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9 Building generative models: structural learning, and 

identification of the learner 

 

Suppose that it is true that when the brain generates a motor command, it also predicts the sensory 

consequences.  The state estimation framework that we developed in the last few chapters 

suggests that when the actual sensory measurements arrive, the brain should combine what it 

predicted with what it measured to form an estimate of the state of the body (and whatever else 

contributes to things that it can sense).  By doing so, it can estimate this state better than if it were 

to rely on the sensors alone.  For example, we can estimate the location of a visual stimulus better 

if we can predict its position as well as see it, as compared to if we can only see it but not predict 

it (Vaziri et al., 2006).  However, this last statement is true only if the predictions that the brain 

makes are unbiased. 

 

Being an unbiased predictor is actually rather difficult, because our body and the objects we 

interact with have dynamics: inputs (motor commands) and outputs (sensory measurements) are 

not related via some static mapping.  Rather, dynamics implies that state of the system changes 

both as a function of time (passive dynamics), and as a function of the input (active dynamics).  

What’s more, the relationship between inputs and outputs can change (for example, muscles can 

fatigue), making it necessary for us to adjust our predictions.  We saw that one way our brain can 

learn to make better predictions is to assume a generative model that describes the relationship 

between inputs and outputs via some hidden states (for example, the fatigue state of the muscle 

can be one of these states).  The prediction errors can guide the process of estimating these hidden 

states, and thereby improving the predictions. 

 

The elephant in the room is the generative model itself.  Where does the brain get such a model?  

That is, how does our brain go about finding (presumably, learning) a model that has a structure 

or topology that can in principle represent the relationship between inputs (e.g., motor 

commands) and observations (sensory measurements)?  To accurately predict the sensory 

consequences of a motor command we need to be able to have a model that can approximate 

behavior of a dynamical system.  We are no longer talking about the hidden states of some 

generic model, but rather the topology of the model itself.  How do we discover this topology, or 

structure of the dynamical system that we wish to control?  The problem that our brain faces is 

one of system identification. 
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Consider the problem of learning to control motion of a ping pong paddle.  It would be useful if 

during practice, we learned a model that had a structure with hidden states that could also help us 

with learning control of a tennis racket.  This should be possible because the two objects are 

rigid-body inertial systems with dynamics that are similar in structure.  If we could somehow 

discover this structure during playing ping pong, it can vastly speed up our learning of tennis.  In 

this chapter, we will consider this problem of structural learning. 

 

How is structural learning different than the learning that we had considered in the last few 

chapters?  The problem of learning an internal model, a model that can accurately predict sensory 

consequence of movements, can be approached from two perspectives.  In the perspective that we 

had considered in the last few chapters (which we called the state-estimation perspective), we 

started with a specific model that could in principle represent the relationship between inputs and 

outputs, and then estimated the hidden states of this model based on our prediction errors.  We 

did not consider where such a model with these specific hidden states might come from.  In the 

perspective that we will consider here, the problem is to discover this structure from the 

relationships (input – outputs) that we observe.  Structural learning relies on the long-term history 

of the motor commands and their sensory consequences. 

 

9.1 Structure of dynamics for two example systems 

 

Suppose that you want to build a model that can help you predict motion of your arm.  Because 

you tend to hold different kinds of objects in your hand (and these objects change the arm’s 

dynamics), you want this model to be flexible enough so that it can readily predict motion in 

different scenarios.  Let us sketch what this model might look like. 

 

For simplicity, let us assume that the arm will move in the horizontal plane.  The relationship 

between torques at the shoulder 1  and elbow 2  and motion (joint angular position 1q  and 2q , 

and their derivatives) for the system shown in Fig. 9.1A is: 
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 (9.1) 
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[If you are interested in how to derive these equations, check out the Introduction to Dynamics 

lecture notes at: http://www.shadmehrlab.org/book/dynamics.pdf].  Eq. (9.1) is called inverse 

dynamics because it maps states to forces.  Eq. (9.1) is basically the familiar F mx  but written 

for the complicated system of Fig. 9.1, in coordinates of torques and joint rotations.  Forward 

dynamics is the map from forces to change in states.  In Eq. (9.1), the parameters 
ia  are constants 

that depend on the mass properties of the arm: 

 

2 2

1 1 1 1 2 1

2

2 2 2 2

3 2 1 2

a m x I m l

a m x I

a m l x

  

 



 (9.2) 

where 1m  and 2m  are masses of the upper arm and forearm, 1x  and 2x  are lengths of the 

vector that points to the center of the mass of each segment, 1I  and 2I  are the moments of inertia 

of each segment, and 1l  is the length of the upper arm.  We can rewrite Eq. (9.1) using vector 

notation:  

    , , ,H τ a q q c a q q  (9.3) 

Matrix H  represents inertia of the arm.  Inertia depends on parameter a  (some combination of 

mass and link lengths of the arm, as specified in Eq. 9.2), and position of the arm q .  Vector  c  

represents the centripetal and coriolis forces.  These force also depend on parameter a , as well as 

position and velocity of the arm.  A fundamental characteristic of Eq. (9.3) is that the torques that 

are due to acceleration are linearly separable from forces that are due to velocity.  A second 

important characteristic is that the parameter a  appears linearly, i.e., torques are a linear function 

of the parameter that might change if we were to hold different objects in our hand. 

 

To see this last point, let us consider what happens when you hold an object in your hand.  When 

you hold an object in your hand like a cup of coffee, the addition of this mass increases 2m , 2I , 

and 2x .  This means that the equations of motion for your arm when you are holding a cup has 

the same structure as when you are not holding the cup, with the only difference being in the 

parameters ia .  That is, holding a cup changes a , but nothing else. 

 

What happens when you hold a tennis racket?   Unlike the coffee cup, the racket shifts the center 

of mass off the forearm (Fig. 9.1B), resulting in the following equations of motion: 

http://www.shadmehrlab.org/book/dynamics.pdf
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 (9.4) 

where 
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and 
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 (9.6) 

Notice that switching from a cup (roughly a point mass) to a racket adds one parameter to our 

equation, but maintains the fact that forces that depend on acceleration and velocity remain 

separable.  Now if we were to switch from holding a tennis racket to a ping pong paddle (or any 

other rigid object), once again all that changes are the parameters ia , with no change in the 

structure of our relationship in Eq. (9.4).  In sum, we see that physics implies regularity in the 

relationship between motion and forces.  In particular, for our arm the forces that are produced 

due to acceleration and velocity are linearly separable.  Furthermore, regardless of the rigid object 

that we may hold in our hand, the forces remain linear in terms of parameters representing 

masses, lengths, etc.  

