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5 Bayesian estimation and inference 

 

We started the last chapter by approaching the problem of state estimation from a maximum 

likelihood perspective.  That is, for some hidden states x  and observations y , we formulated a 

generative model that described a probability distribution  p y x  and then we found an estimate 

x̂  that maximized the probability of our observations.  Formally, this is stated as 

  ˆ arg max ( | )x p y
x

x . (5.1) 

The problem with our approach was that we could not incorporate a prior belief
1
 into this 

formulation, and this was a serious flaw because everything that we perceive is likely an 

integration of a prior belief with observations. To remedy the situation, we considered the 

Kalman framework.  In this framework, we found the mixing gain 
( )nk  that allowed us to 

integrate our prior belief 
 1

ˆ
n n

x  with our observation 
( )n

y  to form a posterior belief 
 ˆ
n n

x .   The 

gain that we found was one that minimized the trace of the variance of the posterior uncertainty 

 n n
P .  This uncertainty represented the variance of the Gaussian distribution  ( ) ( )n np x y .  

Finally, we found a relationship between the Kalman gain and maximum likelihood: we found 

that if we are naïve and have no prior beliefs about the hidden states, then the Kalman gain is in 

fact the mixing gain that we derived in the maximum likelihood approach.   

 

Our approach thus far is a bit curious because what we are really after is the posterior probability 

distribution associated with our hidden states  ( ) ( )n np x y .  That is, we have some prior belief 

about the state  ( )np x , we make an observation 
( )n

y , and now we want to update our belief 

based on what we observed.  We have not shown what this posterior probability distribution looks 

like.  For example, if we apply the Kalman gain to the generative model that had Gaussian noise 

and form a posterior belief 
 ˆ
n n

x , is this the expected value of x in the distribution  ( ) ( )n np x y ?  

Is the uncertainty of our posterior belief 
 n n

P  the variance in the distribution  ( ) ( )n np x y ?  

                                                 
1
 Here the term “belief” is not used with its ordinary meaning, but according to an accepted lexicon in 

statistical learning theory. In this more restricted sense, a belief is an expectation that the learning system 

has developed either from past experience or has encoded in its initial structural properties. There is not the 

assumption of conscious awareness associated with the more common use of the word. 
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Here, we will formulate the posterior and we will see that indeed 
 ˆ
n n

x  and 
 n n

P  are the mean 

and variance of it.  The approach is called Bayesian state estimation. 

 

5.1 Bayesian state estimation 

 

Bayesian estimation has its roots on a very simple and fundamental theorem, first discovered by 

Thomas Bayes shortly before his death, in the mid 18
th
 century. In modern terms things go as 

follows. Consider two random variables, x and y. Suppose that x can take one of XN values and y 

can take one of YN  values.  The joint probability of observing ix x  and jy y  is 

Pr( , )i jx x y y  .  If x and y are statistically independent, this joint probability is just the 

product Pr( )Pr( )i jx x y y  . If the x and y are not independent, then one has to multiply the 

probability that ix x  given that  jy y  by the probability that jy y . Of course, this is the 

most general thing, since the conditional probability Pr( | )i jx x y y   coincides with 

Pr( )ix x  if the two variables are independent.  Bayes‟ theorem is a direct consequence of the 

intuitive fact that the joint probability is commutative: 

 Pr( , ) Pr( , )i j j ix x y y y y x x     . 

Then, expanding each side with the corresponding expression on conditional probability one 

obtains 

 Pr( | )Pr( ) Pr( | )Pr( )i j j j i ix x y y y y y y x x x x       . 

Bayes‟ theorem is then obtained by rearranging the terms as 

 
Pr( )

Pr( | ) Pr( | )
Pr( )

i
i j j i

i

x x
x x y y y y x x

y y


    


 

Importantly, this simple algebra applies not only to probability values, but also to probability 

distributions. So, if x and y are continuous random variables, then Bayes‟ theorem  allows to 

derive the relation between the respective distributions as 

 
( )

( | ) ( | )
( )

p x
p x y p y x

p y
  

If the variable x  represents a “model” variable – for example the state of a dynamical system – 

and y  represents an observed variable – for example the output of a sensor -  then,  

a) ( | )p y x  is the likelihood of an observation given that the underlying model is true; 
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b) ( | )p x y  is the probability distribution of the model given the observations; this gives the 

probability that the model is correct “after the fact” that we have collected an 

observation. Therefore is called the posterior distribution. 

c) ( )p x  is the probability distribution of the model independent of any observation, or the 

prior of x . 

d) the prior probability to make an observation, ( )p y , or marginal probability, is generally 

derived as a normalization factor, to insure that all distributions integrate to 1. 

In the following discussion, we take advantage not of Bayes‟ theorem in its standard form, but of 

the underlying rule expressing the joint probability from the product of the posterior and the 

marginal distributions, that is from 

 ( , ) ( | ) ( )p x y p x y p y . 

To formulate the posterior distribution, we start with the prior and the likelihood.  Say that our 

prior estimate of the hidden state is normally distributed with mean 
 1

ˆ
n n

x  and variance 
 1n n

P


:  

      1 1
ˆ ,

n n n n
p N P

  
  

 
x x . (5.2)  

Further assume that our measurements are related to the hidden states via the following 

relationship:  

 
 ,

y

y

C

N R

 y x ε

ε 0
 (5.3) 

Therefore, the expected value and variance of observation y  are:  

 

   

       

 

1

1

ˆ

var var 2cov , var

n n

T

n n T

E C

C C C

CP C R







  

 

y x

y x x ε ε   

We have the distribution  p y : 

      1 1
ˆ ,

n n n n Tp N C CP C R
  

  
 

y x  (5.4) 

Our next step is to compute the joint probability distribution  ,p x y .  To form this distribution, 

we need to know the covariance between x  and y , which is computed below:  
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         

         

   

 1

cov , cov ,

var( )

T

T T TT T T

TT

n n

C E C CE E

E C C E CE CE E E

CE CE E

C CP


      
  

      
  

  
 

 

y x x ε x x ε x x x

xx x x x x x x εx ε x

xx x x

x

    

The joint probability distribution becomes: 

  
 

 

   

   

1 1 1

1 1 1
, ,

n n n n n n T

n n n n n n T

P P C
p p N

C CP CP C R

  

  

    
                            

x x
x y

y
x

 (5.5)  

The Gaussian distribution in Eq. (5.5) is equal to the product of the posterior probability  p x y  

and  p y , that is:  

      ,p p px y x y y  (5.6)  

The item that we are looking for is the posterior probability  p x y .  We have the joint 

probability  ,p x y  (in Eq. 5.5), and we also have  p y  in Eq. (5.4).  If we could factor Eq. (5.5) 

so that it becomes a multiplication of two normal distributions, one of which is  p y , then we 

will have the posterior probability that we are looking for. 

 

The general problem that we are trying to solve is to factor a normal distribution  ,p x y .  In this 

distribution, x  is a 1p  vector and y  is a 1q  vector, and the distribution has the following 

general form:   

   11 12

21 22

, ,
x

y

p N
     

          

μ
x y

μ
 (5.7)  

in which our marginal distributions are 

 
 

 
11

22

,

,

x

y

N

N





x μ

y μ
 (5.8)  

and   12 21cov ,    x y .  We hope to find a conditional distribution  p x y . 

