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The Neural Feedback Response to Error As a Teaching Signal
for the Motor Learning System
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Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205

When we experience an error during a movement, we update our motor commands to partially correct for this error on the next trial. How
does experience of error produce the improvement in the subsequent motor commands? During the course of an erroneous reaching
movement, proprioceptive and visual sensory pathways not only sense the error, but also engage feedback mechanisms, resulting in
corrective motor responses that continue until the hand arrives at its goal. One possibility is that this feedback response is co-opted by the
learning system and used as a template to improve performance on the next attempt. Here we used electromyography (EMG) to compare
neural correlates of learning and feedback to test the hypothesis that the feedback response to error acts as a template for learning.
We designed a task in which mixtures of error-clamp and force-field perturbation trials were used to deconstruct EMG time courses into
error-feedback and learning components. We observed that the error-feedback response was composed of excitation of some muscles,
and inhibition of others, producing a complex activation/deactivation pattern during the reach. Despite this complexity, across muscles
the learning response was consistently a scaled version of the error-feedback response, but shifted 125 ms earlier in time. Across people,
individuals who produced a greater feedback response to error, also learned more from error. This suggests that the feedback response to
error serves as a teaching signal for the brain. Individuals who learn faster have a better teacher in their feedback control system.
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Introduction
When we hold an object in our hand, the mass of the object
alters the dynamics of our arm, changing the relationship be-
tween the motor commands sent from the brain to the muscles
of the arm, and the resulting motion of the hand (Shadmehr
and Mussa-Ivaldi, 1994). If the object is unfamiliar to us,
our movement will exhibit errors, producing a sensation in
our proprioceptive and visual organs. That is, the brain expe-

riences errors in sensory coordinates. To improve perfor-
mance, the brain must transform the sensory representation of
error into better motor commands in muscle coordinates.
How does the transformation from sensory coordinates of
error to muscle coordinates of motor commands take place?
That is, what signal serves as the teacher for the motor system?

Sensing error engages the proprioceptive and visual organs,
but following a delay it also engages sensorimotor feedback path-
ways, producing reflexive and voluntary corrections that start as
early as 50 ms into the reach, continuing until the hand arrives at
its goal. These corrections represent a sensorimotor transforma-
tion that takes error in sensory coordinates and produces a feed-
back response in muscle coordinates. The feedback response is a
sequence of motor commands that can, in principle, act as
a template, providing the brain with an example of how to par-
tially compensate for the unexpected dynamics (Kawato et al.,
1987; Thoroughman and Shadmehr, 1999; Franklin et al., 2003,
2008; Milner and Franklin, 2005). However, testing this hypoth-
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Significance Statement

Our sensory organs transduce errors in behavior. To improve performance, we must generate better motor commands. How does
the nervous system transform an error in sensory coordinates into better motor commands in muscle coordinates? Here we show
that when an error occurs during a movement, the reflexes transform the sensory representation of error into motor commands.
To learn from error, the nervous system scales this feedback response and then shifts it earlier in time, adding it to the previously
generated motor commands. This addition serves as an update to the motor commands, constituting the learning signal. There-
fore, by providing a coordinate transformation, the feedback system generates a template for learning from error.
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esis is difficult because on any given movement, the motor com-
mands are a mixture of what the brain correctly predicted about
the dynamics of the object, and what the feedback pathways
added in response to the unexpected motion of the arm. To de-
termine the relationship between error and the learning that re-
sulted from error, one must dissociate the motor commands that
reflect a process of prediction, from the motor commands that
reflect a process of within-movement feedback correction.

Here, we approached this problem by using an important tool:
error-clamp trials (Scheidt et al., 2000). An error-clamp trial
makes it possible to reliably guide the movement precisely along
a reproducible trajectory. To measure the feedback response to
error, we measured the motor commands sent to various muscles
of the arm in an error-clamp trial, and then remeasured the com-
mands when novel dynamics (a force field) introduced errors in
the reaching movement. By comparing the time course of signals
in the perturbation trial to the preceding error-clamp trial, we
obtained a proxy for the neural feedback response to error.
Following the perturbation trial, we again introduced an error-
clamp trial. The change in the motor commands that occurred
from the first error clamp to the second error clamp was a proxy
for the learning that has occurred following the experience of
error. We found that the learned motor commands were a scaled
version of the feedback-generated commands, but shifted earlier
in time. This suggested that the sensorimotor transformation that
was provided by the feedback system, from sensory coordinates
of error to muscle coordinates of action, acted as a teacher for the
motor system, instructing it on how to improve its commands on
the next movement.

Materials and Methods
We recruited n � 57 healthy, right-handed individuals to participate in
our study (18 –36 years of age, 31 females). The study was approved by
the Johns Hopkins University School of Medicine Institutional Review
Board and all subjects signed a consent form.

Experiment. Participants performed a center-out reaching task while
holding the handle of a planar robotic arm. The forearm of each partic-
ipant was supported by an arm rest that moved freely with the arm. The
arm was obscured from view by a horizontal screen, upon which a pro-
jector displayed a cursor, serving as a proxy for hand position.

At the onset of each trial, the robot moved the hand to the start posi-
tion, denoted by a circle 10 mm in diameter, whose location within the
workspace remained fixed for the duration of the experiment. Once the
hand entered the boundary of the starting position, a random intertrial-
interval (ITI) elapsed, varying within the range of 300 –700 ms. If the
hand moved from the start position at any point during the ITI, the timer
was reset. At the conclusion of the ITI, a target circle appeared 10 cm
from the starting position, at an angle of 90° relative to the starting
position. The target was also 10 mm in diameter and its appearance was
accompanied by a short tone. The subject was instructed to move his or
her hand to the target. The desired reach time was 500 ms, with a toler-
ance of �50 ms. Feedback regarding reach duration was provided after
reach completion: the target turned red or blue if the movement duration
was too short or too long, respectively. In addition, a tone accompanied the
change in target color. For trials in which movement duration fell within the
desired time interval, the target “exploded” in red and yellow concentric
circles, a tone was played, and a point was added to a numerical score dis-
played at the bottom of the workspace. Subjects were instructed that the goal
of the experiment was to score as many points as possible.

