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Preface: 

 

The aim of this thesis is to try to understand the underlying mechanisms involved in 

human skill acquisition and motor learning. Skill acquisition and motor learning in 

general refers to all those learning activities which share a main theme, that is to learn 

specific movement control strategies to perform a task in order to accomplish a conscious 

objective. To model human motor learning we are faced with an intricate problem which 

involves the coordination and control of various limbs in the body and thus different 

regions of the brain. 

 

In order to overcome the difficulties of the complex problem of human motor learning, in 

particular the motor learning related to making a movement with the arm, we have 

adopted a standard approach which has proven useful in all modern sciences for which 

the scientist tries to design controlled experimental procedures to test his basic, 

fundamental hypotheses and use them as a proxy to break down and model  his 

seemingly sophisticated world of interest by the way of induction which in our case is 

about human motor adaptation. 

 

The experiments used to investigate the question of motor learning here, consist of point- 

to-point reaching movements using a robotic manipulandum. The robotic arm has been 

used to simulate the effects of the environment producing perturbations and force patterns 

to be learned by the subjects. The reaching movements in the face of these challenges in 
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our virtual environment, are supposed to represent our daily struggle to learn motor skills 

needed for our everyday activities and survival.   

 

In the first chapter we are going to study the state-space model of trial-to-trial motor 

learning. It will be shown how various versions of this simple model can capture some of 

the most important features of motor learning. Further it will be discussed how this model 

can explain the concept of generalization in motor learning. 

 

Chapter Two starts with a list of phenomena unexplained by the current state-space 

model and will introduce our extension over the existing state-space model arming it to 

tackle the current shortcomings of learning models. We hypothesized a Multi-Timecourse 

model consisting of two distinct learning processes. One process adapts slowly but 

retains information well, while the other adapts quickly but has poor retention. To further 

distinguish our model from other Single and Multi-State models, we designed a point-to-

point reaching experiment using a well studied velocity dependent curl force field. In this 

paradigm we observed a reemergence of the old, well trained motor behaviors after an 

apparent washout period (termed spontaneous recovery). This phenomenon is predicted 

by our Multi-Timecourse model while the current models of motor adaptation fail to 

account for it.  

 

We will also have a short discussion of the various alternatives in formulating the Multi-

Timecourse model and the physiological evidence there is to support them. It will be 

shown that although these different formulations may invoke different interpretations of 
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how motor memory functions, they can be considered as mathematical equivalents of 

each other and as such, behavioral experiments like the ones done in this study are hardly 

sufficient to distinguish among them. The chapter is going to conclude with a summary 

of results and future questions that needed to be addressed in this context and the possible 

suggestions for further experiments. 

 

 

Apart from the differences in their temporal contributions to motor adaptation, the fast 

and slow learning processes may have different generalization patterns. We are going to 

investigate this possibility in chapter Three. This difference in generalization patterns can 

manifest itself in distinct generalization patterns across different movement directions 

and arm configurations using one hand (Within arm transfer of learning) as well as the 

generalization of the learned skill from one hand to the other (Between arm transfer of 

learning). In chapter Three we will investigate the second possibility. We designed an 

experiment to study the transfer of the  learned force field from one arm to the other. We 

will use this study to show if there is any evidence for a difference in bimanual transfer 

properties of the two processes.  
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Chapter I 

Single-State Models of Learning 

 

Understanding how the brain learns to execute movements and modify them in the face 

of a dynamically changing environment still remains a fundamental challenge in 

neuroscience. This difficulty arises for several reasons including: 

 

1. The structure of the controller and the role of different controlling modules at the level 

of the Central Nervous System are highly involved.  A large part of the cortex and 

nucleus including anatomically and functionally diverse regions are contributing to 

movement generation and control. Neurophysiological and imaging studies as well as 

psychophysics as helpful as they were to our understanding of the brain and its various 

regions, have yet a long way to determine some of the most essential questions about the 

exact role of areas like Cerebellum, Basal ganglia and Motor cortex in control and 

learning motor skills not to mention to provide us with a general exhaustive model of 

human motor control. 

 

2. The structures of the plants used in making movements e.g. arms, legs, tongue etc. are 

not trivial and usually involve large degrees of freedom as well as a complicated anatomy 

which makes them hard to study in a full blown analysis. 
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3. In trying to analyze the human motion we are not only faced with a moving and a 

thinking machine. We have to take into account all the inter-subject variability due to 

individual differences caused by sensory-motor diversities, attention modulation of 

behavior, fatigability, emotional states, cognitive abilities etc. all of which makes our 

already complex case study even more unpredictable and therefore hard to model. 