 

Now suppose that we knew this structure and wanted to use that information to estimate the 

parameters ia .  From Eq. (9.3), we have:  

 
     

 

1 1, , , ,

, , ,

H H

G

   



q a q c a q q a q τ

a q q τ
 (9.7) 

Eq. (9.7) is parameterized by a small number of unknowns, the elements ia  of the vector a .  

These are some of the hidden states of the system, which we can estimate from sensory 

observations.  To use our state estimation framework, we need to linearize the relationship 

between sensory observations and the states that we wish to estimate.  Let us label the states of 
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our system as the column vector  , ,x q q a .  Using Eq. (9.7), we can approximate q  around 

our current estimate x̂ :  

    
ˆ

ˆ ˆ,
dG

G
d

  
x

q x τ x x
x

 (9.8) 

and then write the state update equation as a linear function of current state  tx  and some 

constant terms: 

 

     

       

   
ˆ ˆ

ˆ ˆ ,

a

t t t

dG dG
t t t G

d d

t A t

    

        

   

x x

q q q

q q x x x τ
x x

a a ε

 (9.9) 

The terms on the second line of Eq. (9.9) are simply an expansion of velocity in terms of 

acceleration, i.e.,      t t t   q q q .  The last line in Eq. (9.9) is the state equation 

regarding the parameters a , which includes state noise.  The measurement equation is:  

     yt L t y x ε  (9.10)  

In Eq. (9.10), the matrix L  indicates the state variables that we can observe (typically position 

and velocity).  Having approximated our non-linear system with a linear equation, we can now 

use state estimation techniques to form an estimate x̂ , which includes the parameter that we are 

looking for â .   

 

The point is that there exists a model that has the appropriate structure for the dynamics that we 

wish to approximate.  In this model, the problem of representing dynamics of different objects 

that we might hold in our hand reduces to changes in the space spanned by the vector a .  Within 

this 4D space we can represent arm dynamics for a large range of objects. 

 

9.2 Evidence for learning a structural model 

 

Daniel Braun, Ad Aertsen, Daniel Wolpert, and Carsten Mehring (2009) argued that if during 

learning, people adjust not just the parameters of a default generative model, but learn a new one, 

then this new model should help them with learning of tasks that are also supported by the same 

structure (but perhaps with different parameter values).  The idea is that if you learn to ride one 

kind of bike (say a mountain bike), you should be able to rapidly learn to ride a race bike.  If you 

learn to play ping-pong, it should also help you learn tennis.  To test for this structure specific 
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facilitation, they exposed a group of subjects to a long period of visuomotor adaptation during 

reaching.  The caveat was that from trial-to-trial, the perturbations were uniformly distributed 

between -90
o
 and +90

o
.  If learning was merely an updating of parameter values for an existing 

model, then random perturbations should produce no sustained change in these parameter values 

(as the mean perturbation is zero).  After this period of random rotation perturbations, they 

presented subjects with a constant +60
o
 rotation.  They found that compared to naïve subjects, the 

people with the prior exposure to the random rotations were much better in learning the constant 

rotation (Fig. 2, random rotation group).  Next, they considered prior training that had random 

errors, but not of the rotation class.  In this group, the random errors were generated in a long set 

of trials in which the movements were transformed by a rotation, a shearing, and a scaling (a 

linear transformation).  This group performed significantly worse than the group that had prior 

training in the rotation perturbation (Fig. 2, random linear transform group). 

 

Therefore, the prior exposure to a rotation perturbation, despite being random and unlearnable, 

appeared to significantly improve learning rates for a member of the same perturbation class.  

This is consistent with the idea that during exposure to the rotation class of perturbations, people 

learned the structure of the perturbation, despite being unable to learn the specific parameter of 

that perturbation, and this structure aided their learning when they subsequently were exposed to 

a constant rotation. 

 

9.3 Non-uniqueness of the structure 

 

The problem that we have been discussing is closely related to the general system identification 

problem where inputs 
(1) (2), ,u u  are given to a system and outputs 

(1) (2), ,y y  are measured 

and the intention is to identify the dynamics of that system.  We do not know how to solve this 

problem in general, but we can solve it if we assume that the system that we are trying to identify 

has a linear structure.  Our objective here is to show the computations that are an essential part of 

finding the correct structure. 

 

We will assume that dynamics of the system that we are trying to model is of the form shown 

below, with hidden states x that are of unknown dimensionality, and with unknown matrices A, B, 

C, and D: 
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( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

      0,

      0,

n n n n

x x

n n n n

y y

A B N Q

C D N R

   

  

x x u ε ε

y x u ε ε
  

The objective is to find the structure, i.e., matrices A, B, C, and D, and noise properties Q and R, 

that describes the relationship between the sequence of inputs 
(1) (2), ,u u  that we gave to the 

system and the sequence of measurements 
(1) (2), ,y y  that we made from the system.  We will 

identify the generative model that produced the data that we observed. 

 

An elegant technique for identifying the system in Eq. (9.8) is via subspace analysis (van 

Overschee and De Moor, 1996).  Let us begin with the deterministic problem in which our system 

is without noise.  That is, let us suppose that the structure that we wish to identify has the 

following form: 

 

( 1) ( ) ( )

( ) ( ) ( )

n n n

n n n

A B

C D

  

 

x x u

y x u
 (9.11) 

We will provide a sequence of inputs 
(1) (2), ,u u  to this system, and measure outputs 

(1) (2), ,y y .  The parameters that we are searching for are A, B, C, D, and 
(1)

x  (the initial 

conditions).  However, there are an infinite number of parameters that can give us this exact 

input-output sequence.  That is, there is no unique solution to our problem.  To see this, from Eq. 

(9.11) we can write: 

 

(2) (3) ( 1) (1) (2) ( )

(1) (2) ( ) (1) (2) ( )

p p

p p

A B

C D

    
     
       

x x x x x x

y y y u u u
 (9.12) 

In Eq. (9.12), we have arranged the vectors and matrices to form new matrices.  For example, the 

matrix on the left side of Eq. (9.12) is composed of columns with elements that are specified by 

column vectors x  and y .  If we now multiply the state equation by an arbitrary but invertible 

matrix T, we have: 

 

(2) (3) ( 1) (1) (2) ( )

(1) (2) ( ) (1) (2) ( )

0 0

0 0

p p

p p

T T A B

I I C D

        
        
           

x x x x x x

y y y u u u
 (9.13) 

In Eq. (9.13), the matrix I is an identity matrix of appropriate size.  Simplifying Eq. (9.13) we 

have: 

 

(2) (3) ( 1) (1) (2) ( )

(1) (2) ( ) (1) (2) ( )

p p

p p

T T T TA TB

C D

    
     