Our overall objective was to ask whether the feedback system that
corrected for a perturbation during a movement produced a neural sig-
nal that became the teacher for the motor system, instructing it on how to
predictively cancel the perturbation on the following trial. To test our
hypothesis, we first measured the neuromotor activity in a given muscle
[electromyography (EMG)] during an unperturbed movement [termed
error-clamp trial 1 (EC1)]. On the next trial, we perturbed the reaching

movement via a force field. The difference in EMG between the per-
turbed trial and the preceding error-clamp trial was our proxy for the
feedback-generated response to the perturbation. On the next trial, there
was a 50% chance that the reach was in an error-clamp (EC2), and an
equal chance that a consecutive perturbation occurred. If a second per-
turbation trial occurred, the following trial was always an error-clamp
trial. The difference in activity between EC2 and EC1 was our proxy for
learning, indicating the change in neuromotor activity due to experience
of error in the preceding trial (or a pair of errors in the case of two
consecutive perturbation trials).

The perturbations were standard velocity-dependent curl force fields
that pushed the hand clockwise (CW) or counter-clockwise (CCW):
f � Bẋ, where ẋ is the hand velocity vector, and B � [0, �15; 15, 0]
N � s/m or B � [0, 15; �15, 0] N � s/m. During an error-clamp trial, the
hand path was confined to a straight trajectory between the start position
and the target. To generate the error clamp, the robotic arm produced
compensatory forces perpendicular to the hand trajectory in accordance
with a stiff spring (spring coefficient, 6000 N/m; viscosity, 250 N � s/m).

The experiment (Fig. 1A) began with a block of 120 null field trials
(data not shown in Fig. 1A). This was followed by two consecutive blocks
(labeled Blocks 1 and 2) of 263 trials each (one block is shown in Fig. 1A).
Blocks 1 and 2 began with 23 null field trials. Following this, one or two
perturbation trials were sandwiched between pairs of error-clamp trials.
Each type of perturbation (CW, CCW) and number of consecutive
perturbations (one or two) was assayed 10 times, for a total of 40 triplet/
quartet perturbations per block. The orientation and number of consec-
utive perturbations were pseudorandomly selected and counterbalanced
so that subjects experienced an equal number of CW and CCW pertur-
bations. Between each [error-clamp–perturbation– error-clamp] pro-
gression, either two or three null field trials were presented. The
paradigm ensured that we could assess learning multiple times without
accumulation of learning of either type of perturbation.

Data recording and analysis. We recorded the position of the hand,
velocity of the hand, force exerted by the hand on the robotic arm, and
force applied via the torque motors at 200 Hz. The movement onset for
each reach was determined via a velocity threshold of 35 mm/s. Trials in
which the movement began �200 ms after the target cue appeared were
removed from the analysis (2.32% of trials). EMG was used to assess
activity of four muscles of the upper arm and trunk, including the biceps,
lateral head of the triceps, posterior deltoid, and pectoralis. We used
EMG electrodes with a pre-amplifier at the recording head (Delsys), and
sampled the resulting signal at 1000 Hz.

To determine an optimal position of recording for each muscle, the
electrode position was varied until the largest dynamic range between
resting state and contraction was detected. This region was marked for
each muscle, the overlying skin for each targeted area was cleaned with
isopropyl alcohol, and then Skin-Prep was applied to enhance adhesion
of the electrode to the skin. Before application, the electrode was also
cleaned with isopropyl alcohol, a double-sided adhesive skin interface
was placed on the sensing apparatus, and an electrode preparation gel
was applied to the electrode-sensing bars.

The EMG signal was bandpass filtered (10 –250 Hz) using a fourth-
order Butterworth filter and full-wave rectified. The filtered and rectified
signal was smoothed by scaling the EMG amplitude at each time point by
the root mean square of the signal in a 40 ms window centered at that
time point. Following this preprocessing, we performed a within-subject,
within-muscle normalization of each EMG trace by dividing the EMG
amplitude at each time point by the average maximum EMG amplitude
produced during the initial null trials of Blocks 1 and 2 (46 trials in total
are included in this average). In other words, following this normaliza-
tion, the units of EMG activity for each muscle of a given subject were
represented with respect to the average maximum value recorded in that
muscle during an unperturbed reaching movement of the same subject.

To compute the neural correlates of learning from error, we compared
the EMG activity recorded in the error-clamp trial following the pertur-
bation (EC2) to the error-clamp trial preceding the perturbation (EC1),
for each triplet (or quartet) progression. This difference (EC2 minus
EC1) represents the trial-to-trial change in the EMG following experi-
ence of an error. If the intervening trial was a single perturbation, we
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termed this change as Learning 1. If the inter-
vening trials were two perturbations, we
termed this change as Learning 2.

To compute the neural feedback response
to error, we first focused on triplet progres-
sions (a perturbation trial between two
error-clamp trials) and compared the activ-
ity measured in the perturbation trial (P1)
with the activity measured in the preceding
error-clamp trial (P1 minus EC1), and
termed this difference Feedback 1 response.
This difference represents how muscle activ-
ity was modified to counteract the perturba-
tion during a perturbed movement, relative
to an error-free reach. In quartet progres-
sions (two perturbation trials between two
error-clamp trials), we computed feedback
responses in both the first and second per-
turbation trials. Importantly, for the feed-
back response to the second perturbation, we
used EC2 from single-trial perturbations to
estimate the feedforward command pro-
duced by the brain after single-trial learning,
rather than EC1, which does not account for
this learning.