Our first step is to block-diagonalize the variance-covariance matrix in Eq. (5.5).  To see how to 

do this, assume we have a matrix M composed of following blocks:    
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E F

M
G H

 
  
 

 (5.9)  

If we right and left multiply M by the following two matrices, each of which has an identity 

determinant, we will end up with a diagonalized version of M:  

 

1 1 1

1 1

1

0 0

0

0

0

I II FH E FH G F FH H
M

H G I H G II G H

E FH G

H

  

 



        
      

       

 
  
 

 (5.10)  

The term M H  is called the Schur complement of M and is defined as:  

 
1M H E FH G   (5.11)  

If we now take the determinant of the matrix in Eq. (5.10), we have:  

 
     

   

1det det det

det det

M E FH G H

M H H

 


 (5.12)  

The above equality relies on the fact that the determinant of a block-triangular matrix is the 

product of the determinants of the diagonal blocks. 

 

Our second step is to compute the inverse of matrix M.  We will do this by taking advantage of 

the diagonalization that we did in Eq. (5.10).  Suppose that we call X  the matrix that we left 

multiplied M in Eq. (5.10) , and the right multiple as Z.  Eq. (5.10) is simply: 

 
1 1 1 1

1 1

XMZ W

Z M X W

M ZW X

   

 







 (5.13)  

That is, the inverse of matrix M is:  

 
 

1 1

1

1 1

0 0

00

I I FHM H
M

H G I IH

 



 

    
     

      
 (5.14)   

In the expression that describes a normal distribution, we have a determinant of the covariance 

matrix, and we have an inverse of the covariance matrix.  We will use the results in Eq. (5.12) to 

factor the determinant term, and the result in Eq. (5.14) to factor the inverse term. 

 

The distribution that we wish to factor has the following form:  
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    
  1/ 2/ 2 11

, 2 exp
2

T

p q x x

y y

p 
  

           
                  

           

μ μx x
x y

μ μy y
 (5.15) 

where   is the variance-covariance matrix of the above distribution, i.e.,  

 
11 12

21 22

  
   

  
 

Using Eq. (5.12), the determinant and the constants in the joint probability distribution can be 

factored as:  

  
 

   

1/ 2

1/ 2 1/ 2/ 2 / 2 / 211 12

22 22

21 22

2 2 / 2
p q p q

  



      
    

  
 (5.16) 

In Eq. (5.16), the term 22/   is the Schur complement of the matrix  .  Using Eq. (5.14), the 

exponential term in the joint probability distribution can be factored as:  

 

 

         

   

1 1

12 2222

1 1
22 21 22

11 1

12 22 22 12 22

1

22

01 0
exp

2 00

1
exp

2

1
exp

2

T

x x

y y

T

x y x y

T

y y

I I

I I

 

 

 



            
                     

 
           
 

 
    
 

x μ x μ

y μ y μ

x μ y μ x μ y μ

y μ y μ

 (5.17) 

Therefore, we factored the joint probability distribution into two terms:  

 

 

    

    

   

11 12

21 22

1

12 22 22 22

1 1

12 22 11 12 22 21 22

, ,

, ,

, ,

x

y

x y y

x y y

p N

N N

N N

p p



 

     
          

       

        



μ
x y

μ

μ y μ μ

μ y μ μ

x y y

 (5.18) 

The posterior probability that we were looking for is the first of the two normal distributions in 

Eq. (5.18):  

     1 1

12 22 11 12 22 21,x yp N         x y μ y μ  (5.19) 

In the distribution of Eq. (5.19), we have the following terms:  
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 

 

 

 

 

1

1

1

11

1

12 21

1

22

ˆ

ˆ

n n

x

n n

y

n n

n n T

n n T

C

P

P C

CP C R















 

   

  

μ x

μ x

 

Re-writing the distribution in Eq. (5.19) with the above terms, we have our usual Kalman filter 

estimate of the posterior:  

 

         
    
        

   

1
1 1 1 1( ) ( ) ( )

1 1( ) ( )

1
1 1 1 1( ) ( )

1( )

ˆ ˆ

ˆ ˆ

var

n n n n n n n nn n T T n

n n n nn n

n n n n n n n nn n T T

n nn

E P C CP C R C

K C

P P C CP C R CP

I K C P


   

 


   



     
 

  

    
 

 

x y x y x

x y x

x y

 (5.20) 

So indeed we see that the Kalman gain in Eq. (4.55) is the term 
1

12 22

   in Eq. (5.19), the 

posterior belief 
 ˆ
n n

x  is the expected value of  ( )np x y , and the uncertainty of our posterior 

belief 
 n n

P  is the variance of  ( )np x y .  By using Kalman‟s approach, we are computing the 

mean and variance of the posterior probability of the hidden state that we are trying to estimate. 

 

5.2 Causal inference 

 

Recall that in the hiking problem that we described in the last chapter we had two GPS devices 

that measured our position.  We combined the reading from the two devices to form an estimate 

of our location.  For example, in Fig. 4.8 the estimate of our location ended up being somewhere 

in between the two readings.  This approach makes sense if our two readings are close to each 

other (i.e., if the two GPS devices are providing us with estimates that pretty much agree with 

each other).  However, we can hardly be expected to combine the two readings if one of them is 

telling us that we are on the north bank of the river and the other is telling us that we are on the 

south bank.  We know that we are not somewhere in the river!  In this case the idea of combining 

the two readings makes little sense. 
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Consider another example.  Say you are outside and see lightening and soon afterwards hear 

thunder.  It seems reasonable that your two sensors (vision and audition) were driven by a single 

cause: a lightening occurring at a specific location.  However, if the two sensory events are 

separated by a long time interval or the sound appears to come from a different direction than the 

light, then you would be less likely to believe that there was a single cause for the two 

observations.  In principle, when the various sensors in our body report an event, the probability 

that there was a single source responsible for them should depend on the temporal and spatial 

consistency of the readings from the various sensors.  This probability of a single source, i.e., the 

probability of a single cause, should then play a significant role in whether our brain will combine 

the readings from the sensors or leave them apart. 

 

Wallace and colleagues (2004) examined this question by placing people in a room where LEDs 

and small speakers were placed around a semi-circle (Fig. 5.1A).  A volunteer sitting in the center 

of the semi-circle held a pointer in hand.  The experiment began by the volunteer fixating a 

location (fixation LED, Fig. 5.1A).  An auditory stimulus was presented from one of the speakers, 

and then one of the LEDs was turned on 200, 500, or 800ms later.  The volunteer estimated the 

location of the sound by pointing (pointer, Fig. 5.1A).  Then he pressed a switch with their foot if 

they thought that the light and the sound came from the same location.  The results of the 

experiment are plotted in Fig. 5.1B and C.  The combination of the audio and visual stimuli in a 

single percept – perception of unity - was strongest when the two events occurred in close 

temporal and spatial proximity.  Importantly, when the volunteers perceived a common source, 

their localization of the sound was highly affected by the location of the light.  That is, if sx  

represents the location of the sound and vx  represents the location of the LED, the estimate of the 

location of the sound ˆ
sx  (i.e., where the subject pointed) was biased by vx  when the volunteer 

thought that there was a common source (Fig. 5.1C).  This bias fell to near zero when the 

volunteer perceived light and sound to originate from different sources. 

 

The experiment in Fig. 5.1 suggests that when our various sensory organs produce reports that are 

temporally and spatially in agreement, we tend to believe that there was a single source that was 

responsible for both observations (Fig. 5.2A).  In this case, we combine the readings from the 

sensors to estimate the state of the source.  On the other hand, if our sensory measurements are 

temporally or spatially inconsistent, then we view the events as having disparate sources (Fig. 

5.2A), and we do not combine the sources.  Therefore, the nature of our belief as to whether there 
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was a common source or not is not black or white.  Rather, there is some probability that there 

was a common source.  In that case, this probability should have a lot to do with how we combine 

the information from the various sensors.   

 

The idea is that in principle, there are many generative models that could explain our 

observations.  For example, we could have a model that says that the two observations come from 

the same source.  We could also have another model that says that the two observations are 

independent.  The one that we pick, or rather the probabilities that we assign to the various 

potential generative models, will determine how we will form our belief.   

