the states of motions are traversed in different temporal sequences. And the drawing 

movements last at least twice as long as the reaching movements.  Nevertheless, the subjects of this 

experiment, after training to reach in the force field, were perfectly capable to compensate for the 

disturbing forces while drawing circles and other figures.  A second group of subjects, instead of 

practicing reaching movements, practiced drawing circles in the force field. The drawing movements of 

these subjects after training were not distinguishable from the drawing movements of subjects in the first 

group, who trained with reaching.  These findings are sufficient to rule out the idea that subjects learned a 

motor tape and provide instead additional support to the concept that the brain construct, through learning 

a computational representation of the dynamics as a dependence of the actions to be produced by the 

control system – in this case the function ( )Δ q,q  -  upon the state of motion of the limb.  While the 

represented entity does not have to be a force in the Newtonian sense, the resulting behavior is consistent 

with the representation of movement dynamics as formulated by classical laws. 

 

 

3.6 Another type of state-based dynamics: motor learning 

The force-field experiments demonstrate the keen ability of the brain to deal with dynamics and with the 

concept of “state”.  In mechanics, the state is a minimal set of variables that is sufficient to predict the 

future evolution of a system.  In a single motor act, such as reaching for an object, the state in question is 

the mechanical state of the limb. Because movement is governed by the laws of classical mechanics, the 

state is a collection of position and velocity variables.  There is another kind of state that is relevant to 
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motor behavior. Learning experiments have demonstrated that it is possible to predict how knowledge and 

control evolve through time based on past experience and of incoming information. Learning itself can 

therefore be observed as a dynamical system. This perspective will be developed in the remainder of this 

book. Here, we briefly introduce some of the key concepts of this approach. Let us start again from the 

classical Newton’s equation for a point mass, F mx .  We derive the velocity of the point mass by 

integrating once this equation: 

 

0

0( ) ( ) '

t

t

F
x t x t dt

m
    (2.37) 

Instead of looking at the velocity as a continuous function of time, we may take samples at discrete 

instants of time. Then, provided that these instants are separated by small time intervals, t , we may use 

Newton’s equation to derive as an approximation the velocity at the next instant 
( 1)nx 

 from the velocity 
( )nx and the external force 

( )nF at the current instant. This is the difference equation: 

 ( 1) ( )n n F
x x t

m
    (2.38) 

If the mechanical work in an infinitesimal displacement is an exact differential, then the force is the 

gradient of a potential energy function,  

 
( , )

( , )
U x t

F x t
x


 


 (2.39) 

We now can re-write the difference equation for a point mass in a potential field as 

 

( )
( 1) ( )

n
n n U

x x
x

 
  


. (2.40) 

with 
t

m


  . 

Opher Donchin, Joseph Francis and Reza Shadmehr (2003) proposed to describe motor learning with a 

differential equation that has a similar form. However, in this case, the state variable in question is not the 

velocity or the position of the arm, but the internal model of the force field in which the arm is moving. 

They represented the internal model as a collection of basis functions over the state space of the arm. For 

example, each basis function could be a Gaussian centered on a preferred velocity. But this is certainly 

not the only possible choice. Referring to Equation (2.34), let us represent the force field model in 

generalized coordinates as  

 ( ) ( ) Δ q,q W g q,q  (2.41) 

where  1 2( ), ( ), , ( )
T

mg g gg q,q q,q q,q  is a collection of m scalar basis functions  and W is a 

n m matrix of coefficients. For a two-joint arm 2n  . But, more generally, n  is the dimension of the 
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configuration space or, equivalently, the number of degrees of freedom under consideration. Then, the 

matrix W can also be written as an array of m  n-dimensional vectors, one for each basis function 

   1 2 mW w ,w ,…,w  (2.42) 

and the basis functions are scalars that modulate the amplitude of the w vectors over regions of the 

workspace, in a way similar to the receptive field of a sensory neuron.  As we perform a series of reaching 

movements in the force field, (1) (2) ( )( ), ( ), , ( ),kt t t q q q  we experience a corresponding sequence of 

“force trajectories” 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )i i i it t t t   TD J (q ) B J(q ) q  (2.43) 

Suppose that on the i-th movement, we intended to move along the trajectory Aq ( )t . Then, based on the 

internal model that we had at that point, we expected to experience a force  

 
( ) ( ) ( )( ) ( ( ) ( )) ( ( ) ( ))i i it t t t t  A A A AΔ Δ q ,q W g q ,q  (2.44) 

Here, we have that the variable portion of the internal model is the coefficient matrix W. We assume that 

the basis function remain fixed through time. This, of course is for conceptual convenience. More 

complex (and also more realistic) models of learning would allow for variations in all terms of  Δ . Most 

importantly, at the end of the i-th movement we have a discrepancy – an error – between what we 

experienced and what we expected to experience. This is a function  

 
( ) ( ) ( )( ) ( ) ( )i i it t t e D Δ  (2.45) 

If we integrate the Euclidean norm of this function along the movement, we obtain a scalar quantity, a 

real number 

 
( ) ( ) ( ) ( )

0

( ) ( ) ( )

T

i i i T iE t t dt W e e . (2.46) 

This is an overall error that we have experienced across the movement and this error depends on the 

parameters of the internal models.  The purpose of learning is to get better at what we are doing. In this 

case it means to make the expectation error as smallest as possible. A straightforward way to do so is by 

changing the parameters of the internal model so as to minimize the error on the next trial. If we expand 

the argument of the integral (2.46), we see that it is a quadratic form of  the parameters: 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
T

i T i i i i i i T i i T i T i T i              e e D Δ D Δ D D D W g g W W g  (2.47) 

Therefore, the error function 
( ) ( )( )i iE W has a global minimum that we reach by changing W along the  

gradient : 
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W
 (2.48) 

This is a difference equation that tells us how the internal model of the field changes in time. We compare 

it with equation (2.40) that describes the motion of a point-mass in a potential field. The two equations 

have different order. Newtonian mechanics is of the second order while this simple learning model is of 

the first. Both equations tell us how a state variable changes in time under the action of an external input. 