Our hypothesis concerned the relationship
between the time courses of learning and feed-
back responses. Temporal shifts relating learn-
ing and feedback were computed within
subject via cross-correlation. In all cases, 700
ms temporal fragments of the learning traces
were cross-correlated with 1100 ms fragments
of the feedback response, beginning 200 ms be-
fore movement onset. The learning trace was
padded with zeros at the end of the selected
temporal fragment so that the learning and er-
ror fragments were of equal duration. The
learning trace duration used for the cross-
correlation was shortened relative to the error
trace to reduce corruption of the cross-
correlation from noise in the learning traces,
which normally returned to baseline values at
the conclusion of the reaching movement (i.e.,
500 ms after movement onset). The optimal
shift relating learning and error was found by
identifying the time shift associated with the
maximum of the cross-correlogram.

We asked at each moment of time into the
reaching movement, how much the brain had
learned from the feedback response. That is, we
wished to answer whether there was greater
learning from a specific part of the feedback
signal (for example, its early part), or did the
brain learn from the entire feedback signal. To answer this question, we
first shifted each feedback response (independently for each subject and
muscle pair) by the optimal shift determined via cross-correlation. Next
we performed two separate analyses, one across subject and one within
subject. In the former analysis, we looked at each muscle and field con-
dition separately, and performed across-subject regressions of learning
and feedback signals. Learning for a given muscle and field orientation
was regressed onto the corresponding feedback response for that muscle
and field orientation, independently at every time point. We identified
time points for which these fits were statistically significant ( p � 0.05)
and possessed positive slope, signifying that learning and feedback were
positively correlated at that point in time, across subjects. To determine
the level of correlation between learning and feedback responses within
each muscle, we linearly regressed the learning response onto the feed-
back response over the interval between �100 and 500 ms and consid-

ered the R 2 value describing this regression for CCW and CW fields
separately.

We next performed within-subject regressions of learning and feed-
back signals at each time point. For these regressions, we collapsed across
muscles and field orientations. As we had recorded four muscles and two
field orientations, each regression included a total of eight feedback–
learning data points. We considered both the within-subject R 2 metric
for this regression (which represents how much of the variation of the
learning response is explained by the feedback response for that time
point) as well as the slope of the regression (which represents the scaling
factor relating feedback and learning). As a control condition, we quan-
tified the baseline correlation between learning and feedback for each
subject and each muscle from a dataset in which the feedback response
was randomly shifted with respect to the learning response. We drew
these random shifts from a uniform distribution between 0 and 400 ms,
and shifted each of the eight feedback responses independently. The
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Figure 1. Experimental design and exemplar data from a single subject. A, Subjects performed a center-out reaching task to a
single target. The experiment consisted of two blocks of 263 trials. Each block began with 23 trials, completed in a null field. During
the next 240 trials, subjects encountered random CW and CCW velocity-dependent curl field perturbations. They encountered
either a single perturbation or two perturbations in a row. Each perturbation or pair of perturbations was sandwiched by error-
clamp trials. B, Reach trajectories in the error-clamp trials before and after the perturbation (EC1 and EC2). Error bars are �1 SEM
in 25 ms intervals. C, Kinematic correlates of error and learning from a single CW perturbation. At left, the time course for the
perpendicular displacement of the hand during CW perturbations is shown. At right, the learned force production from the single
error is shown. The learned force is the net difference in the perpendicular forces produced in EC2 and EC1. Forces are normalized
relative to the ideal force that would be produced given the subject’s tangential velocity and the field strength. D, Triceps EMG
activity during error-clamp and perturbation trials. At left, the triceps is active during the movement in EC1. As a result of the
feedback response to the perturbation, the triceps activity is suppressed early in the CW field, and enhanced near movement
termination (P1, red). Due to the experience of the error, the brain changes the triceps activity for the subsequent error-clamp trial
(EC2, blue). At right, the error-feedback response is the trial-to-trial change in the triceps motor command due to the imposition of
the CW field (green, P1 minus EC1). The learning response is the trial-to-trial change in the motor command from EC1 to EC2
(purple, EC2 minus EC1). Learning appears to be a time-shifted copy of the feedback response.
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Albert and Shadmehr • Feedback Response As a Teacher of Motor Adaptation J. Neurosci., April 27, 2016 • 36(17):4832– 4845 • 4835



within-subject regression analysis described
above was performed on the randomly shifted
subject dataset and repeated 200 times, each
time resampling shifts from the uniform
distribution.

In terms of kinematic correlates of learning,
we focused on the forces that subjects pro-
duced against the stiff spring that opposed lat-
eral trajectory deviations during error-clamp
trials. Using standard procedures, we com-
pared this subject-produced force trace to the
ideal force that would be required to compen-
sate for the perturbation. In brief, the maxi-
mum tangential velocity attained during that
trial was multiplied by the field magnitude in
the preceding perturbation trial. Next, subject-
produced force at each time point was normal-
ized by this value and converted to a
percentage.

Finally, to determine how the relationship
between feedback and learning might vary with
temporal variation in the magnitude of the
feedback response, we considered the fact that
in some trials, a subject might produce a strong
feedback response to the perturbation, whereas
in other trials the same subject might produce a
weak response. Did the variability in the feed-
back response correspond to the variability in
the learning response? To answer this question,
we separated the data for each subject and each
muscle into two classes that corresponded to
high and low feedback gains. We will refer to these classes as the “large”
and “small” feedback responses, respectively. To construct these two
labels, we considered each muscle and each subject separately and fo-
cused on the Feedback 1 EMG traces. For agonist muscle feedback re-
sponses, we computed the mean Feedback 1 response over the interval
between 150 and 450 ms after the start of movement. This interval was
selected because it best captured differences in the gain of early agonist
activity. For antagonist muscle feedback responses, we selected a longer
averaging window defined by the range 0 – 600 ms. This wider interval
was selected to include both early inhibition in antagonist responses
during the perturbation as well as excitation that occurred near move-
ment termination. A perturbation trial was labeled as high feedback re-
sponse if its Feedback 1 EMG trace exceeded the median Feedback 1
response observed in that muscle and that subject over the appropriate
time interval (similarly for the low feedback response label). We com-
puted the mean feedback responses for these two labeled datasets, and
then, for each labeled feedback trace, we computed the learning trace that
immediately followed. In addition, we considered kinematic correlates of
these responses, corresponding to the maximum perpendicular displace-
ment during the perturbation (for feedback) and maximum error-clamp
force production (for learning). We used t tests to determine whether there
existed a difference between these kinematic parameters, and expressed their
difference as ratios (high-feedback trials/low-feedback trials).