 

Despite all of these complications stated above there is a surprising level of consistency 

in the learning abilities and motor behavior of humans. In case of our point-to-point 

reaching movements it has been reported by several studies that subjects tend to make 

roughly straight movements with a velocity profile that is smooth and bell shaped 

(Atkeson and Hollerbach 1985; Flash and Hogan 1985). Moreover the way the subjects 

move their gaze before and during the movement as well as the way they tend to hold 

their limbs and their muscle activation all follow stereotypical patterns (Georgopoulos et 

al., 1981; Soechting and Lacquaniti, 1981; Neggers and Bekkering 2001). It is as though 

given the constraints of our control systems, our plants and our environment, there are 

some hidden laws which govern our general perceptions and actions. This assumption 

along with the intuition that these hidden laws should make our performance tuned to 

obtain maximum gain possible have led many of the scientists to try to come with 

optimizing strategies for each task and compare it with human performances to see 

whether and to what extent they match. Examples of these include the theory of 

minimum end point variance which tries to model the features of point to point reaching 

movements by assuming a signal dependent noise and a goal which is to minimize the 
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end point error or the theory of optimum Bayesian sensory motor integration which tries 

to model the best strategy in using sensory evidence for executing motor actions. 

 

 

But can we also think of optimal principles that guide human motor learning?  

 

Let’s take the relatively simple task of point to point reaching movements as an example 

of a motor action. If we assume that moving on a straight path form point A to point B 

with a smooth velocity is what is optimal and desired in this task, then any internally or 

externally generated deviations from this trajectory1 can be thought of as an error from 

the desired trajectory2 which needs to be corrected. In this way one can use the errors on 

previous movements to update his movement strategies. This is the backbone of the 

online trial to trial learning which we are going to discuss in this chapter. 

 

1. 1 Feed-back vs. Feed-forward learning: 

 

Before moving on to our discussion of online trial-to-trial learning we need to briefly 

look at the general structure of a feedback controller. This will help us to understand 

which modules in the controller are targeted by trial to trial learning. 

  

The figure below shows the general block diagram for any closed loop controller. A 

closed loop controller in general consists of a feed forward block which transforms the 
                                                 
1 Trajectory in a movement includes position x  and velocity  x&
2 Here of course the assumption is that the desired trajectory has not changed due to the new task 
requirements 
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inputs of the system into the desired outputs and a feedback block which takes the actual 

output of the system and uses it to modify the input in order to compensate for the 

unwanted changes in the output. A system with a well designed negative feedback can 

give a more robust output in the face of noise and disturbances. 

 

 

Figure 1.1  

 

In order to perform better in a given task subjects can learn to change the properties of 

the feed-forward as well as the feed-back module. In the human motor learning literature 

the feed-forward component of the controller is comprised of two parts. First part 

includes the dynamics of the arm plus the dynamics imposed by the environment e.g. the 

robotic arm and its force patterns which are collectively called the “plant”. Second part is 

the model that the subjects construct from their environment which is called the “Internal 

model”. It is clear that learning in the feed-forward block can only happen in the latter 

part i.e. the “internal model” which is plastic enough to change its properties. We are 

going to investigate how humans can change their internal model of environment based 
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on their previous experiences. Yet the fact is that subjects can also learn to react more 

efficiently to the perturbations caused by the environment during the movement by 

modifying their feedback responses. This phenomenon which is called “Feedback 

Learning” has been observed in motor learning. For example it is well known that 

subjects can increase the stiffness of their arms when encountered by a changing 

environment which is a simple example of “Feedback Learning”. 

 

 

Figure 1.2 

 

As can be seen in figure 1.2 learning can happen in almost all the blocks that are not 

external to the subject control. Yet we are going to focus mainly on the “Internal model” 

and its modification through trial to trial learning. 
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 1.2 How to learn: “Quadratic Cost Function” 

 

Another important concept in learning is the way one wants to penalize the deviations 

from the desired goal. This is a crucial point since the way one defines the costs for 

various errors in performance can affect how that person will learn from those errors. A 

recent study by Kording et al. 2004 has looked at different cost functions in an aiming 

task.  