       

x x x x x x

y y y u u u
 (9.14) 
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Now let us represent the right side of Eq. (9.14) in the same transformed space of the left side:  

 

(2) (3) (1) (2)1

(1) (2) (1) (2)

00

00

T T TA TB TT

C D II

       
        
           

x x x x

y y u u
 (9.15) 

Rearranging the above equation provides us with the crucial observation that the same input-

output data can be generated with very different parameters 
1TAT 

, TB , 
1CT 
, and D , and 

states Tx : 

 

(2) (3) ( 1) 1 (1) (2) ( )

(1) (2) ( ) 1 (1) (2) ( )

p p

p p

T T T TAT TB T T T

CT D

 



     
     
          

x x x x x x

y y y u u u
 (9.16) 

In comparing Eq. (9.16) with Eq. (9.12) we arrive at two important ideas:  first, given an input-

output sequence of data, it is not possible to estimate a unique set of parameters for Eq. (9.11) 

because there are an infinite number of equally valid candidates.  Therefore, we need to change 

our objective and settle for finding one set of parameters among this infinite set.  The second 

insight is that we can find a parameter set if we could estimate the state sequence x in any 

arbitrary transformed space Tx .  As we will show, when we pick this transformed space 

carefully, the problem lends itself to a closed form solution. 

 

9.4 Subspace method: intuitive ideas 

 

In Eq. (9.11), output y  is a linear function of the state x and input u.  If we could somehow 

remove the effects of the sequence of inputs 
(1) (2) ( ), , , pu u u  from the sequence of outputs 

(1) (2) ( ), , , py y y , we would be left with a sequence that is a linear transformation on the 

sequence of states, i.e., 
(1) (2) ( ), , , pC C Cx x x .  If we had a linear transformation of the sequence 

of states, our problem would be trivial, as we could then recover the parameters that produced 

those states from Eq. (9.16).  The subspace method is a geometric technique that precisely 

accomplishes this goal (van Overschee and De Moor, 1996). 

 

When we project vector a onto b, we get a vector in the direction of b with the magnitude of 

 cos a , where a  represents the length of vector a and   is the angle between a and b.  

Using the expression a b  to represent this projection, we have: 
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 (9.17) 

Now suppose that we have an arbitrary matrix A of size 3x3.   

 

111 12 13

21 22 23 2

31 32 33 3

T

T

T

a a a

A a a a

a a a

 
   
    
   
    

 

a

a

a

 (9.18) 

Each row of this matrix is a vector in 3D space.  If the row vectors are linearly independent 

(meaning that the rank of A is 3), then the row vectors can serve as a basis set to span 3D space.  

That is, we can construct any 3D vector as a linear combination of the row vectors of A.  Now 

suppose we have another matrix B in which the row vectors are also in 3D space but the rank is 2.   

 
11 12 13 1

21 22 23 2

T

T

b b b
B

b b b

  
   
    

b

b
 (9.19) 

In this case, the space spanned by the row vectors of B is a plane.  This plane defines a subspace 

of the space spanned by row vectors of A.  When we project matrix A onto B, we are projecting 

the row vectors of A onto the subspace spanned by the row vectors of B.  This is shown in Fig. 

3A.  To project vector a onto matrix B, we have: 

  
1

T TB B BB B


a a  (9.20) 

The result of Eq. (9.20) is a column vector.  To represent it as a row vector we transpose it:   

    
1T T T TB B BB B


a a  

To project matrix A onto matrix B we have: 

 

 

 

 

 
1

1

2

3

T

T T T

T

B

A B B AB BB B

B



 
 
  
 
 
  

a

a

a

 (9.21) 

An important problem for us is to find the space that is perpendicular to the space defined by a 

matrix.  The space spanned by the row vectors of B is simply a plane.  Therefore, the space 
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perpendicular to this plane is simply a line (Fig. 3B).  Let us use the term B  to refer to the space 

perpendicular to the row vectors of B.  Projecting A onto B  we have: 

  
1

T TA B A I B BB B


  
  

 
 (9.22) 

It then follows that 0B B  .   

 

Returning to our problem, in Eq. (9.11) we see that vector 
( )n

y  is a linear combination of vectors 

( )nx  and 
( )nu , which means that vectors 

( )nx  and 
( )nu  are the bases for vector 

( )n
y .  By 

projecting the vector 
( )n

y  onto a space perpendicular to 
( )nu , we will be left with a vector in the 

subspace spanned by 
( )nx .  We will not recover 

( )nx  as a result of this projection, but we will 

recover a vector proportional to 
( )nx .  As we noted in Eq. (9.16), our problem has no unique 

solution any ways, so we have no desire to recover 
( )nx .  All we need to do is recover a vector 

proportional to it.  If we do so, we can produce a generative model that precisely replicates the 

inputs and outputs of the system in question.   

 

9.5 Subspace analysis 

 

Our plan of attack is as follows.  Suppose we construct matrices U  and Y  so that we have a 

compact way to represent the history of the inputs that we gave and outputs that we measured.  

We know that each row of matrix Y  lives in the space spanned by the row vectors in X  (history 

of hidden states, which is unknown to us), and U  (history of inputs that we gave).  We will 

project Y  onto the subspace perpendicular to U , written as U 
.  By doing so, we will get rid of 

the contribution of U , leaving only the components of Y  that live in the subspace described by 

X .  Therefore, by projecting Y  onto U 
, we will end up with a new matrix that is precisely 

equal to CX .  Because C  is a constant matrix, we will in fact recover the history of the hidden 

states up to a constant ‘multiple’. 

 

The first step is to arrange the input and output data in what is called a Hankel matrix as follows: 
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(1) (2) ( )
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( ) ( 1) ( 1)
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j

i

i i i j

Y
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y y y

y y y

y y y

u u u

u u u

u u u

 (9.23) 

In these matrices, i j , i.e., number of rows is much smaller than number of columns.  If we 

now label the (unknown) state sequence as matrix X, 

 ( ) ( 1) ( 1)i i i j
iX    

 
x x x  (9.24) 

we see that by projecting the row vectors of Y onto the subspace spanned by U 
, we can recover 

matrix CX.  That is, we can recover the subspace spanned by the state vectors.  To show this, let 

us write the output matrix Y as a linear function of states and inputs:  

 

(1) (1) (2) (2)

(1) (1) (2) (2) (2) (3)

1
2 (1) (1) (2) (3) 2 (2) (2) (3) (4)

i

C D C D

CA CB D CA CB D
Y

CA CAB CB D CA CAB CB D

  
 
    

  
      
 
 

x u x u

x u u x u u

x u u u x u u u

  