Results
We asked whether the feedback response that corrected for a
perturbation during a reach produced a signal that acted as a
teacher for the motor system, instructing it on how to predic-
tively cancel the perturbation on the following trial. Our
experiment employed triplet or quartet progressions of error-
clamp, perturbation, error-clamp trials, as illustrated in Figure
1A. The average hand paths for the error-clamp trials and pertur-
bation trials are provided for a typical subject in Figure 1B. The
time course of the perturbation-induced displacement perpen-
dicular to the direction of motion is shown in Figure 1C (at left).
Following experience of this error, the nervous system altered the
motor commands that it produced on the very next trial. To

visualize this change, we compared the forces produced in the
error-clamp trial preceding the perturbation to the forces pro-
duced in the error-clamp trial following the perturbation. The
change in the motor commands produced a force pattern that
was opposite in direction to that of the displacement (Fig. 1C,
right).

By analyzing the temporal patterns of muscle activity in the
error-clamp and perturbation conditions, we obtained neural
correlates of feedback response to error, as well as trial-to-trial
learning. Example traces of EMG activity in the triceps for a typ-
ical participant are shown in the left column of Figure 1D. In the
error-clamp trial that preceded the perturbation (EC1), the tri-
ceps gradually increased its activity, peaking midmovement at
�200 ms. In the perturbation (Fig. 1D, red trace, left column,
P1), the triceps activity was inhibited relative to EC1 for the ma-
jority of the reach, but then demonstrated a sharp excitation as
the movement was terminated.

To compute the feedback response to error (Fig. 1D, green
curve, right column), we subtracted the EMG time course in the
error-clamp trial (EC1) from the EMG time course in the pertur-
bation trial (P1 minus EC1). In this participant, the CW displace-
ment produced a feedback response that included an early
inhibition of triceps (Fig. 1D, green curve, right column), fol-
lowed by a late excitation of the same muscle. To compute the
learning response, we compared the trial-to-trial change in the
EMG signal in EC1 and EC2, the error-clamp trials before and
after the perturbation trial (Fig. 1D, blue trace, left column). This
difference (EC2 minus EC1) represents the trial-to-trial change
in the motor command as a result of experiencing a single trial of
error. We observed that the learning response (Fig. 1D, purple
curve, right column) appeared to be a scaled version of the feed-
back response, but shifted earlier in time.

Group-averaged kinematic and EMG traces for CW and CCW
perturbations are shown in Figure 2. The kinematic and force
data are shown in Figure 2A, where we have plotted the error
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induced by the first perturbation (Error 1), and the resulting trial-
to-trial change in force produced in the subsequent error-clamp trial
(Learning 1). In trials in which a second perturbation followed the
first, the errors were smaller (Fig. 2A; Error 2 vs Error 1, peak dis-
placement, p � 10�23 for both fields). Similarly, in trials in which a
second perturbation followed the first, learning following two per-
turbations was larger (Fig. 2A; Learning 2 vs Learning 1, peak force,
p � 10�8 for CW field, p � 10�4 for CCW field).

Figure 2B illustrates the EMG measures of error-feedback and
learning responses. Perhaps the most striking feature of the data
was the similarity between the two traces. We found that, in
general, the learning response appeared to be a shifted and scaled

version of the error-feedback response. This was best demon-
strated by the EMG in the pectoralis, posterior deltoid, and tri-
ceps in their respective antagonist fields, where learning and
error-feedback traces exhibited initial inhibition followed by ex-
citation later in the movement (pectoralis for a CCW perturba-
tion; posterior deltoid and triceps for a CW perturbation).
Another clear example was presented by the bimodal excitatory
pattern in the learning and feedback traces in the pectoralis for
CW perturbations, where the second learning-excitation peak
occurred just before movement termination.

For example, in the pectoralis muscle, the CW error-feedback
response was an excitation that peaked at �200 ms with respect
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to reach initiation, followed by a second, smaller peak at �600
ms. Learning also possessed two peaks of excitation, peaking at
�50 ms and again at �400 ms. In the CCW perturbation, the
error-feedback response was an inhibition that peaked at �300
ms and an excitation that peaked at �450 ms. Learning was also
an inhibition followed by an excitation, but its timing had peaks
at �0 and 250 ms.

We had naively expected that only the early portion of the
error-feedback response might resemble the corresponding
learning response. However, we found that the learning and
error-feedback responses appeared similar until near the cessa-
tion of the error-clamped reach (�500 ms), implying that both
the short-latency and long-latency error-feedback responses
were combined and shifted earlier in time to become the learning
response.

To quantify the temporal shifts that related the EMG measures
of learning and error feedback, we computed their cross-
correlation and found that the two traces were maximally corre-
lated when the feedback response was shifted earlier in time by

123 � 61 ms (mean � SD across all muscles and conditions; Fig.
3). To combine the data across various muscles, we labeled each
muscle as agonist or antagonist for each perturbation. For exam-
ple, a CW perturbation produced an initial excitation in the pec-
toralis and biceps, but inhibition in the posterior deltoid and
triceps. Therefore, the pectoralis and biceps were agonists in re-
sponding to a CW perturbation. We found that the temporal shift
from the feedback response to the learning response across mus-
cles was larger when the muscle acted as an antagonist (137 � 80
ms), responding in the direction of the perturbation, compared
with when the muscle acted as an agonist (109 � 78 ms, p �
0.042), responding in the direction opposite the perturbation.
Similarly, the optimal shift was larger for Learning 2 (145 � 75
ms) than Learning 1 (101 � 80 ms, p � 10�3), indicating that
additional perturbations not only induced additional learning,
but also caused this learning to be expressed earlier in time.