 

Their results seems to suggest that for a wide range of errors a quadratic cost function can 

be a good approximation for what people use to penalize errors. A quadratic cost function 

is defined below: 

 

2

1
)(1

i

N

i
i ZZd

N
Cost ∑

=

−=       1.1  

Zdi : Desired output on trial i   Zi: Actual output on trial i    N: Number of trials 

 

This cost function has been in use for modeling human and machine batch and online 

learning algorithms by default since it is mathematically tractable and the results of 

experimental data seem to match the criteria to minimize this cost function well. 

 

For a given set of Zdi’s if we take Z to be constant then using this cost function we can 

see that the best constant output to minimize the quadratic cost in equation 1.1 for given 

N trials of   is the mean of the Zd},...,{ 1 NZdZd i’s.  

 

 11



∑
=

−=
N

i
opti ZZd

N
Cost

1

2)(1  is minimum only if 0
)(
)(
=

optZd
Costd  so we have: 

0)(2
)(
)(

1

=−
−

= ∑
=

opt

N

i
i

opt

ZZd
NZd

Costd   which results in: 

 N

N

i
iopt ZZd

N
Z == ∑

=1

1         Global mean-track model (batch)   1.2 

 

In addition  is our best possible estimate using the past N trials for the mean over all 

possible Zd’s, and as such this  can be used as the best unbiased guess for the next 

input on trial N+1. This is the approach that distinguishes the batch and online learning 

algorithms. In batch learning of the mean we have to wait for all possible data points to 

be able to calculate  while in the online learning we update our measure of the mean 

using each single data point. Next section will show different possible formulations of 

online learning and their interpretations as well as their possible advantages over one 

another. 

optZ

optZ

optZ

 

1.3 Learning an Internal model on trial-to-trial bases 

 

Finding the optimum output using equation 1.2 is an example of general learning 

strategies that are called batch learning algorithms in which one has to keep a long 

history of the past events in order to be able to predict the future events. Another way that 

one can think about learning is what is called the online method of learning. In contrast to 
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batch learning here one only needs to keep the last estimate of the process in order to 

come up with the next estimate using the last input seen.  

 

This way of thinking about learning although may be mathematically equivalent to batch 

learning, is more biologically sound and computationally tractable. To derive the online 

equivalent of batch estimate for Z  we start from equation 1.2, we have: 
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Therefore one can construct an optimal output NZ  on each trial based on the previous 

estimate 1−NZ  and the difference between the last measurement and NZd 1−NZ . Using the 

decreasing coefficient 
N
1

  will guarantee that our estimate at each step using equation 1.3 

will be equal to what would have been resulted if the batch equation 1.2 would be used 

for the same number of inputs. If we substitute 
N
1

  with a constant 1-α  it means that we 

weigh recent experiences more as we go through more and more trials. In this case we 

define our NZ   as a weighted average of the past experiences, we have: 
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We can derive the online version of the Local mean-track model also we have: 
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If N>>1 and 1<α  we get: 

 

)()1( 11 −− −×−+= NNNN ZZdZZ α         Local-mean track model (online)               1.5 

 

 

The term NN ZZd − which appears both in 1.3 and 1.5 is the difference between our 

previous estimate of a process and the last evidence of that process and is called the 

“Prediction error”. We will update our estimate by adding a fraction of the prediction 

error to our current estimate to come up with the next. The learning rate of the model in 
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equation 1.3 is 
N
1  which keeps decreasing as new trials are observed. This decrease in 

learning rate means that we assume all the previous data observed regardless of their 

recency are equally informative about what is going to come next. This is not a good 

assumption in most cases where recent trials are much better predictors of the future than 

the older trials. 

 

For example this strategy performs worse than the online learning with a constant 

learning rate in equation 1.5  in the case of an environment with stepwise changes where 

recent evidence provide a much better estimate for the optimal prediction for the next 

trial. As shown below equation 1.5 gives a lower value for the quadratic cost function 

1.1. The simulation illustrates the performance of both models in a static versus a 

dynamic environment with a step change. 
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                                                             Figure 1.3 

 

As stated before the best constant output to minimize a quadratic cost function is the 

global mean of the input across all the trials. Figure 1.3 shows the performance of the 

global mean-track model derived in 1.3. One can see how the value of the Global mean-

track system converges to the global mean of the input after all trials are visited. As a 

measure of relative performance of this model to the performance of the global mean, we 

found the ratio of the quadratic cost function for model 1.3 to the cost function for the 

global mean. Notice that the cost function for the global mean is the same as the variance 

of the input multiplied by the number of trials. Therefore this relative measure is the ratio 

of the sum of squared errors to the input variance divided by the total number of trials. 