 

Konrad Kording and colleagues (Kording et al., 2007) suggested a simple way to frame this 

problem.  Suppose that the binary random variable z  specifies whether there is a single source 

( 1z  ), or whether there are two distinct sources that drive our sensors ( 0z  ).  If 

 Pr 1 1z  y , then our visual and sound measurements are reflecting a common source:  

 
 

1

1 0
         0,

1 0

s s

v v

y x
N R

y x

C

    
      

    

 

y ε ε

x ε

 (5.21) 

On the other hand, if  Pr 1 0z  y , then our measurements are reflecting different sources:  

 
 

2

1 0
         0,

0 1

s s

v v

y x
N R

y x

C

    
      

    

 

y ε ε

x ε

 (5.22) 

Starting with a prior belief about the location of the two stimuli  ,N Px μ , and a prior belief 

about the probability of a common source  Pr 1z  , we can compute the posterior probability of 

a common source after making a measurement y :  

  
   

       

1 Pr 1
1

0 Pr 0 1 Pr 1

p z z
p z

p z z p z z

 
 

    

y
y

y y
 (5.23) 

The probability distribution of our measurements given that there is a common source can be 

computed from Eq. (5.21) as follows:  

    1 1 11 , Tp z N C C PC R  y μ  (5.24) 

Similarly, from Eq. (5.22) we have:  
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    2 2 20 , Tp z N C C PC R  y μ  (5.25) 

In Fig. 5.2B we have plotted  1p z  y  for various values of our two sensory measurements (in 

computing Eq. 5.23, we assumed that  Pr 1 0.5z   , that is, a common source was just as 

likely as two independent sources).  When the two measurements sy  and vy  are close to each 

other, the probability of a common source is nearly one.  When they are far from each other, the 

probability is close to zero.  That is, as the spatial disparity between the two measurements 

increases, it is less likely that we are observing the consequences of a common source (Fig. 5.2C). 

 

Let us now return to the experiment in Fig. 5.1A in which we hear a sound and see a light and 

need to know where the sound came from.  Eq.  (5.23), as plotted in Fig. 5.2C, gives us a 

probability of a common source as a functional of spatial disparity between the two sensory 

measurements.  The question is how to use the probability of a common source to compute the 

location of the auditory stimulus.  Let us suppose that  Pr 1 1z  y .  In that case we would 

use the single source model (Eq. 5.21) to find the posterior probability  p x y .  Our best 

estimate for x  is the expected value of this posterior distribution, which is the usual Kalman 

estimate derived from the model in Eq. (5.21), i.e., one in which we combine the two 

measurements to estimate the location of the sound.  On the other hand, if  Pr 1 0z  y , then 

Eq. (5.22) is the model that we should use, and the Kalman gain here would treat the two 

measurements as independent and not mix them to estimate the location of the sound.  If the 

probability of a common source is somewhere between 0 and 1, then a rational thing to do would 

be to use this probability to weigh each of our two estimates for the location of the sound.  To 

explain this in detail, let us begin by computing  ,p x y . If there is a common source, then from 

Eq. (5.21) we have:  

   1

1 1 1 1

, ,
T

T

P PC
p N

C C P C PC R

   
         

μ
x y

μ
 (5.26) 

This implies that if there was a common source, our best estimate is the usual mixing of the two 

sources.  From Eq. (5.20) we have:   

    
1

1 1 1 1, 1 T TE z PC C PC R C


       x y μ y μ  (5.27) 

On the other hand, if there is not a common source, our best estimate is:   
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    
1

2 2 2 2, 0 T TE z PC C PC R C


       x y μ y μ  (5.28) 

In general then, our estimate of x  should be a mixture of the above two estimates, weighted by 

the probability of a common source:    

 
 

 

Pr 1

, 1 1 , 0

z a

E aE z a E z

 

               

y

x y x y x y
 (5.29) 

We have plotted an example of this estimate of ˆ
sx  (location of the speaker) in Fig. 5.2D.  We 

assumed that the actual location of the sound (i.e., the speaker) was always at zero ( 0sy  ), 

while the LED ( vy ) was located at various displacements.  We see that when the two sources are 

near each other, i.e., when vy  values are small, the estimate of the location of sound ˆ
sx  is highly 

influenced by the location of the LED.  However, as the LED moves farther away, the estimate of 

the speaker location returns back to zero.  When there is a large discrepancy between the two 

measurements vy  and sy , there is little chance that they are coming from a single source, and so 

the system does not combine the two measures. 

 

We can now see that in many of the previous experiments in which people were presented 

multiple cues and they performed „optimally‟ by combining the cues (some of these experiments 

were reviewed in the previous chapter, as in Fig. 4.7 and Fig. 4.9), they were doing so because the 

disparity between the cues was small.  If the disparity is large, it is  illogical to combine the two 

cues.  The single-source models in those experiment are special cases of the more general causal 

inference model (Fig. 5.2) (Kording et al., 2007).  

 

In summary, if we believe that our sensors are reporting the consequences of a common event, 

then our brain combines information from our various sensors.  This belief regarding a common 

source is itself driven by the disparity between the measurements (i.e., their temporal and spatial 

agreement). 

 

5.3 The influence of priors 

 

When at the coffee shop the attendant hands you a cup full of tea, your brain needs to guess how 

heavy the drink is.  This guess need to be accurate, otherwise you would have trouble grasping 

the cup (activating your finger muscles in a way that they does not let it slip out of your hand), 
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and holding it steady (activating your arm muscles so the cup does not rise up in the air or fall 

down).  The only cue that you have is the size information provided by vision.  Fortunately, the 

other piece of information is the prior experience that you have had with cups of tea.  The fact 

that most people have little trouble holding cups that are handed to them in coffee shops suggests 

that they are making accurate estimates of weight.  How are they making these guesses? 

 

A useful place to start is by stating in principle how people should make guesses, whether it be 

regarding weight of a cup of tea, or something else.  Consider the cup of tea problem.  Suppose 

we label the weight of the cup of tea as x .  We have some prior belief about the distribution of 

these weights,  p x , i.e., how much cups of tea weigh in general.  We have some prior belief 

about the relationship between visual property (size) of a tea cup s  and the weight of tea that it 

can hold,  p s x .  And we have some prior belief about the distribution of tea cup sizes  p s .  

Then our guess about weight of this particular cup of tea should be based on the posterior 

distribution:   

  
   

 

p s x p x
p x s

p s
  (5.30) 

In Eq. (5.30), what we are doing is transforming a prior belief  p x  about the state of something 

(weight of a cup) into a posterior belief, after we made an observation or measurement (in this 

case s , the size of the cup that we saw).  Let us do a thought experiment to consider how prior 

beliefs should affect people‟s guesses about weights of cups.  In America, people are familiar 

with the rather large cups that are used for serving soft drinks and other refreshments.  For 

example, in some convenient stores there are drinks that are called „super big gulp‟, and they hold 

something like 1.2 liters of soda.  [Single serve bottles in which fruit juice is sold in America tend 

to labeled as „family-size‟ in Europe.]  The prior distribution  p x  for someone who frequents 

such places in America would be skewed toward large weights.  In contrast, someone from 

another country in which big gulps are not available would have  p x  skewed toward smaller 

masses.  If we now take these two people to a lab and present them with a regular sized soft drink 

cup, upon visual inspection the subject for whom  p x  is skewed toward heavier weights (the 

American fellow) should estimate the weight of the cup to be heavier than the subject for whom 

 p x  is skewed toward lighter weights (the European chap).  The belief about the larger weight 
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should be reflected in the larger force that the American fellow will use to pick up the cup.  That 

is, the prior belief should affect the prediction. 