To better visualize the temporal relationship between learning
and error-feedback responses, we plotted the time-shifted error-
feedback response together with the learning response for the
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larger-amplitude Learning 2 traces (Fig. 4). The peaks and
troughs in the error-feedback response appeared to be consistent
with the features of the learning response throughout the dura-
tion of the movement. In addition, across the various muscles
and perturbation orientations, the scaling factor relating the
magnitudes of the learning and error-feedback response (re-
flected in the scaling factor relating the left and right y-axes of Fig.
4) was consistent at �25%, suggesting that approximately a quar-
ter of the feedback response in all muscles became the learned
response.

Across-subject variability in feedback response
These results indicated that the neural feedback responses in each
muscle may be a strong predictor of the learning response in that
muscle. To better quantify this relationship, we focused on ago-
nist muscles and asked whether those subjects that demonstrated
more agonist muscle activity during their feedback response also
expressed more learning. For each subject, we computed the
mean activity in the learning and feedback responses of agonist

muscles over the periods from �200 to 500 ms and from 0 to 500
ms, respectively. We then asked whether subjects that had shown
a greater learning response also produced a greater feedback re-
sponse. Figure 5A plots the magnitudes of the feedback response
and learning response for each subject in each muscle. We found
a statistically significant, positive correlation between the sizes of
the two responses across all muscles. When we averaged the
learning and feedback responses across all muscles in each sub-
ject, we found a very strong relationship (Fig. 5B). This indicated
that subjects that had shown a larger feedback response were very
likely to also show a greater learning response.

We performed a similar across-subject analysis but at a much
finer temporal resolution to determine the length of the time over
which learning and feedback were positively correlated (i.e., how
much of the learning response could be explained by feedback as
a function of time in the movement). To optimally align feedback
responses with the learning time courses, we first shifted each
feedback response by the shift determined via cross-correlation.
Next, learning for a given muscle and field orientation was re-
gressed onto the corresponding feedback response for that mus-
cle and field orientation, independently at every time point (Fig.
5C). We found that both the agonist and antagonist muscles
possessed significantly positive correlations between learning
and feedback for the entire movement period. Specifically, this
correlation began �100 ms before the error-clamped movement
onset and saturated for the entire movement period (500 ms on
average), falling to baseline levels after the reach terminated. To
determine the level of correlation between these signals, we lin-
early regressed the learning time course onto the feedback re-
sponse (Fig. 4, aligned traces) over the time interval between
�100 and 500 ms (Fig. 5D). We found that the R 2 values for these
regressions were similar across muscles and field orientations,
varying within the range of 0.18 � 0.02 to 0.31 � 0.02, with a
mean value of �0.25.

Within-subject variability in feedback response
Our across-subject analyses indicated that learning and feedback
were correlated during preparation and execution of the error-
clamped reach. We next asked whether, within subject, the
strength of the correlation between learning and feedback re-
sponses varied during movement duration. In other words, we
quantified the extent to which the variability in the feedback
response accounted for the variability in the learning response as
the movement progressed. To quantify this relationship, at each
time point we used within-subject linear regression to compare
the feedback responses across muscles and perturbation orienta-
tions with the corresponding learning responses. To generate a
statistical comparison, we generated a null hypothesis by com-
puting the correlation between the two signals when the time
shift was randomly sampled from a uniform distribution be-
tween 0 and 400 ms. We found that the variability in the feedback
response, within a subject, accounted for a maximum of �50% of
the variability in the learning response, peaking slightly after move-
ment onset (Fig. 6A). However, the correlation between learning
and feedback remained significantly above control levels up until
movement termination (�0.5 s). Interestingly, the scaling factor de-
scribing the learning–feedback regression remained relatively stable
within the range of 20–30% during the reaching movement, indi-
cating that �25% of the error-feedback response became the learn-
ing response generated on the following trial (Fig. 6B).

The across-subject and within-subject results are thus far con-
gruent with the hypothesis that error-feedback signals are in-
structors of learning. We observed that feedback and learning
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Figure 6. The error-feedback response is predictive of the learning response within a sub-
ject. For A and B, 0 s refers to movement onset. A, The feedback response accounts for within-
subject variation in the learning response during movement. Regressions were performed
within subject across the eight muscle–field orientation combinations (i.e., 8 points in each
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linear regression is provided in the figure (red). The red shaded error bars indicate �1 SEM. To
quantify the baseline random correlation inherent in these signals (black), the regressions were
repeated, this time randomly shifting the feedback response. The random shifts were sampled
from a uniform distribution (0 – 400 ms). The black shaded error bars indicate�1 SD across 200
repetitions of the analysis. Comparison of the red and black traces indicates that the feedback
response encodes variability in the learning response until movement termination at�500 ms.
B, The slopes of the regressions described in A are provided. This slope represents the scaling
factor relating learning and feedback. It appears that �25% of the feedback response magni-
tude was incorporated into the learning response at each point during the movement.
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signals possessed a “scaled-and-shifted”
relationship; the feedback response ap-
peared to be scaled down in magnitude,
shifted earlier in time, and added to the
feedforward motor plan to achieve the
learning response. However, our experi-
ment employed only a single perturbation
magnitude, leaving one to question the
generality of this proposed learning–feed-
back relationship. To address this ques-
tion, we considered that on some trials,
the subject would strongly resist the per-
turbation, whereas in other trials the same
subject might only weakly resist the per-
turbation. For each subject and each mus-
cle, we labeled the perturbation trials as
large or small feedback response, based on
the magnitude of the corresponding Feed-
back 1 response time course. For a given
subject and given muscle, the large-
feedback trials were constructed from all
perturbation trials in which the Feedback
1 response exceeded the median feedback
response (see Materials and Methods).
The small-feedback trials were labeled
similarly, but for responses that fell below
the median Feedback 1 response. As is im-
plied by this description, we divided the
trials for each subject based on their feed-
back responses, not learning responses.