Surprisingly this number is bigger than one for both static and dynamic input in this case 
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and even more so for the static input (Figure 1.3 Left). In general the relative cost is a 

function of the input dynamics as well as the number of trials.  

 

On the other hand the Local mean track system can follow the input much faster and 

converges to the local mean of the input since it weighs recent evidence more. The 

relative cost index calculated for this model shows that the model outperforms the 

constant compensation offered by the global mean of the input. This advantage is even 

bigger when the model tries to learn to perform in a changing environment as shown in 

the right part of figure 1.3 due to the increased variance of the input. 

 

Notice that the global mean of the input over certain number of trials is the best 

“constant” to minimize the quadratic cost function for those trials but this does not mean 

that we cannot do better than a cost equal to the variance of input times the input length. 

If we allow for changes to happen in the output we can achieves costs much smaller than 

what would be resulted with just the mean, and this is what happens in case of model 1.5. 

 

Our Local mean-track model can converge to the current level of the input given enough 

trials of constant input presented to the system. Yet it is not clear if subjects can reach 

this level of performance in real world. To upgrade our Local mean-track model into a 

more general form, one can modify equation 1.5 to have a partial learning of the local 

mean assuming that one can only learn a fraction β  of the weighted mean as follows: 
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Again assuming that  we can rewrite 1.6 as follows: 1>>N
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We can define a learning rate and a retention capacity for our online model as follows: 

 

)1()1(1
)1(

αβ
αβ

−×−−=
−×=

A
B

  B: Learning rate    A: Retention capacity   1-A: Forgetting rate 

 

Put together the prediction error and the online update gives us the single state-space 

equation below: 
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The two equations in 1.8 are the basis of the state-space model used in this thesis to 

model the human motor control learning. Figure 1.4 shows the behavior of this model in 

comparison with models derived in 1.3 and 1.5 
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                                                                     Figure 1.4  

 

In Figure 1.4 we have used 9.0=β  and 8.0=α  for the local mean-track with forgetting. 

As expected we see that this model eventually compensates for 90% of the constant level 
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of input. This will of course increase the cost relative to the local mean-track with no 

forgetting which has the same value forα while its β  is equal to “one” as it is shown in 

figure 1.4. 

 

1.4 Steady state error and learning timecourse of the system 

 

Looking at figure 1.4 one can see that the system simulated using equation 1.8 which has 

a forgetting factor different from “one” never reaches the same level of performance as 

the system of equation 1.5. This error that is sustained in response to a constant input 

after theoretically infinite time is called “Steady state error” and is defined as: 

 

∞→
−=

N
ZZdE NNN       Steady state error                 1.9 

 

If  A=1 in the state-space equation as in equation 1.5, to calculate the steady state error 

we have: 

 

0)( =⇒=⇒−×+= ∞∞∞∞∞∞∞ EZdZZZdBZZ         1.10 

  

 

As expected the steady state error for a system that does not forget and have A=1 is zero 

independent of the learning rate B. On the other hand if we let 1≠A  as in equation 1.8  

we have: 
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It can be seen that when we let the forgetting to take place in the learning system, we are 

just going to learn to compensate for a fraction of the input which is equal to
BA

B
+−1

. 

Substituting for α  and β  we have: 

 

∞∞∞∞ =⇒
−+−−−−

−
= ZdZZdZ β

αβαβ
αβ

)1())1)(1(1(1
)1(  Steady state              1.12 

 

As expected the final value of ∞Z  does not depend on the value forα . It will be a 

fraction of the constant input dictated by β  only. 

 

The magnitude of the steady state error will depend on values of B, A and . For 

example for learning rate B equal to 0.2 and the forgetting factor A equal to 0.9  we get: 

∞Zd

 

∞∞∞∞∞∞ ×=
+−

−
=⇒×=

+−
= ZdZdEZdZdZ 5.0

2.08.01
8.015.0

2.08.01
2.0     

 

This system only compensates for half of the input. Increasing the learning rate as well as 

the retention capacity will increase the asymptotic performance of the system.  
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But how the values of A and B define the timecourse of learning before reaching this 

asymptote? 

 

To derive the timecourse of learning we have to rearrange our single state-space model in 

1.8 into a standard discrete differential equation, we have: 

 

ZdBZBAZZZZdBZAZ NNNNNN ×+×−−=−⇒−×+×= −−−− 1111 )1()(      1.13 

 

This is a first order discrete differential equation. Here we assume that the input to the 

system is constant that is: .constZdZd N ==  The solution to the standard first order  

differential equation is as follows:  
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The solution consists of a homogeneous part which is  where C is a constant 

defined by the initial condition and the non homogeneous part which is 

nC )1( γ−×

Zd×−
γ
ϕ .  