We will now attempt to write the history of measurements 1 iY  as a linear function of history of 

states iX  and history of input 1 iU .  If we define matrices i  and iH  as follows: 

 

1

2 3

0 0 0

0 0

0

i

i

i

i i

C

CA

CA

D

CB D

CAB CB DH

CA B CA B CB D



 

 
 
  
 
 
  

 
 
 
 
 
 
 
 

 (9.25) 

then we can write: 

 11 1 i ii iY X H U    (9.26) 
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Eq. (9.26) represents a short-hand way of writing the relationship between the history of inputs, 

the history of hidden states, and the history of observations.  It is useful to use a similar notation 

to write the relationship between the history of states and the history of inputs.  To do so, we note 

the following:   

 

(2) (1) (1)

(3) 2 (1) (1) (2)

(4) 3 (1) 2 (1) (2) (3)

( 1) (1) 1 (1) 2 (2) ( )i i i i i

A B

A AB B

A A B AB B

A A B A B B  

 

  

   

    

x x u

x x u u

x x u u u

x x u u u

 (9.27) 

If we now define matrix i  as follows:  

 1 2i i
i A B A B B   

 
 (9.28) 

we can write the state update equation as: 

 1 1 1
i

i i iX A X U     (9.29) 

We begin our campaign with Eq. (9.26).  Re-arranging this equation we have: 

 * *
1 1 1i i ii iX Y H U    (9.30) 

The superscript * in Eq. (9.30) indicates a pseudo-inverse.  Inserting the above representation into 

Eq. (9.29) we have: 

 * *
1 1 1 1

i i
i i i i ii i iX A Y A H U U        (9.31) 

In the above equation, we know 1 iY  and 1 iU  but nothing else.  Let us re-write the above equation 

in terms of things that we know and things that we do not know.  If we label things that we know 

with matrix 1 iW  as follows:  

 
1

1
1

i

i
i

U
W

Y

 
 
 
 

 (9.32) 

and then define matrix iL  as follows: 

 * *i i
i i i i iL A H A     

 
 (9.33) 

we can now write the history of the states as a linear function of things that we know: 

 1 1i i iX LW   (9.34) 

From Eq. (9.26) we have: 

 112 12 i i ii i i iY X H U     (9.35) 
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Inserting Eq. (9.34) into above we have: 

 12 1 12i i ii i i i iY LW H U     (9.36) 

Now we project our history of observations 12i iY   onto the subspace perpendicular to our history 

of inputs 
12i i

U


: 

 12 1 1212 12 12i i ii i i i ii i i i i i
Y U LW U H U U  
   

    (9.37) 

As the second term on the right side of Eq. (9.37) is zero, we have: 

 12 112 12i ii i ii i i i
Y U LW U 
  

   (9.38) 

Note that in the above equations, we know everything except i iL .  Let us re-arrange this 

equation and put our known quantities on the right side and the unknowns on the left side: 

 
*

12 112 12i i i i ii i i i
L Y U W U 

  

   
 

      
 (9.39) 

Now if we simply multiply both side with another known quantity 1 iW , we have: 

 
*

1 12 1 112 12i i i i i i ii i i i
L W Y U W U W 

  

   
 

      
 (9.40) 

The left side of the above equation can be simplified via Eq. (9.34): 

 
*

1 12 1 112 12i i i i i ii i i i
X Y U W U W 

   

   
 

      
 (9.41) 

The right side of Eq. (9.41) includes quantities that are all known to us, and so we can compute 

them.  Let us label this matrix as 1iO  : 

 
*

1 12 1 112 12i i i i ii i i i
O Y U W U W 

   

   

      

 (9.42) 

The term on the left side of Eq. (9.41) is simply a linear transformation of the states that we are 

looking for: 

 ( 1) ( 2) ( )
1 1

1

i i i j
i i i

i

C

CA
O X

CA

  
 



 
 
     
   
 
  

x x x  (9.43) 

At this point we can compute the matrix 1iO  .  Our final step is to factor it so that we recover a 

matrix 1
ˆ

iX  .  Our estimate 1
ˆ

iX   will not be equal to 1iX  , but it will be related to it by a linear 

transformation.  If we do a singular value decomposition of matrix 1iO  , we have:  
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1

1 1

2 2 (1) (2) ( )

0 0

0 0

0 0

i

j

i n

O PSV

P s

P s

P s

 

   
   
     

    
   
   

v v v
 (9.44) 

In this decomposition, the dimensions of matrix iP  will be the same as matrix C , which is the 

same as the dimensions of matrices CA , 
2CA , etc.  The dimensions of the matrix S  is nxn, 

where n is the dimension of the state vector x .   The crucial idea is that the number of singular 

values associated with matrix 1iO   is the size of the state vector that we are seeking.  While we 

cannot recover the state matrix 1iX  , we can recover something that is a linear transformation of 

it.  To see this, say that matrix T  is an arbitrary and unknown invertible matrix of appropriate 

size.  The singular value decomposition of 1iO   can be written as: 

 1/ 2 1 1/ 2
1i iX PSV PS TT S V
    (9.45) 

In Eq. (9.45), the term 1/ 2S  is a the ‘square-root’ of the matrix S , which in this case is simply a 

matrix with the square root of each diagonal term.  The state matrix 1iX   that we are looking for 

is related to the singular value decomposition matrices as follows:  

 1 1/ 2
1iX T S V
   (9.46) 

We do not know matrix T .  So if we simply set our state estimate as:  

 1/ 2
1

ˆ
iX S V   (9.47) 

then our state estimate will be a linear transformation on the actual states:  

 1 1
ˆ

i iX TX   (9.48) 

Having found an estimate of the hidden states 1
ˆ

iX  , the problem of finding the parameters of the 

system (matrices A, B, C, D) is now trivial.  If we define the matrix V  without its last column as:  

 (1) (2) ( 1)jV  
 
v v v  (9.49) 

and the matrix V  without its first column as:  

 (2) (3) ( )jV  
 
v v v  (9.50) 

and similarly for state estimates as: 

 

1/ 2
2

1/ 2
1

ˆ  

ˆ  

i

i

X S V

X S V








 (9.51) 
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and similarly for input and output matrices as: 

 

( 1) ( 2) ( 1)
1

( 1) ( 2) ( 1)
1

i i j i
i

i i j i
i

Y

U

   


   


 
 

 
 

y y y

u u u

 (9.52) 

we will have a simple linear equation: 

 
2 1

1 1

ˆ ˆˆ ˆ

ˆ ˆ

i i

i i

X XA B

C DY U

 

 

    
     
        

 (9.53) 

to solve for the unknown parameters A, B, C, D: 

 