The two feedback responses are shown
for agonist muscles in Figure 7 (left col-
umn). Labeling our data in this manner
revealed that a perturbation produced
feedback responses that were highly vari-
able. The large feedback responses (red
traces) possessed peak magnitudes in ex-
cess of twice the magnitude of the low
feedback responses (black traces). For the
trials used to label the two classes of tri-
ceps and posterior deltoid responses,
there was no statistically significant differ-
ence in the maximum perpendicular dis-
placement (p � 0.703 and p � 0.279,
respectively). For the biceps and pectora-
lis, we found a significant difference be-
tween these maximal errors (p � 10�5 and p � 10�8,
respectively) but their difference (7% for biceps, 8% for pectora-
lis) was too small to be adequately explained by the twofold dif-
ference in the feedback-response gains. To summarize,
perturbation trials with nearly identical kinematics showed sig-
nificant differences in the underlying patterns of feedback muscle
activations.

Did these large differences in the feedback responses corre-
spond to differences in the learning signals observed during
the subsequent error-clamp trial? We computed the learning re-
sponses that were induced by the large-feedback and small-
feedback trials (Fig. 7, right column). Remarkably, the differences
in the feedback gains were mirrored in the magnitudes of the
learning time courses. A perturbation that produced a large feed-
back response was followed by a large learning response, as
shown by the red and black traces in Figure 7. This result sug-
gested that the agonist learning responses were highly sensitive to

the gains of the feedback response. It did not appear that the size
of the agonist learning responses was on average indicative of the
force being produced during the channel trial (maximum peak
force, p � 0.05 for all muscles).

We next performed the same analysis for each muscle in their
respective antagonist field. The small and large antagonist feed-
back responses are shown in the left column of Figure 8. Our
labeling method revealed two distinct differences between the
high and low feedback responses. First, the early period of inhi-
bition was attenuated in the large feedback responses (red traces)
relative to the small feedback (black traces) responses. The sec-
ond difference between the two feedback responses was charac-
terized by enhanced late excitation of the large feedback response
relative to the small feedback response. Again, as for the agonist
responses, these differences were not reflective of some large dif-
ference in the underlying kinematics of the error. The only mus-
cle for which we observed a statistically significant difference in
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the maximum perpendicular displacement was the triceps (p �
0.019), but this difference (only 3%) was too small to be ex-
plained by the differences in feedback-response gains.

Once again these differences in feedback responses were
paralleled in learning (Fig. 8, right column). Learning traces
for the small feedback response (black traces) diverged from
those pertaining to the large feedback response (red traces) for
the entirety of the reach. This divergence obeyed the differ-
ences we observed in the corresponding feedback responses.
We found that the learning time course resembled time-
shifted and scaled replicas of the feedback response. One ex-
ception to this relationship was the activity of the triceps and
posterior deltoid in the high feedback response, which lacked
an early period of inhibition that would be expected from
consideration of the corresponding feedback traces. We spec-
ulate that this inhibition was likely cancelled by cocontraction
of agonist–antagonist pairs, which, based on previous ac-
counts (e.g., Milner and Franklin, 2005), is often seen in the
initial stages of force-field learning. Indeed in these two mus-
cles during the initial part of the reach, the excitation in the
high feedback group’s learning response overlapped with ex-

citation in agonist muscles (i.e., we ob-
served cocontraction). Similar to the
agonist learning responses, these differ-
ences in antagonist control signals did
not correspond to differing levels of
force production in the channel ( p �
0.05 for all muscles).

In summary, for both agonists and
antagonists muscles, despite constant
perturbations, the occasion in which the
feedback response was high often pro-
duced a learning response that was
large, suggesting a strong coupling be-
tween the feedback response and the
learned response.

Control studies
An assumption critical to our analysis
was that the EMG patterns in error-
clamp trials represent the motor output
in an error-free movement. To test for
this, we compared the EMG traces in
EC1 with EMG traces recorded during
baseline reaching conditions in the null
field in each muscle (Fig. 9A). We com-
puted the mean EC1 signal across Blocks
1 and 2 of the experiment and compared
it to the mean null field EMG signal of
the 23 trial null periods that com-
menced each block. Indeed, the EC1 sig-
nal (Fig. 9A, red curves) appeared
indistinguishable from that recorded in
the null field periods (Fig. 9A, black
curves). This analysis also suggested
that on average, learning from the CW
or CCW perturbations was washed out
during the intervening null trials be-
tween consecutive perturbation peri-
ods, another assumption critical to our
analyses. To ensure that this apparent
washout was not trivially caused by the
cancellation of residual learning of the

oppositely oriented CW and CCW fields, we computed the
mean EC1 signal corresponding to trials that followed CCW
perturbations and compared this to the mean EC1 signal of
trials following CW perturbations (Fig. 9B). We found that
these two groups of EC1 muscle activities were identical, fur-
ther confirming that sufficient washout occurred between
consecutive triplet/quartet progressions.

To measure the learning response, we compared the EMG
in EC2 with the EMG in EC1. This comparison requires that
the kinematics of the two movements be identical. To check
for this, we compared the tangential component of the reach
in the two error-clamp trials (Fig. 9B), and found the two to be
indistinguishable.

We wanted to determine whether some simple linear trans-
formation existed between the learning EMG signals and the
learned force profiles. We found a weak, but significant ( p �
0.0186), positive correlation between the magnitude of early
agonist EMG activity (mean across the four muscles) over the
period from �100 to 200 ms and learned force production
(Fig. 2A, left). This offered some evidence that larger EMG
learning corresponded to larger learned forces. However,
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force production truly relates to changes in the net torque
about a joint and therefore is determined by the balance be-
tween agonist and antagonist muscle activities; we found no
significant ( p � 0.125) correlation between antagonist muscle
activity and force production during this early period of the
reach.