 

Indeed, prior beliefs do play a very strong role in how people interact with objects in everyday 

scenarios.  For example, consider the task of using your fingers to pick up a small object as 

compared to picking up a slightly larger object.  To pick up an object, you will need to apply a 

grip force (so the object does not slip out of your fingers) and a load force (so you can lift the 

object), as shown in Fig. 5.3A.  Suppose you walk into a lab and are given an instrumented device 

like that shown in Fig. 5.3A.  This device is attached to either a small box or a large box.  You 

should apply larger grip and load forces to the larger object.  This is indeed what Andrew 

Gordon, Roland Johansson, and colleagues (1991) observed when they presented volunteers with 

three boxes that weighed exactly the same, but were of different sizes.  People applied a larger 

grip force and a larger load force to lift the larger box (Fig. 5.3B).  The result was the familiar 

scenario in which you go to pick up a bottle that you think is full, but is actually empty: the hand 

accelerates up faster than you intended. 

 

Another way to explore prior beliefs about physics of objects is with regard to how objects move 

in a gravitational field: objects fall with a constant acceleration of 9.8g   m/s
2
.  For example, 

when a ball is released from rest and falls toward your hand, your prediction regarding when it 

will reach you will determine when you will open your hand.  Almost all of us spend our entire 

lives here on earth, so presumably our brain has formed an internal model of falling objects.  Let 

us briefly sketch this internal model.  Suppose the state (position and velocity) of the ball is 

labeled as  tx , our measurement of that state is labeled  ty , and our goal is to predict the 

future state  t x .  In a 1g environment, the state of the ball can be modeled as:  

 
 

 

 

 

1 0

0 1
x

x t x t

x t x t g

      
                

ε  (5.31) 

Written in a more compact way, we have:   

 
     

     

        0,

                0,

x x

y y

t A t N Q

t t N R

   

 

x x b ε ε

y x ε ε
 (5.32) 

If we assume that the noises xε  and yε  are Gaussian, then we can use the Kalman framework to 

estimate the state of the ball.  We start with a prior belief, described by mean  ˆ tx  and variance 
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 P t .  We use this prior belief to predict the expected value of what our sensors should be 

measuring:   

    ˆ ˆt ty x  (5.33) 

The difference between what we expected and what we measured allows us to update our 

estimate of the current state and predict the future.  The expected values of our predictions are:  

 
        

   

ˆ ˆ ˆ

ˆ ˆ

t t t K t t

t t A t t

  

  

x x y y

x x b
 (5.34) 

In Eq. (5.34), K  is the Kalman gain, which depends on our prior uncertainty (variance):   

     
1

K P t P t R


   (5.35) 

The variance of our posterior probability distribution is:  

 
     

    T

P t t I K P t

P t t AP t t A Q

 

  
 (5.36) 

Now if you are an astronaut in an orbiting ship, this 1g internal model should bias your 

predictions about fall of objects in space.  In particular, you should predict that the falling ball 

will reach you earlier than in reality.  Joe McIntyre, Mirka Zago, Alan Berthoz, and Francesco 

Lacquaniti (2001) tested this idea by having astronauts catch balls in both 0g and 1g.  An example 

of a ball‟s trajectory in 1g and 0g is shown in Fig. 5.3C.  Suppose that the ball starts with a non-

zero initial velocity.  In 1g, the ball accelerates.  However, in 0g the ball velocity remains 

constant (black lines in Fig. 5.3C).  If one uses a 1g internal model to predict the state of the ball 

in 0g, one would predict that the ball will reach the hand sooner than in reality.  That is, the prior 

belief about the behavior of the ball will produce an earlier preparation for ball hitting the hand.  

McIntyre et al. (2001)  quantified this reaction to the ball motion by recording EMG activity from 

hand and elbow muscles.  When the data were aligned to the moment of ball impact on the hand, 

they saw that the astronauts in 0g prepared the hand much sooner than in 1g, suggesting that they 

expected the ball to hit their hand earlier.  Interestingly, this pattern continued for the 15 days that 

the astronauts were in space.  That is, the 15 days of being in space was not enough to 

significantly alter the 1g internal model. Although different from the optimal response in 0g, the 

anticipatory behavior was not considered by the astronauts‟ brain as an error requiring correction. 

 

(The ability of a good baseball pitcher to strike out a batter relies to a great extent on the prior 

belief that batters have regarding gravity and how it should affect the ball during its flight.  In a 
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fastball, the ball has backspin, giving it lift so that it falls slower than expected, whereas in a 

curve ball, the ball has topspin, giving it downward force so that it falls faster than expected.  The 

force caused by rotation of the ball is called Magnus force, and Isaac Newton himself studied it 

on a tennis ball.) 

 

These two examples of picking up objects and predicting state of falling balls demonstrate that 

our brain relies on prior experience to make predictions.  You do not need to read this book to 

know this point, as it is obvious.  The more useful question is whether the process of prediction 

resembles Bayesian state estimation, as in Eqs. (5.30) and (5.34).  To explore this question, an 

interesting experiment was performed by Harm Slijper, Janneke Richter, Eelco Over, Jeroen 

Smeets, and Maarten Frens (2009).  Their idea was that the prior statistics of everyday 

movements might affect how people move a computer mouse to a given stimulus.  That is, the 

prior statistics should bias the response to the stimulus.  They installed „spyware‟ software on the 

computers of a group of consenting volunteers and recorded their mouse movements on random 

days over a 50 day period.  The distribution of movement amplitudes is shown in Fig. 5.4A.  The 

majority of movements were 3mm or less.  The distribution of movement directions, represented 

as an angle e  (angle of a line connecting the start to the endpoint), is plotted in Fig. 5.4B.  The 

endpoint directions e  were clustered along the primary axes, i.e., most of the movements had 

endpoints that were up/down or left/right with respect to start position.  Slijper et al. (2009) 

noticed that while some of the movements were straight, many of the movements had an initial 

angle i  that was somewhat different than e .  This is illustrated by the cartoon drawing in Fig. 

5.4D.  They wondered whether this difference i e   was due to the distribution of movements 

that people made.  Their idea was that the movements that were straight were the ones that people 

tended to repeat a lot, whereas movements that were not straight were „attracted‟ toward the 

nearby movement directions that were repeated a lot. 

 

When a movement is not straight, there is a difference between i  and e .  To explain why there 

was a difference between i  and e  for some movements but not others, Slijper et al. (2009) 

posed the problem in the following way.  Suppose that given a desired endpoint at direction e , 

the probability of moving the mouse in an initial direction i  is specified by  i ep   .  This 

distribution can be written as:  
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  
   

 
e i i

i e

e

p p
p

p

  
 


  (5.37) 

The prior probability of moving in an initial direction is specified by  ip  , and is plotted in Fig. 

5.4C.  The most frequent initial movement directions are along the left/right axis.  That is, the 

prior has a large peak at 0
o
 and 180

o
 degrees.  Next, they assumed that the likelihood  e ip    

was simply a normal with mean at i  and variance of a few degrees. Now suppose that we 

consider making a movement to an endpoint e  at 10
o
.  The prior distribution  ip   has a very 

large peak at 0i  .  Even though the likelihood  e ip    has its peak at e i  , making it so 

that the maximum likelihood estimate is simply e i   (i.e., the movement should be straight to 

the target), the strong prior at 0i   will bias the posterior probability.  Intuitively, we can see 

that the initial angle i  would be biased toward the large peak at 0
o
 in the prior distribution 

 ip  .  That is,  i ep    would have its expected value somewhere between 0
o
 and

 
10

o
.  This 

makes the error in movement direction i e   negative.  The expected value of Eq. (5.37), 

i e eE        is plotted as the dashed line in Fig. 5.4D.  This theoretical prediction matched 

reasonably well with the actual error i e  , plotted as the solid line in Fig. 5.4D. 