*

2 1

1 1

ˆ ˆˆ ˆ

ˆ ˆ

i i

i i

X XA B

C D Y U

 

 

    
    
         

 (9.54) 

We can use the following to find the initial state: 

 (1) ( 1) 1 (1) 2 (2) ( )ˆ ˆ ˆ ˆˆ ˆ ˆˆ ˆi i i iA A B A B A B        x x u u u  (9.55) 

Now the important point to note is that while our system with parameters Â , B̂ , Ĉ , and D̂  will 

be indistinguishable from the original system with parameters A, B, C, D (in terms of input-output 

behavior), our estimates are not the same value as the system parameters.  They are related by an 

unknown linear transformation as defined by matrix T :  

 

1

1

ˆ ˆ

ˆ ˆ

A B TAT TB

C D CT D





  
  
     

 (9.56) 

In summary, the problem of structural learning is that of describing a dynamical system that in 

principle can accurately predict the sensory consequences of motor commands, i.e., learn the 

structure of a forward model.  Even for a linear system without noise, this problem has no unique 

solution.  However, we can find one particular solution by projecting the history of our 

measurements upon a subspace that is perpendicular to the space defined by the history of our 

motor commands.  Therefore, a fundamental part of structuring learning is to keep a history of the 

motor commands so that one can build this subspace.  Once the measurements (sensory 

observations) are projected onto this subspace, the result is a linear transformation of the hidden 

states of the system that we wish to model. 

 

9.6 Examples 

 

Consider a system with the following dynamics:  
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( 1) ( ) ( )

( ) ( )

(1)

0.75 0.3

0.5

0.0

n n n

n n

x x u

y x

x

  





 (9.57) 

Suppose that we give a sequence of square-wave inputs  (1) (2) ( ), , , pu u u  to this system, as 

shown in the top row of Fig. 9.4A, and observe the sequence of outputs  (1) (2) ( ), , , py y y , as 

shown in the bottom row of Fig. 9.4A.  From this input/output data, we form the 1 iY  and 1 iU  

matrices in Eq. (9.23) (in our example here, we set 4i  ), and then the matrix 1iO   from Eq. 

(9.42).  The singular value decomposition of this matrix provides a single singular value, which 

specifies that the size of the state vector is 1, and the following estimate of the structure for this 

system:  

 (1)
ˆ ˆ0.75 0.09

ˆ      0
ˆ ˆ1.7 0

A B
x

C D

  


  
 (9.58) 

Notice that we did not recover the system parameters.  Despite this, the system with the 

parameters in Eq. (9.58) is identical to the one in Eq. (9.57).  For example, if we give the input 

 (1) (2) ( ), , , pu u u  to our system with parameters in Eq. (9.58), we find  
2

( ) ( )ˆ 0n n

n

y y  . 

 

The system in Eq. (9.57) was relatively simple in that there was only a single state and our 

measurement on each trial was proportional to that state.  To make our problem more interesting, 

suppose that we have a system with many states, and that we can only observe the sum of these 

states: 

  

 

( 1) ( ) ( )

( ) ( )

(1)

0.9 0 0 0.3

0 0.5 0 0.5

0 0 0.2 0.8

1 1 1

0.1 0.1 0

n n n

n n

T

u

y



   
   

 
   
      



 

x x

x

x

 (9.59) 

The inputs to this system and the outputs are shown in Fig. (9.4B).  Superficially, the response in 

Fig. (9.4B) is similar to that in Fig. (9.4A), except perhaps for a slower time-constant.  However, 

when we run the algorithm (we set 5i   in Eq. 9.23), we see that the matrix 1iO   has 3 singular 

values, and we arrive at the following estimate for the structure of the system:  
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(1)

0.302

ˆ 0.155

0ˆ

4.53 1.47 0.0

0.011

ˆ         0.0354

0.0

0.659 0.303 0.014

ˆ 0.2

.063
37

60 0.549 0.134

0.070 0.191 0.393

07
5

ˆ

3

A

C

B

D

   
   

  







 
  

         



         
  










x  (9.60) 

In Eq. (9.60), Â  is a 3x3 matrix, B̂  is 3x1, Ĉ  is 1x3, and D̂  is a scalar.  Our estimate produces 

an exact match to the measured data:  
2

( ) ( )ˆ 0n n

n

y y  .   

 

Finally, let us consider a system that is driven by random inputs 
( )nu  rather than a square wave.  

An example is shown in Fig. (9.4C).  The dynamics of this system are as follows:  

  

 

( 1) ( ) ( )

( ) ( )

(1)

0.9 0 0.1

0 0.5 0.3

1 1

0.1 0.1

k k k

k k

T

u

y

    
    
   



 

x x

x

x

 (9.61) 

Subspace analysis uncovers two singular values, and provides the following estimate for the 

structure of this system:  

 (1)

ˆ
1.46 0.

0.657 0.241
ˆ 0.028

ˆ         
0

319
ˆ

0

0.

0.158 0

267
ˆ

0.02
.1

97
2

. 3
7

4
D

A B

C

 
    

         





  







x  (9.62) 

and the resulting output of the estimated system exactly matches the measured data. 

 

The systems that we arrived at in Eq. (9.60) and (9.62) may produce the same outputs for a 

sequence of inputs as that in Eq. (9.59) and (9.61), but they are much harder to interpret.  For 

example, the system in Eq. (9.59) has three states, each that decays with a different rate, with no 

interaction between these states (i.e., the matrix A  is diagonal).  Furthermore, the observation y  

is simply the sum of these states, in which the states are weighted equally.  In contrast, our 

estimate in Eq. (9.60) is a system with rather complicated interactions between the states, with 

observation y  that weights the states unequally.  It seems hard to believe that these two systems 

are really the same.  To show that they are, let us find the matrix T  in Eq. (9.56) that transforms 

one set of parameters into the other.  The key point is the relationship between A  and Â :  

 1Â TAT  (9.63) 
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In our original system in Eq. (9.59), the matrix A  was diagonal.  How do we factor Â  into the 

form shown in Eq. (9.61) such that the matrix A  is diagonal?  We proceed by finding the eigen 

vectors and eigen values of matrix Â .  Suppose that Â  has eigen values 1 2, , , k   , and eigen 

vectors:  

 

11 21

1 2

1 2

, ,

k k

q q

q q

   
   

 
   
      

q q  (9.64) 

Let us arrange the eigen vectors and values in matrix form:  

 

 1 2

1

2

0 0

0 0

0 0

k

k

Q

L









 
 
 
 
 
  

q q q

 (9.65) 

Multiplying the matrix Â  by its eigen vectors gives us:  

 

 