If 00 =Z  then ZdC ×=
γ
ϕ , substituting for values of γ,C  and ϕ  we get: 

 

))(1(
1

N
N BAZd

BA
BZ −−××
+−

=        1.15 

 22



 

Equation 1.15 is an important equation since it shows the temporal (trial to trial) solution 

for the single state space model developed so far. We can substitute for α  and β  we get: 

 

)1( N
N ZdZ αβ −××=         1.16 

 

Since 10 <<α  as we get ∞→N ZdZ ×=∞ β  which is the same steady state value 

derived previously. If we represent the trial constant1 of our discrete system by η , we 

have: 

10
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1
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111 1
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=

−
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α
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ηαη

BA
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e
                       Trial constant  1.17 

 

Therefore the time course of adaptation is controlled by the difference between the 

retention capacity A and learning rate B. 

 

Notice that our initial assumption about α  being between zero and one, naturally leads to 

state-space equations with BA > , that is learning rate will always be smaller than the 

retention capacity. What will happen if we let the learning rate become equal or larger 

than the retention capacity?  

 

                                                 
1 “Trial constant” is the counterpart of the “Time constant” for discrete systems and it is equal to the trial 
number in which the system reaches  1-e-1 ~ %63 of the final value. 
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Remember that as long as 1<α  the weighted of sum of the past experiences in our local 

mean-track model for a bounded input remains bounded and thus our single state space 

model is stable for 11 <<− α . Figure 1.5 shows the performance of the system with 

three different values of α {0.8; 0; -0.8}. The value for β  is set to 0.5 to yield the same 

asymptotic performance for all three models.  
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             Figure1.5 

 

These values for  α  and β  correspond to the following values for A and B and η : 

 

Model I:  A=0.9 B=0.1  48.4
)8.0ln(

1
=

−
=η  trls  
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Model II:  A=0.5 B=0.5 0
)0.0ln(

1
=

−
=η  trls  

Notice that although the learning rate is different from one ( 5.0=B ) , yet the model 

learns to reach its asymptote on the very first trial (see figure 1.5).  This is because the 

true time course of learning is a function of A-B.  

 

Model III:  A=0.4 B=0.6   

 

As expected or negative values of α  the model shows oscillatory behavior. Yet the 

response envelope of model III seems to be the same as the response of model I. A simple 

modification to 1.17 can be used to predict this phenomenon if we replace α  with its 

magnitude α  we have: 

 

)ln(
1

)ln(
1

BA −
−

=
−

=
α

η                                       Generalized trial constant       1.18 

 

If 1→α  equation 1.18 can be approximated as: 

 

1

1
1

1
1

))1(1ln(
1

)ln(
1

→

−−
=

−
→⇒

−−
−

=
−

=

α

α
η

αα
η

BA     1.19 

 

It is worth mentioning that although the steady state value of the system and its time 

course seem to be governed by an interaction of A and B, from the point of view of α  
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and β   they are separately specified. As shown previously the steady state of the system 

depends only on β  while timecourse of the system is defined independently byα . 

Smaller values of α  causes the system to be faster while values of α close to “1” make 

the system arbitrarily slow.  Remember that smaller values of α  means that the model 

weighs recent evidence more than the older evidence and this will make the system to 

have a faster learning rate. 

 

We can use the example of an electrical circuit to illustrate our derivation of the steady 

state and the time course of learning for our single state-space model. The circuit shown 

has its input-output relation governed by the same state space equation as in 1.8.  

 

Figure 1.6  

 

To derive the input output relation we can use Kirchhoff’s voltage and current equations 

as follows: 
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Rearranging the above equation results in: 

 

0

))(()()1()(

→∆

−
∆

+×
∆

−=∆+

t

tVV
CR

ttV
CR

tttV cin
r

c
l

c      1.20 

 

Therefore the output voltage across the capacitor   at time cV tt ∆+  depends on   at 

time  plus the difference between the input and  at time . This is similar to equation 

1.8 where the output 

cV

t cV t

1+NZ  depends on NZ  and the prediction error which is NN ZZd − . 