 

It is instructive to approach this problem a bit more rigorously because by doing so we can 

consider probability distribution of a random variable defined on the circle.  The circular normal 

distribution is:  

  
 

  
0

1
exp cos

2
p

I
   

 
   (5.38) 

In Eq. (5.38), the function  0I   is a normalization constant, called the modified Bessel function 

of order zero.  The mean of the distribution in Eq. (5.38) is at   and the variance increases with 

decreasing  , as shown with an example in Fig. 5.5A.  We can approximate the prior probability 

 ip  , i.e., the data in Fig. 5.4C, as a sum of four circular normal distributions with means at 

1 , 2 , 3 , and 4 , with  1
2

i i


   , and a uniform distribution, normalized for the sum to 

have an integral of one: 
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a
p b

m I
   

 

 
   

 
  (5.39) 

Our model of the prior  ip   is plotted in Fig. 5.5B.  Let us consider what happens when we 

intend to move to endpoint 0.1e   radians (about 6
o
).  What will be the initial movement 

direction i ?  The prior  ip   has a large peak at 0i  .  The posterior distribution 

 0.1i ep     is approximately a Gaussian, with its peak at around 3
o
, which is the expected 

value of the posterior.  The initial movement direction is skewed toward the prior. 

 

In summary, our prior experience with everyday objects like tea cups, balls, and computer 

devices, produce internal models of physics that appear to strongly affect how we interact with 

these objects.  These internal models act as priors that bias our ability to use current observations.  

If the internal models are correct (as in the distribution of weight of tea cups), they aid in control 

because they allow us to correctly estimate property of the current object.  However, if the 

internal models are incorrect (as in the 1g physics being applied by the astronaut to a 0g 

environment), then we make mistakes in our estimations.  This implies that priors have to 

continuously change with experience.  That is, our internal models need to continuously learn 

from observations.  We will pick up this topic in the next chapter when we consider the problem 

of adaptation.   

 

5.4 The influence of priors on cognitive guesses 

 

If we extend our interest a bit outside of motor control, we find evidence that in situations in 

which people make a „cognitive‟ guess about an ordinary thing, their guess appears to be 

consistent with a Bayesian framework.  Let us consider the problem of guessing the lifespan x  of 

a person (i.e., how many years someone will live), given that they are now t  years old.  Thomas 

Griffiths and Joshua Tenenbaum (2006) asked a large group of undergraduates to guess the 

lifespan of someone who is now 18, 39, 61, 83, or 96 years old (each student made a guess only 

about a single current age t ).  Their results are shown in Fig. 5.6A.  The students guessed that the 

18 and 39 year olds would probably live to be around 75, which is about the mean lifespan of a 

male in the US.  The 61 year old will probably live a little bit longer, around 76 years, but the 83 

year old will likely live to around the age of 90 and the 96 year old will likely live to around the 

age of 100.  The interesting thing about these guesses is the shape of the function that specifies 
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the guess about lifespan as a function of current age (the line in Fig. 5.6A): the line starts out flat, 

and then rises with a slope that is always less than one.  Importantly, according to the students 

who took this survey, the 96 year old has less time to live than the 83 year old. 

 

This pattern of guessing of course makes a lot of sense.  However, Griffiths and Tenenbaum 

showed that it is exactly how you should guess if you have prior beliefs about life spans that 

resemble reality (as shown in Fig. 5.6B).  Let us go through the mathematics and build a model of 

this guessing process.  Suppose that we model the relative frequency of life spans using a 

Gaussian function:  

    
2

2

1 1
exp       75,   15

22
p x x   



 
     

 
 (5.40) 

The above distribution is plotted in Fig. 5.6C.  [In using this estimate, we are ignoring the fact 

that the actual distribution of life spans cannot be Gaussian, as the variable x  can only be 

positive and cannot be greater than some finite maximal value. Furthermore, the actual 

distribution includes a large number of infants who died near birth, which means that the actual 

distribution (Fig. 5.6B) is skewed toward dying young.]  Further suppose that we model the 

conditional probability of someone currently being t  years old, given that their lifespan is x  

years old:  

  
1

 if ,  0 otherwisep t x x t
x

   (5.41) 

Eq. (5.41) is our likelihood.  Here, it implies that if the lifespan is 70 years, then the likelihood of 

currently being at any age less than or equal to 70 is simply 1/ 70 , but of course 0 for values 

larger than 70.  Finally, we model the probability of someone being currently at any age t  as:  

 

     

   

0

t

p t p t x p x dx

p t x p x dx













 (5.42) 

Eq. (5.42) is called the marginal probability.  It describes the age distribution of people who are 

alive today, as shown in Fig. 5.6D.  The integral‟s boundaries in Eq. (5.42) are at t  and   (rather 

than 0 and  ) because of the constraint on x  in Eq. (5.41).  The posterior probability becomes:  
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 (5.43) 

If  x t , then of course   0p x t  .  Now suppose that we know that a person is 30 years old.  

The posterior probability  30p x t   is plotted in Fig. 5.6E.  What should be our guess about 

this person‟s lifespan?  Say that we guess ˆ 35x  .  The probability of this person living 35 years 

or less is:  

    
35

30

Pr 35 30 30x t p x t dx     (5.44) 

The probability of this person living more than 35 years is:  

    
36

Pr 35 30 30x t p x t dx



     (5.45) 

By looking at the area under the curve in Fig. 5.6E for  30p x t  , it should be clear that the 

probability of living 35 years or longer is a lot higher than the probability of living 35 years or 

less.  Therefore, ˆ 35x   is a bad guess.  The best guess x̂  that we could make is one that makes 

the probability of living less than x̂  equal to the probability of living longer than x̂ .  The x̂  that 

we are looking for is the median of the distribution  30p x t  .  If the median value is labeled 

as m , then  

      
1

Pr Pr
2

m

x m t x m t p x t dx


      (5.46) 

Because  30p x t   is quite similar to a Gaussian, peak of the density as well as its mean and 

median all correspond to the same value, which is a bit less than 75 (i.e., the mean of our prior).  

However, if the current age is 50, the posterior probability no longer resembles a Gaussian.  

Rather,  50p x t   is a truncated Gaussian with a median that is no longer at the peak of the 

density.   Regardless, the median of  50p x t   is still quite close to 75, and this is still our best 

guess.  However, if our subject is 70 years old, then the median (around 80) is now quite far from 

the peak of the posterior distribution.  This captures the intuition that if someone has already lived 

to be 70, then they are more likely to live beyond the average life span than not.  The median for 
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the posterior distribution as a function of current age t is plotted with the solid line in Fig. 5.6F, 

illustrating a form similar to the guesses that people had made (Fig. 5.6A).  

 

The exact form of the function in Fig. 5.6F is strongly dependent on the shape of the prior  p x .  

For example, suppose that instead of the Gaussian prior with a broad standard deviation that we 

assumed in Fig. 5.6C we had chosen a narrow Gaussian with the same mean but standard 

deviation 5   years (rather than 15).  Based on this prior, the best guess for lifespan of 

someone who is currently 80 years old is around 81, which is inconsistent with the guesses that 

people made.   

 

This kind of data is of course not conclusive evidence that people are Bayesian estimators, 

because it reflects the „wisdom of the masses‟ rather than individuals (as the data in Fig. 5.6A 

was averaged guesses from a group of people) (Mozer et al., 2008).  Yet, it is consistent with the 

assumption that when people make guesses about every day questions, they are doing so by 

relying on a prior internal model (Fig. 5.6C) that resembles reality (Fig. 5.6B), and performing a 

computation that is consistent with a Bayesian process. 