1 2

1 1 2 2

ˆ ˆ ˆ ˆ
k

k k

AQ A A A

  

 
 



q q q

q q q
 (9.66) 

We can factor the matrix ÂQ  as follows:  

 

1 11 2 21 1

1 1 2 2

1
11 21 1

2

1 2

ˆ

0 0

0 0

0 0

k k

k k k kk

k

k k kk
k

q q q

AQ

q q q

q q q

q q q

  

  







 
 


 
  

 
   
   
   
    

  

 (9.67) 

which we can summarize as: 

 ÂQ QL  (9.68) 

We finally arrive at a factored form of Â  in terms of a diagonal matrix L : 

 1Â QLQ  (9.69) 

So if we set T Q , where Q  is the matrix containing the eigen vectors of Â , we can transform 

our estimated parameter Â  to a form that is diagonal, producing another equivalent system to the 

one that originally produced the input/output data.  Note that once again we cannot find the 
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parameters of the original system, but we can find parameters that make a system that is 

indistinguishable from the original one from the point of view of dynamics. 

 

9.7 Estimating the noise 

 

In the case that our system has noise, in the form:  

 
 

 

( 1) ( ) ( ) ( )

( ) ( ) ( ) ( )

      0,

      0,

n n n n

x x

n n n n

y y

A B N Q

C D N R

   

  

x x u ε ε

y x u ε ε
 (9.70)  

the key step of determining the size of the hidden states by examining the number of singular 

values in 1iO   will need to be slightly modified.  In principle, the number of singular values will 

be equal to i  in Eq. (9.23).  That is, once the system has noise, we can no longer identify with 

absolute certainty the size of the hidden state vector.  In practice, the singular values need to be 

examined and hopefully most will be rather small and can be disregarded.  Once the parameters 

Â , B̂ , Ĉ , and D̂  are estimated, the noise variance Q  and R  can be computed from the 

residuals in the fit.  If we define the residual in the estimate of state as in Eq. (9.71), then state 

noise is the variance of this estimate: 

 
     

( ) ( ) ( 1) ( 1)ˆ ˆˆ ˆn n n n

T

A B

Q E E E

   

   
  

x x x u

x x x x
 (9.71) 

Similarly, measurement noise is the variance of the residual in the estimate of output:  

 
     

( ) ( ) ( )ˆn n n

T
R E E E

 

   
  

y y y

y y y y
 (9.72) 

 

9.8 Identifying the structure of the learner 

 

There is a practical application for the framework that we just developed: we can use it to model 

the learner.  For example, say that we have collected some data from a subject during some 

behavioral task in which she made movements and adapted to a perturbation.  We imagine that 

our subject has a state on each trial and based on this state programs a motor command (which we 

can record based on their movements).  As a consequence of their motor command, our subject 

makes an observation (e.g., the limb did not move in the predicted direction), and then learns 

from the resulting prediction error.  Our data set consists of a series of trials in which we have 
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given perturbations, and a series of movements (or predictions) that the subject has made.  We 

can represent the learner as a dynamical system in which her states change as a consequence of 

her prediction errors.  We are interested in quantifying the timescales of these states, and 

sensitivity of each state to a prediction error. 

 

Let us apply this idea to a simple task: saccade adaptation.  A subject is provided with a target, 

makes a saccade to that target, and during that saccade the target is moved to a new location.  As 

the saccade terminates, the subject observes that the target is not on the fovea, that is, there is a 

prediction error.  Trial after trial, the subject learns to alter the magnitude of the saccade to 

minimize this error.  Suppose that the state of the learner can be represented with vector x  (of 

unknown dimensionality).  The state is affected by three factors: visual error y  at end of a 

saccade, passage of time between trials, and Gaussian noise xε .  If we assume that the inter-trial 

interval is constant, then we can write the change in states of the learner as: 

 
     1n n n

xA y

  x x b ε  (9.73) 

In this equation, the matrix A  specifies how the states will change from trial n to n+1 because of 

passage of time, and the vector b specifies how the states will change because of the error 

observed on trial n.  We cannot directly observe the states, but can measure saccade amplitude on 

trial n as 
( )ny .  Let us assume that saccade amplitude 

( )ny  is affected by target location 
( )np , 

some inherent bias that the subject may have by , the state of the subject 
( )nx , plus noise y  

inherent in the execution of the movement.  This is written as: 

 
     n n nT

b yy p y    c x  (9.74) 

In Eq. (9.74), the vector c specifies the relative weight of each state in influencing the saccade 

amplitude.   

 

Like any system identification problem, we want to give ‘inputs’ to our learner and then measure 

her behavior.  These inputs are in the form of a perturbation, i.e., we will move the target 
( )np  by 

amount 
( )nu  during the saccade, so that when the eye movement completes, there will be some 

endpoint errors.  The error on that trial will be: 

 

( ) ( ) ( ) ( )

( ) ( )

n n n n

b

n T n

y

y p u y y

u c 

   

  x
 (9.75) 

Inserting Eq. (9.75) into Eq. (9.73) produces our state space model of the saccade adaptation task: 
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1 ( )         0,

                          0,

n nT n

y x x

n n nT

b y y

A u N Q

y p y N r



 


    

   

x bc x b ε ε

c x
 (9.76) 

In a typical experiment, for each subject we give a sequence of targets 
( )np  and on each trial 

displace that target during the saccade by amount 
( )nu .  We then measure the saccade amplitude 

( )ny .  Our objective is to find the structure of the learner, i.e., parameters A , b , and c  in Eq. 

(9.76). 

 

Vincent Ethier, David Zee, and Shadmehr (Ethier et al., 2008) performed a saccade adaptation 

experiment and then used subspace analysis to estimate the structure of the learner from trial-to-

trial movement data.  In the experiment, they considered two kinds of trials: perturbation trials in 

which the target of the saccade was moved during the saccade, and error-clamp trials in which 

errors were eliminated by moving the target so that it was located on the fovea at the endpoint of 

the saccade.  In adaptation trials, 
( )nu  was the intra-saccadic target displacement.  In error-clamp 

trials  

 
( ) ( ) ( )n n n

bu y p y    (9.77) 

The paradigm is summarized in Fig. 9.5A.  The experiment began with error-clamp trials, was 

followed by a gain-down session, followed by a gain-up session (‘extinction’), and finally error-

clamp trials.  The objective was to unmask the multiple timescales of memory and test for 

‘spontaneous recovery’.  In summary, the mathematical problem consisted in finding the 

parameters of the dynamical system in Eq. (9.76), given a sequence of inputs 
( )nu  (target 

displacements) and measurements 
( )ny  (saccade amplitudes). 