In the case of the mass, the input is the mechanical force, which the gradient of a potential energy 

function. In the case of learning, the “driving force” is the gradient of the prediction error. Perhaps, the 

most important common feature of Newtonian mechanics and the description of learning as a dynamical 

system is that both allow us to connect theory with experiment. This will be the leading thread of the 

chapters that follow. 

 

Summary 

Space maps are not only relevant to navigation, but to movements in general.  Here, we consider the maps 

that our brains must form to manipulate the environment.  The kinematics maps relate the motions of the 

hand to the motions of the arm and come in two forms:  direct kinematics, from arm’s joint angles to hand 

position, and inverse kinematics, from hand position to arm’s joint angles.  These maps are non-linear 

and, as a consequence, a straight line in hand space maps into a curve in arm space and vice-versa.  This 

reflects the fact that a space of angular variables is inherently curved, while the Euclidean space where the 

hand moves is flat.  Observation of human movements over a plane demonstrated that the hand tends to 

follow rectilinear trajectories.   

Observations with a altered kinematics and with force perturbations demonstrated that the kinematics of 

arm movement is not a collateral effect of the brain attempting to economize or simplify the generation of 

muscle forces. Instead, to produce naturally observed movements, the brain must effectively solve a 

complex problem of dynamics. The solution of this problem does not necessarily involve any explicit 

representation of Newtonian forces, but it requires the ability to relate the motor commands that reach the 

muscles to the consequences in terms of changes in state of motion of the arm.  This connection is 

represented in the arm’s dynamics equations, which contain terms representing the inertial properties of 

the arm and terms representing the viscoelastic properties of the muscles.    The motor commands needs 

not to be a force and may represent instead  the static equilibrium point expressed by the neuromuscular 

system.  This is the position at which the arm would eventually settle under the influence of opposing 

muscle forces.    Controlling the motion of this equilibrium point for producing a desired movement of the 

hand is equivalent to solving an inverse dynamic problem. 

The first experimental evidence for internal models of dynamics derived from observing how subjects 

learned to perform reaching movements in the presence of deterministic force fields. These fields  apply 

to the hand a force that depends upon the hand’s state of motion, i.e. its position and velocity.  The 

observations were consistent with the subjects gradually developing the ability to predict and cancel the 

applied forces  along the movement trajectories. The  sudden removal of the field results  in after-effects 

of learning,  that is in a perturbation that mirrors the initial effect of the unexpected application of the 
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field. The after-effects, as well as the pattern of learning generalizations demonstrate that the subjects 

learn to predict the functional form of the perturbation, which effectively corresponds to a change in the 

controlled dynamical system.  

We introduce the concept that motor learning is a dynamical process whose state is the associated internal 

model of the body and its environment.  In its simplest form, learning to move in a force field is described 

by a first order differential equation whose state variable is the model of the field and whose input is the 

gradient of the prediction errors.  In this respect, movement and learning are two concurrent processes 

operating over different time scales. 
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NOTES 

                                                           
i
 An isometric embedding is a transformation from a mathematical object to a space that contains the objects and 

preserves the object’s metric properties.  An example is the embedding of a sphere in the Euclidean 3D space. We 

can locate a  point over the sphere by two coordinates, such as latitude and longitude.  Alternatively, we can 

establish three Cartesian axes and describe the point by a triplet , , .x y z  Importantly, the first type of description 

is non-Euclidean. Over the sphere, parallel lines may intersect and Pythagoras’ theorem is violated. However, the 

second description is Euclidean. Looking at the earth from outer space one would see that the meridians of 

longitude indeed meet at the poles, but they are not parallel lines. They are closed curves.     

ii We adopt the standard notation in classical mechanics, where the lower-case q denotes a position and the 

upper-case Q represent a force in a system of “generalized coordinates”.  Generalized coordinates reflect the 

effective movement space of a mechanical system. Classical mechanics assumes that the essential law that governs 

the movement of any system is Newton’s law, F ma , applied to each of its constituents particles. However, 

the great majority of those particles are bound to stay at fixed distances from one another.  While a simple 

pendulum contain billions of molecules, the motion of this immense set of particles is described by a single 

variable. This is called the “degree of freedom” of the pendulum. The idealized two-joint arm of Fig. 3.1 has only 

two  degrees of freedom. The variables that describe each degree of freedom are called generalized coordinates. 

The generalized forces are the forces in that particular system of coordinates. For example, for an angular 

coordinate, the generalized force is a torque.  For a linear coordinate, the generalized force is an ordinary force. 

iii
 To see this, consider a simple second order system, such as a spring and a mass or a pendulum.  You may drive 

the system by applying an external force that will have the system reaching several times the same state, 

s [ , ]Tx x s  (e.g. a given position at zero velocity) and leaving this state on different trajectories. Then, knowing 

only that the system is at s is no longer sufficient to know its future.  

iv
 According to standard engineering terminology, Equation (2.17) describes a PD control system, where P stand for 

“Proporional” and  D for “Derivative”. 