 

This conclusion appears to be challenged by a simple game that the reader can try with a group of 

friends. The game is known as the Monty-Hall problem. One of its variants is as follows. You are 

in a room with three closed doors, labeled d1, d2 and d3.  Behind one of the doors is a one million 

dollars prize. You have to guess which door it is, and you do this in two steps. First, you form an 

initial hypothesis, for example, d1.  There is an oracle in the room, who knows where the prize is. 

You tell the oracle your initial choice and ask her to reveal one of the losing doors among those 

that you did not select. In this case, it could either be d2 or d3.  Suppose that the oracle declares 

that d3 does not have the coveted prize. At this point you must make your final choice. There are 

two possibilities: either you stick with the original choice (d1) or you switch to the only 

remaining alternative (d2). These are the choices, and the question is: “Which is the best strategy? 

Sticking with the initial choice, switching, or, it really cannot be decided because they are equally 

likely to win or lose?” Almost invariably the most popular answer is the last. And the argument 

appears to be compelling. You have two options, a winning option and a losing option. So, each 

must have a 50-50 chance to win.  The correct answer: sticking with d1 has a 1/3 probability to 

win, while switching has a 2/3 probability to win. So, switching is the right thing to do.  We leave 

the calculation of these probabilities, using Bayes‟ rule, as an exercise. Instead we ask: does the 

failure to answer correctly reveal that the human mind is non-Bayesian?  
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To see how this is not the case, you may try a simple variant of the Monty-Hall game. The 

original version has only 3N   doors. Let us try again with a bigger number, say 1000N  .  

The problem is as follows. There are 1000 doors, labeled 1, 2, , 1000d d d . Behind one of these 

lies a million dollar prize. Step 1: choose a door (for example d1). The game has 999 losing doors 

and now you ask the oracle to eliminate 998 of these. So, now you are left with two doors, d1 and 

– say – d376. What would you do?  Facing with this variant, most people have no trouble 

recognizing that switching is the best strategy. This is simply because in this case, the prior is 

much stronger. In the classic Monty-Hall the prior probability of being correct was 1/3.  Now it is 

1/1000. When you had to make your initial choice, your expectation of being defeated is much 

stronger, as when you play the national lottery. It seems reasonable to assume that this feeling has 

a stronger and more evident persistence when you are faced with the final choice, compared to a 

situation where the difference between ignoring and considering the prior is 
1 1

2 3
 . So, in a way 

the outcome of the test, in its original and modified form provides more support to the mind‟s 

ability to deal with Bayes‟s rule. However, the “strength” of the prior plays a major role in the 

final decision making. 

 

5.5 Behaviors that are not Bayesian: the rational and the irrational 

 

While there are many behaviors in which it appears that the brain acts as a Bayesian state 

estimator, integrating prior beliefs with observations to estimate state of the body or the world, 

there are some curious behaviors that do not fit the theory.  In these behaviors, the behaviors are 

perplexing, and seemingly illogical.  It is interesting to ask why people behave in this way.  Let 

us consider some of the more prominent examples.   

 

Suppose that you were presented with two objects. They have the same shape and color, for 

example two yellow cubes, made of the same material. But the one is small and the other large.  

Despite their different sizes, the objects weigh the same (the larger cube is hollow and some of 

the core material was removed).  You pick up one of the objects, place it back down, and then 

pick up the other object.  It is very likely that you will feel that the small object weighed more 

than the large object.  This is called the size-weight illusion, something that was first reported 

over a century ago (Charpentier, 1891).  Your belief that the small object weighed more is in fact 
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the opposite of what a Bayesian state estimator should do.  To see why, let us consider this 

problem in detail.  

 

When we first see an object, the visual input vy  allows the brain to make an estimate of its 

weight w  (Fig. 5.7A).  We think this is true because the grip and load forces that people use to 

pick up objects are affected by what the object looks like (Fig. 5.3A): if the object looks large, we 

expect it to be heavier than an object that looks small.  Generally, as volume of an object 

increases, so does its weight.  The slope of this relationship depends on the materials in the 

object.  For example, if the object is made of aluminum, the weight-volume relationship grows 

faster than if it is made of balsa wood (Fig. 5.7B).  The visual property indicates the class of 

weight-volume relationships that we should expect, which is the basis with which we form prior 

beliefs about the weights of objects.  For example, if we think the object is aluminum, then the 

relationship between the hidden state w  and the volume vy  that we see is: 

 v al vy c w    (5.47) 

Whereas if it looks like the object is made of balsa wood,  

         v b v b aly c w c c    (5.49) 

Before we see the object, we have some prior belief 
 10

ŵ  (the distribution of weights of objects 

in general) and 
 10

ĉ  (the distribution of weight-volume slopes in general).  When we see the 

object (gather information about its volume vy ), we form a posterior estimate 
 11

ĉ  and 
 11

ŵ .  

That is, given its visual properties, we form a belief about what it is made of and how much it 

weighs.  Propagating this forward in time, we have the prior estimate 
 21

ŵ  that predicts the force 

that we should feel via our arm‟s Golgi tendon organs gy  as we pick up the object:  

 g gy dw    (5.50) 

Now suppose that we see two objects, one small and one large.  They both look like they are 

made of aluminum, but actually the larger one is made of balsa wood, and the two are exactly the 

same weight.  When we pick up the large object, we expect it to be heavy, and there will be a 

prediction error, i.e. a difference between the expected force  ˆ
gy  and the observed force gy , as 

ˆ
g gy y .  Because gy  is less than what we expected, the posterior 

 2 2
ŵ  should be smaller than 

the prior 
 21

ŵ .  This is shown in Fig. (5.7C) by the gray (observation) and black (posterior) 

circles.  Now suppose that we are given a small object that is made of aluminum and weighs the 
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same as the large object that we just picked up.  When we pick up the small object, we will have 

little or no prediction errors, resulting in a weight estimate that is close to our prior (shown by the 

black circle in Fig. 5.7C).  If we now estimate which object weighs more, we should clearly guess 

that the larger object weighs more.  But this is not what happens.  In fact, people consistently 

report that the smaller object weighs more.  This judgment is irrational from a Bayesian 

estimation perspective, but is in fact the way our brain works.  What is going on? 

 

Look at the data in Fig. 5.3B.  Clearly, people are gripping the larger object with greater force and 

are applying a larger load force to pick it up.  On the first try, the motor system certainly seems to 

believe that the larger object weighs more.  If after this first try the brain really believes that the 

smaller object weighs more (as this is what subjects tell you after they pick up the objects), then 

on the second try the grip forces should be higher for the smaller object.  But this is not what 

happens!  Figure 5.7D shows the force data from 20 consecutive attempts to pick up small and 

large objects that weigh the same.  Clearly, the smaller object is never experiencing the larger 

load force.  In fact, by the 8
th
 or 10

th
 trial the forces are about the same, which makes sense as the 

two objects really do weigh the same.  The remarkable fact is that the illusion that the smaller 

object weighs more (as verbalized by subjects) persists even after the motor system continues to 

demonstrate that it believes that the two objects weigh the same, an observation that was nicely 

quantified by Randy Flanagan and Michael Beltzner (Flanagan and Beltzner, 2000). 

 

In summary, these results show that our motor system (as assayed by the forces that we produce 

with our hands) never believes that the small object weighs more than the larger one.  However, 

apparently our motor system is not responsible for what we verbalize, because we consistently 

say that “the smaller object feels heavier.”  It appears that the brain does not have a single 

estimate of an object‟s weight.  There appears to be two such estimates: one that is used by our 

„declarative‟ system to state (in words) how much it thinks the object weighs, and one that is used 

by our „motor‟ system to state (in actions) how much it thinks the object weighs.  In these 

experiments, the rational part of the brain is the one that programs the motor commands, while 

the seemingly irrational one is the one that verbalizes what it thinks the objects weigh.   