 

The averaged saccade amplitudes produced by a group of subjects is shown in Fig. 9.5B.  This 

averaged data was analyzed using subspace methods and parameters for the resulting system were 

identified.  Using these parameters, a state estimation procedure (Kalman filter) was then used to 

estimate the two hidden states of the system.  The model’s performance is shown in Fig. 9.5C and 

the estimated states of the system (the fast and slow states) are plotted in Fig. 9.5D.  The fast state 

shows rapid adaptation at set starts, and forgetting at set breaks.  Of interest is the fact that the 

slow state shows no forgetting at set breaks, and little or no unlearning during extinction.   
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A particularly useful way to visualize the parameters of the model is one in which the states are 

assumed to be independent, i.e., the transition matrix 
TAbc  is diagonal.  This would produce a 

time constant of forgetting for each state.  Suppose that we represent the state equation in 

continuous time:  

      c c xt A t u t   x x b  (9.78) 

where  1 T

cA A I   bc , 
1

c

 b b , and   is the inter-trial interval, set to 1250ms.   If 

we represent vector x  as ,
T

f sx x   , i.e., the fast and slow states, then s  and f  refer to the 

time constant of the solution to this differential equation.  The fit to the group data produced a 

decay time constant of 28f  sec for the fast state and 7s  min for the slow state.  Error 

sensitivity of the fast state was 18 times larger for the fast state, i.e., 18f sb b  .  Finally, 

saccade amplitudes relied almost twice as much on the slow than the fast state, i.e., 1.7s fc c  .   

 

9.9 Expectation Maximization (EM) 

 

Among people who study control theory, the subspace approach is well known and often used for 

system identification.  In the machine learning community, however, this approach is less used.  

Instead, an algorithm called Expectation Maximization (EM) (Shumway and Stoffer, 1982) is 

often employed for solving the problem of system identification (Ghahramani and Hinton, 1996).  

Here, we briefly introduce EM as it has been used effectively to represent the human learner in 

terms of a linear state-space model (Cheng and Sabes, 2006). 

 

Given some sequence of inputs 
(1) (2), ,u u  and a sequence of measurements 

(1) (2), ,y y , our 

objective is to find the structure (matrices A, B, C,  etc.) of the linear system:  

 
 

 

( 1) ( ) ( ) ( )

( ) ( ) ( )

      0,

                  0,

n n n n

x x

n n n

y y

A B N Q

C N R

   

 

x x u ε ε

y x ε ε
 (9.79)  

Unlike subspace analysis, here we will assume that we know the dimensionality of the hidden 

states x.  There are two kinds of unknowns in our model: the structural quantities 

    0 0 0 0
ˆ, , , , , ,A B C Q R P  x  (where the last two terms are the prior estimate of state and its 

variance), and the hidden states 
(1) (2)ˆ ˆ, ,x x .  If we knew the structure  , then finding the hidden 

states would be easy (via the Kalman filter, for example).  If we knew the hidden states, then 
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finding the structural quantities would be easy (via maximizing a likelihood measure of the 

observe data).  EM proceeds by performing these two steps in sequence, and repeats until the 

parameters converge.   

 

The starting point in EM is to describe the expected complete log-likelihood.  In our problem, this 

is the joint probability of the hidden states    (1) (2) ( )

1
, , ,

N Nx x x x  and the observed 

quantities    (1) (2) ( )

1
, , ,

N Ny y y y , given the inputs 
(1) (2), ,u u  and structural parameters 

 .  The expected complete log-likelihood that we are after is defined as: 

       log , ,E p  
 

x y u  (9.80) 

In the E step, we fix   and try to maximize the expected complete log-likelihood by setting 

expected value of our states  
1

N
x  to their posterior probabilities (done via a Kalman filter).  In 

the M step, we fix the expected value of our states  
1

N
x  and try to maximize the expected 

complete log-likelihood by estimating the parameters  .   

 

To compute the expected complete log-likelihood, let us start with the following equality:  

      (0) (1) (1) (0) (1) (1) (0) (0) (1) (0) (0), , , , ,p p px x y u y x x u x x u  (9.81) 

Using Eq. (9.79), the above equation can be simplified to:  

        (0) (1) (1) (0) (1) (1) (1) (0) (0) (0), , ,p p p px x y u y x x x u x  (9.82) 

Similarly, we have:  

 

           
         

     
   

     

2 1 2 1(0) (1) (2) (1) (2) (1) (0) (1) (2)

0 0 0 0

2 1 2 1(2) (1) (1)

0 0 0 0

1 1(2) (1) (0) (1) (0)

0 0

(2) (2) (1) (1)

(2) (1) (1) (1) (0) (0) (0)

, , , , , , ,

, , ,

, , ,

, ,

p p p

p p

p p

p p

p p p











x x x y y u u y y x u x u

y y x u y x u

x x x u x x u

y x y x

x x u x x u x

 (9.83) 

So we can conclude that:  

             ( ) ( ) ( ) ( 1) ( 1) (0)

0 1 1
1 1

, , ,
N N

N N N n n n n n

n n

p p p p  

 

   
    
   
 x y u y x x x u x  (9.84) 
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In Eq. (9.84), we have the following normal distributions:  

 
   

   

( ) ( ) ( )

( 1) ( ) ( ) ( ) ( )

,

, ,

n n n

n n n n n

p N C R

p N A B Q



 

y x x

x x u x u
 (9.85) 

Next, we find the log of the expression in Eq. (9.84).  This is our complete log-likelihood:  

 

          

   

   

( ) ( ) 1 ( ) ( )

0 1 1
1

( ) ( 1) ( 1) 1 ( ) ( 1) ( 1)

1

(0) (0) 1 (0) (0)

0

0

1
log , ,

2

1

2

1
ˆ ˆ

2

1
log log log const

2 2 2

N
TN N N n n n n

n

N
T

n n n n n n

n

T

p C R C

A B Q A B

P

N N
R Q P

 



    





   

    

  

   





x y u y x y x

x x u x x u

x x x x

(9.86) 

In the E step, we fix the parameters   and find the state estimate  
1

ˆ
N

x  that maximizes the 

expected value of the quantity in Eq. (9.86).  The state estimate is typically the Kalman estimate, 

or better yet the estimate that depends both on the past and future observations of y: this is called 

smoothing (Anderson and Moore, 1979), in which 

  ( ) ( )

1
ˆ

Nn nE  
 

x x y  (9.87) 

In the M step, we fix the state estimate  
1

ˆ
N

x , and find the parameters   that maximize the 

complete log-likelihood.  To do so, we find the derivative of the expected value of the quantity in 