To determine the robustness of our estimate for the learn-
ing response, we considered an alternative approach by com-
paring the difference in the EMG recorded in the P2 and P1
trials. That is, P2 minus P1 should resemble learning from a
single error, provided that the feedback responses during the
first and second perturbation trials are the same. Fortunately
the Feedback 1 and Feedback 2 responses of Figure 2B are
rather similar, though not identical. Therefore, we compared
the P2 minus P1 EMG signal with the Learning 1 signal, across
subjects (Fig. 10). We confirmed that P2 minus P1 resembled
our estimate of the learning response (despite the fact that the
measures relied on different comparisons). However, their
correspondence was not exact, reflecting differences in Feed-
back 1 and Feedback 2. For example, the accentuated peak and
trough in the CW biceps perturbation response difference
(Fig. 10, first column, third row) corresponded precisely to a
slight temporal shift relating the Feedback 1 and Feedback 2
responses of Figure 2B (first column, third row).

Thus far we have analyzed learning from a single perturba-
tion as well as cumulative learning from two perturbations. If
the scale-and-shift relationship between feedback and learn-
ing is a general learning rule, we should observe this phenom-
enon for the learning response from the second perturbation
experienced in quartet trial progressions. Given that the cor-
responding feedback responses were nearly identical during
the first and second perturbations (Fig. 2), we would predict
that the single-trial learning time courses induced by these
perturbations should be quite similar. To compute the learn-
ing that occurred solely due to experience of the second per-
turbation, we considered the difference between the quartet
EC2 and the triplet EC2. This difference represents the learn-
ing that takes place in the feedforward command after the
experience of P2. In Figure 11, we have plotted our estimate of
learning from the second perturbation in the quartets along-
side our estimate of learning from the perturbation in the

triplets. The two possess an extremely close resemblance.
Thus, this analysis provided further evidence that supports
our working hypothesis concerning the relationship between
learning and feedback.

Finally, we wanted to ensure that the relationship between
learning and feedback established by our analysis of high and
low feedback trials (Figs. 7, 8) was not trivially the result of
some process that varied systematically during the progression
of the experiment. For example, perhaps subjects became less
sensitive and responsive to the triplet trial progressions due to
the uncertain nature (i.e., frequency and orientation) of the
force-field perturbations. If such a phenomenon was respon-
sible for the feedback response variability, we would expect
that there would be some trend in which trials corresponded
to the large and small feedback triplet trial progressions. How-
ever, we found no such trend in the trial orderings (Fig. 12).
The large and small feedback groups were constructed of trials
that were sampled approximately uniformly across the exper-
iment for both agonist and antagonist muscles. This finding
suggests that the observed changes in feedback response gains
was the result of random within-subject fluctuations in the
gain of the neural feedback controller, rather than a systematic
modulation due to passage of time.

Discussion
When we experience an error during a movement, the result is a
sensory mismatch between the intended movement and the ac-
tual movement. This error is encoded in sensory coordinates.
However, to improve our motor commands, the brain must
transform the sensory representation of error to a motor repre-
sentation of commands in muscle space. Our study sheds light on
this process.

During a reaching movement, the sensory encoding of er-
ror engages spinal and supraspinal neural circuits that, follow-
ing a delay, produce motor commands, partially correcting for
the error. The motor response to the mismatched sensory
feedback is termed an error-feedback response (Kawato et al.,
1987). With practice, the gain of the sensory feedback re-
sponse to error can be increased, resulting in more vigorous
corrections to the repeatedly experienced errors (Ahmadi-
Pajouh et al., 2012). However, because of inherent delays in
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Figure 9. Error-clamp trials provide accurate approximations to unperturbed movements. For A–C, the 0 s or 0 ms time points refer to movement onset. A, EMG during error-clamp trials before
the perturbation is identical to null field EMG. The EMG activity of each muscle in the error-clamp trial preceding a movement (EC1, red) is contrasted with the EMG signal in the 46 null field trials that
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sensory feedback, the error-feedback response alone cannot
fully compensate for the errors.

To solve this problem, theory has suggested that the feedback
response may serve as a teaching signal for the brain, resulting in
changes in the motor commands that are produced in a “feed-
forward” way (Kawato et al., 1987). In support of this hypothesis,
several studies have demonstrated that on a trial-to-trial basis,
aspects of the feedback response to error appear to be incorpo-
rated into the learned response (Thoroughman and Shadmehr,
1999; Franklin et al., 2003, 2008; Milner and Franklin, 2005).
Specifically, these studies demonstrated that as the brain learns to
compensate for an externally imposed perturbation, the early
feedforward component of muscle activity during a reach grows
to resemble the feedback-related muscle activity.

In these previous studies, the distinction between feedback
and learning responses was made largely on the basis of timing of
the response features, rather than separately isolating each com-

ponent for the entirety of the movement
trace. Here, we approached the problem
by using error-clamp trials before and af-
ter perturbation trials. This technique en-
abled us to more precisely examine the
temporal relationship between learning
and feedback, isolating the time course of
each response during the entire move-
ment. We found that the error-feedback
response was a complex temporal pattern
of activation/deactivation of each muscle,
and included short-latency and long-
latency feedback components that cor-
rected for the perturbation and brought
the hand to the target. Following experi-
ence of a single error, motor commands
changed on the following trial. Similar to
the feedback response, the learning re-
sponse possessed complex temporal dy-
namics specific to each muscle, which
persisted during the entire movement.
Remarkably, the time course of the learn-
ing response appeared to be tightly corre-
lated to the feedback response. In fact, the
learning response included essentially all
components of the feedback response,
scaled by �25% in magnitude (after two
perturbations), and shifted �125 ms ear-
lier in time. Considering that voluntary
feedback corrections can be expected at
�150 ms after the initiation of movement
(Strick, 1978), or perhaps as early as 130
ms in velocity-dependent curl fields
(Franklin et al., 2008), this shift appears to
account for the delays in the salient volun-
tary correction component of the feed-
back response. It is not at this point clear
whether the magnitude of this shift is an
invariant feature of the nervous system, or
is drawn from the relative timing of the
feedback controller’s output and the onset
of the movement.