 

More recent experiments have shed some light on the mechanism that our brain uses to verbalize 

opinions about objects and their weights.  Apparently, this declarative system also relies on a 

volume-weight prior belief, but this belief changes much more slowly than the one used by the 

motor system (it still remains unclear how the prior is integrated with observations).  To explore 
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this issue, Randy Flanagan, Jennifer Bittner, and Roland Johansson (2008) trained people on a set 

of objects that had an unusual property: the larger the volume, the smaller the weight (Fig. 5.8A).  

People lifted these objects hundreds of times a day for up to 12 days.  At the end of the first day, 

the experimenters gave the subjects a small and a large object and asked them to indicate their 

relative weight.  The two objects weighed the same, but the subjects reported that the smaller 

object weighed more (Fig. 5.8B).  This is the usual size-weight illusion that we have seen before.  

However, after a few more days of lifting objects, the illusion subsided and by the 11
th
 day it had 

reversed direction so that they now perceived the larger object to weigh slightly more. 

 

During this period of training, the prior that the motor system used for estimating weight from 

volume changed.  On the first trial of the first day, people expected the small object to be light, 

and so they produced a small load force (early trial, Fig. 5.8C).  By the 8
th
 trial, the load force had 

substantially increased (late trial, Fig. 5.8C).  On the second day, the motor system remembered 

this unusual, inverted relationship between volume and weight: from the very first trial, the motor 

system produced a larger force for the small object than the larger object (Fig. 5.8D).  Therefore, 

a few trials of training were sufficient to teach the motor system that this class of objects had an 

unusual property that increased volume produced reduced weight.  The declarative system too 

relied on a prior model, one in which weight increased with volume.  However, this model 

appeared to change much more slowly, as it took 11 days before the illusion reversed.  Therefore, 

if the perceptual system is not acting irrationally, it follows that the experiential structure that 

form the basis for its internal model is different from the experiential structure associated with 

motor learning. 

 

5.6 Multiple prior beliefs 

 

It is curious indeed that one should believe that a small object feels heavier than a large object, 

and yet consistently act as if believing that the weight of the small object is the same as the large 

object.  Perhaps in our brain there are distinct and sometimes conflicting beliefs about the 

properties of single objects.  Perhaps depending on how our brain is queried, we express one 

belief or the other.  An elegant experiment by Tzvi Ganel, Michal Tanzer, and Melvyn Goodale 

(2008) lends support to this counter-intuitive conjecture. 

 

In the experiment (Fig. 5.9A), two lines of unequal size were presented on a screen.  The 

background was manipulated to give cues suggesting object 1 to be closer than object 2.  As a 
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result, most people would estimate object 2 to be taller than object 1.  In fact, object 2 was about 

5% shorter than object 1, as shown in the figure without the illusory background.  On each trial, 

people were instructed to pick up the taller or the shorter object.  When they were instructed to 

pick up the taller object, in about 90% of the trials they picked the shorter object, and similarly in 

about 90% of the trials people picked the taller object when they were instructed to pick the 

shorter one.  That is, the background clearly produced a strong illusion.   

 

As the subjects reached toward their selected object, the authors recorded the distance between 

the fingers.  By choosing which object to pick, the subjects expressed their belief about which 

object was taller.  By moving their fingers apart during the reach, they expressed their belief 

about the height of the object.  Interestingly, they found that the distance between the fingers was 

not affected by the illusion: the aperture was small when picking up the short object, despite the 

fact that subjects were picking up that object because they thought it was the taller of the two 

objects (Fig. 5.9B).  Similarly, the aperture was large when picking up the tall object, despite 

believing that it is the shorter object.  Control experiments in which the visual feedback from the 

object and hand were removed confirmed this result.  The motor commands that controlled the 

fingers in the task of picking up the object were not fooled by the visual cues that caused the 

illusion. 

 

The same people were then asked to use their fingers to show their estimate of the size of the 

objects.  With the illusory background in place, people were asked to estimate size of the shorter 

object.  To convey their decision regarding which object they believed to be shorter, they moved 

their hand 5 cm to the right of the object that they chose and then split their fingers apart to show 

their estimate of its size.  As before, people chose the tall object when they were instructed to 

estimate size of the shorter object.  However, now they had their fingers apart by a smaller 

amount than when they were asked to estimate the size of the taller object.  That is, in all cases, 

their perception of which object was smaller was affected by the illusory background.  However, 

when they were asked to pick up the object, they moved their fingers apart in a way that 

suggested they were not fooled by the visual cues.  In contrast, when they were asked to move 

their fingers apart so to estimate the size of the object, they were fooled.  Finally, when the 

illusory background was removed and the two objects were displayed on a normal background 

(middle plot, Fig. 5.9A), the grip sizes in the grasp trials and in estimation trials accurately 

reflected the relative object sizes. 

 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 26 

One way to make sense of this data is to imagine that when we respond to “pick up the object”, 

our actions are based on beliefs that are formed in parts of our brain that are distinct from beliefs 

that are used to respond to “show me the size of the object.” Perhaps these beliefs are distinct 

because the various brain regions focus on distinct parts of the available sensory information.  

Melvyn Goodale and David Milner (Goodale and Milner, 1992) have proposed that the pathway 

that carries visual information from the visual areas in the occipital lobe to the parietal lobe 

(dorsal pathway) and the pathway that carries information from the occipital lobe to the temporal 

lobe (ventral pathway) build fundamentally distinct estimates of the object properties in the visual 

scene.  In a sense, the actions that we perform based on the belief of the ventral pathway can be 

different than actions that we perform based on belief of the dorsal pathway.  They have argued 

that when we pick up the object, we are relying on internal models in the dorsal pathway.  This 

pathway is less affected by the background.  When we use our hand to show an estimate of the 

size of the object, we are relying on internal models in the ventral pathway.  This pathway is more 

affected by the background.   

 

Summary 

In Bayesian estimation, the objective is to transform a prior belief about a hidden state by taking 

into account an observation, forming a posterior belief.  The Kalman gain is a weighting of the 

difference between the predictions and observations, which when added to a prior, transforms it 

to the expected value of the posterior.  Here, we linked Bayesian estimation with the Kalman gain 

by showing that the posterior belief 
 ˆ
n n

x  is the expected value of  ( )np x y , and the 

uncertainty of our posterior belief 
 n n

P  is the variance of  ( )np x y .    

 

When our various sensory organs produce information that are temporally and spatially in 

agreement, we tend to believe that there was a single source that was responsible for our 

observations.  In this case, we combine the readings from the sensors to estimate the state of the 

source.  On the other hand, if our sensory measurements are temporally or spatially inconsistent, 

then we view the events as having disparate sources (Fig. 5.2A), and we do not combine the 

sources.  The probability of a common source depends on the temporal and spatial alignment of 

our various sensory measurements, and this probability describes how we will combine our 

various observations. 
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Prior beliefs do play a very strong role in how people interact with objects in everyday scenarios.  

We expect larger things to weigh more than smaller things.  We expect objects to fall at an 

acceleration of 1g.  When objects behave differently than we expected, we combine our 

observations with our prior beliefs in a manner that resembles Bayesian integration.  Our guesses 

about everyday things like how long someone is likely to live is also consistent with a Bayesian 

process that depends on a prior belief. 

 

The motor system appears to be rational in the sense that it estimates properties of objects by 

combining prior beliefs with measurements to form posterior beliefs in a Bayesian way.  