Eq. (9.86) with respect to parameters  , set it to zero, and then use the derivative to find the 

estimate of these parameters.  To show how to do this, let us label the complete log-likelihood 

expression in Eq. (9.86) by the short hand cl .  We have:   

 

1 ( ) ( ) 1 ( ) ( )
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 (9.88) 

In Eq. (9.88), the matrix 
( )nP  refers to the variance of the state estimate, 

 ( ) ( ) ( )

1

Nn n n TP E  
 
x x y .  Solving for C, we have:  
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 y x  (9.89) 
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To find a new estimate for R, it is convenient to find the derivative of the log-likelihood with 

respect to 
1R
:  

 
( ) ( ) ( ) ( ) ( ) ( )

1
1

1 1

2 2 2

N
n n T n n T T n n Tc

n

dl N
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    x y x x y y  (9.90) 

Setting the above quantity to zero gives us the new estimate for R:  
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For parameter A we have:  
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The new estimate for A becomes:  
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For parameter B we have:  
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The new estimate for B becomes:  
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Finally, for parameter Q we have:  
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 (9.96) 

The new estimate for Q becomes:  
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Summary 

 

In building a model that can predict things, one can begin with some generic structure and then 

optimally fit the parameters of this structure to the observed data.  This is the problem of state 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 26 

estimation, something that we considered in the last few chapters.  However, a generic structure 

often has the disadvantage of being poorly suited to the task at hand, resulting in poor 

generalization, and slow learning.  It would be useful to build a new structure or model topology 

that is specific to the data that one observes.  This would give one the capability to learn to ride a 

small bike at childhood, and then generalize to larger bikes as one grows older. 

 

The mathematical problem is one of finding the structure of a stochastic dynamical system that 

can, in principle, be given a sequence of inputs and produce the sequence of outputs that match 

that observed from the real system.  For linear stochastic systems, a closed form solution exists 

and is called subspace analysis.  This approach relies on the fact that each observation 
( )n

y  is a 

linear combination of states 
( )nx  and inputs 

( )nu , which means that vectors 
( )nx  and 

( )nu  are the 

bases for vector 
( )n

y .  By projecting the vector 
( )n

y  onto a vector perpendicular to 
( )nu , one is 

left with a vector in the subspace spanned by 
( )nx  and is proportional to 

( )nx .  Recovery of this 

subspace in which the hidden states 
( )nx  reside allows one to find the structure of the dynamical 

system. 

 

An application of this formalism is in modeling biological system and how they learn.  The idea 

is to give some inputs to the learner, and observe their behavior, and then use that input-output 

relationship to discover the structure of the learner.  An example of this is in saccade adaptation, 

in which it was found that in a typical single session experiment, the learner is well represented 

via a fast system that decays with a time constant of about 25 seconds, and is highly sensitive to 

errors, and a slow system that shows very little if any decay, and is also an order of magnitude 

less sensitive to error. 

 

An alternate approach to estimating the structure of a linear dynamical system is via Expectation 

Maximization.  In this procedure, one begins by assuming a structure and then finds the hidden 

states.  Next, one uses these estimates of the hidden states and finds the structural quantities.   
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Figure Legends 

 

Figure 9.1.  A schematic of an arm moving in the horizontal plane with and without a tennis 

racquet.  The circled plus signs indicate center of mass of each link of the arm. 

 

Figure 9.2.  Subjects trained in a long sequence of trials in which a rotation was imposed on the 

motion of a cursor.  The trial-to-trial distribution of the rotation perturbation was random.  After 

this period of training, performance was measured in a sequence of trials in which the 

perturbation was a constant +60
o
 rotation.  Their data is shown in the above plot in the Random 

rotation group.  Performance was significantly better than a naïve group who had prior training in 

trials for which there were no perturbations.  Performance was also better than another group in 

which prior training was in a perturbation that had rotation, shearing, and scaling (labeled as 

Random linear transform).  (Figure from (Braun et al., 2009), with permission.) 

 

Figure 9.3.  Projecting a vector onto the subspace spanned by the row vectors of a matrix.  A)  

When we project matrix A onto B, we are projecting the row vectors of A (Eq. 9.18) onto the 

subspace spanned by the row vectors of B (Eq. 9.19).  B)  We use the term B  to define the 

space that is perpendicular to the space spanned by row vectors of B.  Therefore, B  is simply a 

line in this example. 

 

Figure 9.4.  Dynamics of some sample systems.  A) System of Eq. (9.57), driven by inputs 

 (1) (2) ( ), , , pu u u  that are shown and producing outputs  (1) (2) ( ), , , py y y .  B) System of 

Eq. (9.59) driven by inputs that are shown and producing the plotted outputs.  C) System of Eq. 

(9.62) driven by random noise inputs that are shown and producing the plotted outputs. 

 

Figure 9.5.  Identifying the structure of learners in a saccade adaptation experiment.  A) 

Experimental protocol.  The experiment began with error-clamp trials, was followed by a gain-

down session, followed by a gain-up session (‘extinction’), and finally error-clamp trials.  B) The 

averaged saccade amplitudes produced by a group of subjects.  C) Model result.  Subspace 

analysis was used to identify the structure of the system, and then a Kalman filter was used to 

give a running estimate of the two hidden states.  D) Estimate of the two hidden states.  E) The 

time constants of the two states (forgetting rates), the error sensitivity of the two states, and the 
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contribution of the two states to output.  The values for fits to individual subjects are shown, as is 

the mean of that distribution.  (From (Ethier et al., 2008), with permission.) 

 

 



Biological Learning and Control: Shadmehr and Mussa-Ivaldi 29 

 

Reference List 

 

Anderson BDO, Moore JB (1979) Optimal Filtering. Englewood Cliffs, N.J.: Prentice-Hall. 

Braun DA, Aertsen A, Wolpert DM, Mehring C (2009) Motor task variation induces structural 

learning. Curr Biol 19:352-357. 

Cheng S, Sabes PN (2006) Modeling sensorimotor learning with linear dynamical systems. 

Neural Comput 18:760-793. 

Ethier V, Zee DS, Shadmehr R (2008) Spontaneous recovery of motor memory during saccade 

adaptation. J Neurophysiol 99:2577-2583. 

Ghahramani Z, Hinton GE (1996) Parameter estimation for linear dynamical systems. In: 

Technical Report CRG-TR-96-2 Univ. Toronto. 

Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the 

EM algorithm. J Time Series Analysis 3:253-264. 

van Overschee P, De Moor B (1996) Subspace identification for linear systems. Boston: Kluwer 

Academic. 

Vaziri S, Diedrichsen J, Shadmehr R (2006) Why does the brain predict sensory consequences of 

oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J 

Neurosci 26:4188-4197. 

 

 