One might have predicted that in the
initial stages of training (e.g., after the ex-
perience of one or two errors), only earlier
portions of the feedback response are

learned. However, it appeared that the entire feedback response
affects the learning response (Figs. 5C, 6A); the fraction of the
feedback response that transferred into the learned response was
invariant throughout the trajectory of the movement (�25%;
Fig. 6B). The consistency in the scaling factor, both across mus-
cles (Fig. 4) and time (Fig. 6B), suggests that there exists some set
point of error-feedback sensitivity in muscle space. We speculate
that this set point may be intimately related to regulation of error
sensitivity (Herzfeld et al., 2014) during motor learning. The
amount learned from the experience of error may be in part modu-
lated by the extent to which the feedback response is a reliable cor-
rective signal based on the task history and environment.

The motor commands produced by the sensory feedback sys-
tem served as a template for the motor learning process, becom-
ing the motor commands that were used to predictively
compensate for the novel dynamics on the subsequent attempt.
To determine the generality of this claim, we sorted our data within
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subject based on the magnitude of the feed-
back responses. We found that for both ago-
nists and antagonists, when the feedback
response was large, so was the learning re-
sponse (Figs. 7, 8), suggesting that the trial-
to-trial variability in the gain of the feedback
system strongly affected the trial-to-trial
variability in learning.

Our result calls for a re-evaluation of a
previous claim that the nervous system pro-
duces nonspecific learning responses to sin-
gle errors (Fine and Thoroughman, 2006;
Wei et al., 2010). These authors found that
single-trial perturbations with differing dy-
namics did not induce different kinematic
correlates of learning. To reconcile our re-
sults with these prior findings, we speculate
that the feedback system produced nonspe-
cific, or saturated, responses to the pertur-
bations used in these studies, which would
result in identical learning responses ac-
cording to the scale-and-shift hypothesis.
We also note that kinematic similarity does
not imply that the control signals in muscle
space were identical; rather, sophisticated
differences might be present at the neuro-
motor level, without corresponding distinct
behavioral correlates, as is the case in Figures
7 and 8.

Previous investigators have observed
cocontraction of agonist–antagonist pairs
of muscles during force-field adaptation,
which increases the stiffness of the arm
and likely stabilizes it against an unpre-
dicted perturbation (Thoroughman and
Shadmehr, 1999; Osu et al., 2002; Frank-
lin et al., 2003; Milner and Franklin,
2005). We speculate that in our task, oc-
casional cocontraction during the error-
clamp trial following the perturbation
may have resulted in the cancellation of
learned antagonist inhibition (e.g., ab-
sence of initial inhibition in triceps and
posterior deltoid in Fig. 8), thus partially
masking the learning instructed by the
error-feedback signal. However, on the
whole, given that the mean antagonist
learning and feedback responses demonstrated clear decreases in
muscle activity relative to an error-free reach (Figs. 2, 4), rather
than coactivation across agonist–antagonist pairs, we suspect
that our task’s perturbation infrequency might have partially dis-
engaged this neural impedance controller. This relative absence
of cocontraction may also explain a difference between our re-
sults and a general learning rule posed by Franklin et al. (2008),
where the authors found that antagonists, like their agonist counter-
parts, increased their activity in response to error. We should note
that apart from this difference, our proposed scale-and-shift rela-
tionship between learning and feedback is quite similar to a compu-
tational architecture proposed by these authors.

Our results describe a correlation and not a causal relation-
ship. However, an earlier work provides some evidence for the
idea that the feedback response is causally related to the learning
response. Haith et al. (2011) asked subjects to reach in a force

field but not produce the voluntary corrective response associ-
ated with bringing the hand back to the target. They did this by
having people reach to a line during perturbation trials (rather
than to a point). They found that the learned response, measured
via the forces that subjects produced in error-clamp point-to-
point reaching trials, was significantly smaller compared with
when the perturbation trials were point to point. This result is
consistent with our scale-and-shift error-feedback teaching hy-
pothesis, as the absence of late voluntary corrections in the reach-
to-a-line movement would weaken the learning response late in
the point-to-point movement.

We observed that people who produced a larger feedback re-
sponse to error also learned more from the error that they had
experienced at the level of muscle control signals (Fig. 5). This
predicts that individuals who have reflexes that produce a stron-
ger response to a given perturbation are likely to be able to adapt
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faster to that perturbation. Therefore, some of the between-
subject differences in rates of adaptation in force fields (Wu et al.,
2014) may be due to between-subject differences in their ability
to correct for sensory prediction errors using reflexive and vol-
untary feedback pathways. However, because feedback response
to error is in itself an adaptive process that benefits from experi-
ence (Burdet et al., 2001; Franklin et al., 2003, 2007), we do not
know whether people who learn more do so because of inherently
better feedback control, or because they are able to better tune
their feedback control system to the range of perturbations.

Scaled and shifted feedback responses are not the sole progen-
itors of motor learning. More likely, feedback instruction is one
of many mechanisms in a potpourri of neural motor learning/
control strategies. For example, there exist motor learning para-
digms where feedback corrections are not required; sensory
prediction errors are sufficient to drive motor learning (Tseng et
al., 2007). An example of this is saccade adaptation, where visual
error detected at completion of the movement is sufficient for
modulation of saccadic gain (Wallman and Fuchs, 1998). How-
ever, Wallman and Fuchs (1998) found that even in saccade ad-
aptation experiments, if subjects are allowed to correct their
saccades with a second saccade that responds to the error, the rate
of learning is faster than if this motor correction was not allowed.

Therefore, the act of generating a corrective motor response ap-
pears to enhance the process of learning.

In summary, our results demonstrate that the transformation from
sensory representation of error to motor representation of commands
producedbythefeedbacksystemservesasateacher for themotor learn-
ing system. The patterns of muscle activity that comprise the feedback
response to error are shifted earlier in time to become the learned re-
sponse. Individualswhohavewell-tunedfeedbacksystemsthatproduce
alargerfeedbackresponsetoerror,haveaccesstoabetterteacher,result-
ing in more learning from a given error.
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