However, as the size-weight illusion demonstrates, our verbal estimate of an object‟s relative 

weight (i.e., whether it is heavier or lighter than another object) is not the same as the motor 

system‟s estimate.  The verbal estimate appears to rely on a separate internal model, one that 

changes much more slowly than the internal model that the motor system relies upon.  It is 

possible that our brain has multiple internal models that describe properties of a single object, and 

depending on how we are asked to interact with that object, we may rely on one or the other 

model.  The distinct pathways that carry visual information in the parietal and temporal lobes may 

be a factor in these distinct internal models.  This may explain the fact that visual cues that 

produce perceptual illusions about an object‟s properties often do not affect the motor system‟s 

abilities to interact with that object.   
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Figure Legends 

Figure 5.1.  People combine visual and auditory information if they believe that the two sensors 

were driven by a common spatial source.  A) Volunteers were placed in the center of a semi-

circle and heard an auditory stimulus followed by a light from one of the LEDs.  The onset of the 

two cues was separated in time by 200-800ms.  They then pointed to the location of the sound 

and pressed a switch if they thought that the light and sound came from the same location.  B) 

Probability of perceiving a common source as a function of the temporal and spatial disparity 

between the sound and visual cues. C) As the probability of a common source increased, the 

perceived location of sound ˆ
sx  was more strongly biased by the location of light vx . (From 

(Wallace et al., 2004) with permission.) 

 

Figure 5.2.  Estimating the state when there are two potential generative models.  A) The visual 

and sound sensor may be driven by a common source, or by two different sources. B) The 

probability of a common source, given the sensory measurements.  This plot is Eq. (5.23).  When 

the two measurements sy  and vy  are close to each other, the probability of a common source is 

nearly one.  When they are far from each other, the probability is close to zero.  C) As the spatial 

disparity between the two measurements increases, it is less likely that one is observing the 

consequences of a common source.  D) The estimate of the location of the sound 1x̂  when the 

sound is heard at position zero 0sy   but the light is observed at various displacements vy .  

When vy  and sy  are near each other, estimated location of the sound is affected by the observed 

location of the light. 

 

Figure 5.3.  The effect of prior beliefs during interactions with everyday objects.  A) Volunteers 

were asked to use their fingers to lift up a small, medium, or a large box.  The instrumented 

device measured grip and load forces.  The three boxes were the same weight.  B) People tended 

to produce the smaller grip and load forces for the smallest box, resulting in large lift velocities 

for the largest box.  (From (Gordon et al., 1991) with permission).  C) The ball starts with a non-

zero velocity from a given height and falls in 0g or 1g gravity.  In the 0g scenario (i.e., in space), 

the recently arrived astronaut will use a 1g internal model to predict the ball‟s trajectory, 

expecting it to arrive earlier (dashed line).  D) EMG activity from arm muscles of an astronaut in 

0g and 1g.  In 0g, the arm muscles activate sooner, suggesting that the astronaut expected the ball 

to arrive sooner than in reality. (From McIntyre et al. (2001) with permission.) 
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Figure 5.4. The prior statistics of everyday movements affect how people move a computer 

mouse to a given stimulus.  A) The distribution of movement amplitudes as measured over a 

multi-day period.  B) The distribution of movement directions, represented as an angle e .  This 

is the angle of a line connecting the start to the endpoint.  C) While some of the movements were 

straight, many of the movements had an initial angle i  that was somewhat different than e .  

The prior probability distribution of 
i  is shown.  D) The expected value of Eq. (5.37), 

i e eE        is plotted as the dashed line.  The measured value i e   is plotted as a solid line.  

(From Slijper et al. (2009) with permission.) 

 

Figure 5.5.  Modeling the data in Fig. 5.4.  A) A normal distribution for a random variable 

defined on a circle.  The mean of the distribution in Eq. (5.38) is at   and the variance increases 

with decreasing  .  For the example in Fig. 5.4, we assume that  e ip    is a normal with mean 

at i  and variance of a few degrees.  B) The data in Fig. 5.4C, i.e., the prior probability  ip  , 

approximated as sum of four normal distributions and a uniform distribution, as in Eq. 5.39.  C) 

 i ep   .  When the target is at 0.1 radians (about 6
o
), as indicated by the dashed line, the initial 

movement direction i  is likely to be toward 3
o
, which is the expected value of the posterior. 

 

Figure 5.6.  The problem of guessing the lifespan x  of a person (i.e., how many years someone 

will live), given that they are now t  years old.  A) Guesses from a group of students about 

lifespan, given current age.  B) The distribution of lifespan for a person born in America, i.e., 

 p x .  C) A simplified model of lifespan distribution, Eq. (5.40).  D) Age distribution of people 

alive today, as in Eq. (5.42).  E) The posterior probability  30p x t  ,   50p x t  , etc. The 

median for each distribution is marked by an arrow.  F) The median for the posterior distribution 

 p x t  as a function of current age t is plotted with the solid line.  This indicates the best guess 

regarding lifespan for a prior probability  p x  as shown in part C.  If the prior probability  p x  

is narrower than that shown in part C but has the same mean, the posterior (dashed line) is altered.  

 

Figure 5.7.  The size-weight illusion.  A) A generative model to estimate the weight of an object.  

vy  refers to observations from the visual sensors and gy  refers to observations from the golgi-
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tendon (force) sensors.  B) The prior belief regarding the relationship between weight, volume, 

and material that the object is made of.  The term c  describes the slope of the weight-volume 

relationship.  When we see two objects that look like are made of aluminum, we expect the larger 

one to weigh more.  C) Suppose that the larger object is actually made of wood, and weighs the 

same as the smaller object.  When we pick up the larger object, the measured weight is smaller 

than we expected.  A Bayesian estimator would believe that the larger object weighs somewhere 

in between what it predicted (heavy weight), and what is observed (light weight).  In all cases, 

this posterior estimate of weight should be larger than for the smaller object.  D) While people 

„feel‟ that the small object weighs more than the large object, the motor system in fact uses a 

greater amount of load force rate and grip force rate to pick up the larger object.  After about 8-10 

trials, the force rates for the larger object converge to the small object, consistent with the fact 

that the two objects weigh the same.  Despite this, people still „feel‟ that the smaller object 

weighs more, and this feeling lasts for up to hundreds of trials.  (From (Flanagan and Beltzner, 

2000), with permission.) 

 

Figure 5.8.  People were trained to pick up a set of objects that had an unusual property: the larger 

the volume, the smaller the weight.  A) Experimental set up.  People lifted and placed these 

objects hundreds of times a day for 12 or more days.  B) At the end of the first day, the 

experimenters gave the subjects a small and a large object and asked them to indicate their 

relative weight.  The two objects weighed the same, but the subjects reported that the smaller 

object weighed more.  By the 11
th
 day the illusion had reversed direction so that they now 

perceived the larger object to weigh slightly more.  C) On the first trial of the first day, people 

expected the small object to be light, and so they produced a small load force (early trial).  By the 

8
th
 trial, the load force had substantially increased. The black dashed vertical lines mark the time 

of initial peak in load-force rate, and the horizontal dashed lines mark the load force at the time of 

initial peak in load-force rate.  The gray vertical lines mark the time of liftoff.  D) Load force at 

the time of the initial peak in load-force rate for the small (filled circle, heavy object) and the 

medium (open circle, light object) objects.  Each point represents the average across participants, 

for 5 consecutive trials.  The motor system learned that the smaller object weighed more, and 

remembered this from day to day.  (From (Flanagan et al., 2008) with permission.) 

 

Figure 5.9.  Visual illusions affect perception but not action.  A) The background was 

manipulated so that line 2 appears to be longer than line 1.  In fact, line 1 is about 5% longer than 

line 2.  People were instructed to reach and pick up the shorter or the longer line.  B)  In about 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 31 

90% of the trials, people reached for the shorter line when instructed to pick up the longer line, 

and vice versa.  However, grasp size during the act of picking up the object was not fooled by the 

visual illusion (bars on the left).  In contrast, when subjects were asked to estimate the size of the 

objects, they were fooled by the visual illusion (bars on the right).  C) Control experiments 

without an illusory background.  (From (Ganel et al., 2008) with permission.) 
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