 

A comparison between 1.8 and 1.20 gives: 

   

r

l

CR
tB

CR
tA

∆
=

∆
−= 1

             1.21 

The steady state value of this system is equal to  
lr

l

RR
R
+

 . Using equation 1.21 we have: 

BA
B

RR
R

V
lr

l
c +−

=
+

=∞
1

)(  

 

The time constant of this circuit is known to be equal to 
lr

lr

RR
RR

C
+

× . Using equation 

1.21 we have: 
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C t

lr
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+−
∆

=
+

×= =∆

1
1

1
1 ττ =

α−1
1     1.22 

   

The time constant derived here is accurate when 0→∆t (see 1.20) which makes 1→α . 

Notice that this is the same condition we used to derive the time constant in 1.19 as an 

especial case. 

 

1.5 Experimental results 

 

To test the prediction of our state space model 1.8, and to see how the subjects learn to 

respond to the changes in the environment we designed a point-to-point reaching 

experiment using a robotic manipulandum shown below. 

 

 

                                                           Figure 1.7  
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Methods: 

 

We asked 14 healthy right handed the subjects to sit in front of a monitor screen while 

holding a robotic arm. Subjects were supposed to move from an origin to a target 10cm 

away (Outward movement) and after finishing the movement come back to the origin 

(Back movement). Both origin and target were represented by circles 1cm in diameter.  

 Subjects were required to finish each out or back movement in 500±50 ms. Subjects 

received feedback based on their total movement time at the end of each movement by 

target color change. A blue color at the end of the movement meant a slow movement 

while a red color meant fast movement. Subjects who managed to make a 500±50 ms 

movement would receive a target “explosion” as their reward   

 

The experimental sequence is shown below: 
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                                                               Figure 1.8  

 

Back movements were all carried out in the “Force channel” environment. During force 

channel trials robot restricted the movement of the arm to the straight line connecting the  

origin to the target. Since the deviation from straight line is considered to be used by the 

subjects as an error signal to modify their subsequent motor output, using force channel 

on back trials ensures that only out movement would be used to change motor behavior. 

 

Subjects were first trained to reach with the robotic arm for two blocks of trials ( Baseline 

training). Each block of consists of 60 out and 60 back movements. Then the robot 
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started to exert a velocity dependent curl force on subjects’ arms during the out 

movements for two blocks of trials. This type of force field is a well studied environment 

with which people have studied motor skill learning. The structure of the field in its 

relation to hand velocity is shown below: 
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                                                              Figure 1.9  

 

 

This force always acts perpendicular to the direction of motion and as such makes the 

hand trajectory deviate from the straight line. As subjects move in this field they learn to 

compensate for the forces and gradually restore the original smooth straight paths to the 

target. The perpendicular displacement (PD) from the straight line at peak velocity has 

been used as a measurement of learning.  
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After the baseline training we divided our subjects into two groups. One group 

experienced a clockwise curl field while the other one learned a counter clockwise field 

(see Figure 1.9). As shown below both groups of subjects continuously reduced their PD 

to eventually have PDs that were not significantly different from zero. The results of a  

t-test on the initial 10 trials in force field compared to the last 10 trials performed in null 

for both groups  shows a significant difference (Clockwise tstat=5.2606, P<0.0001 

;Counter clockwise  tstat=-2.8606, P=0.01<0.05 df=17) while the last 10 movements in 

the field were not different from the baseline (Clockwise tstat=0.48979, P=0.6>0.05 

;Counter clockwise tstat= 0.043821, P=0.9>0.05 df=17). 
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                                                                     Figure 1.10  
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To directly monitor the force output change as subjects learned to compensate for the 

field, we included occasional force channel trials in outward movements as well. These 

trials were considered to have negligible effect on learning since perpendicular errors are 

clamped at zero during these trials and any change in the motor output is caused by a 

hypothetically small forgetting rate and thus may be ignored. The greatest advantage of 

looking at the force readings in the force channel trials is that it can be considered to be 

mainly affected by the feed forward output known as the internal model since the 

feedback module gets inactivated when the errors are clamped at zero.  

 

The total motor output is effected both by the formation of the internal model and the 

modification of feedback responses. Here our main interests lie with studying how 

subjects learn the model of their environment through feed forward responses and as such 

force channel trials provides us with an ideal situation to study the changes of the internal 

model. 

 

We can fit our state space model to the data by using perpendicular displacements or by 

directly measuring the lateral forces subjects produced in force channel trials recorded by 

the transducer. It is important to note that the learning processes inferred from PDs 

contain the learning effects from both feedback and feed forward block while the fits to 

the force channel trials should only include the feed forward contribution to learning. 

Figure 1.11 shows both leaning indexes used and their corresponding model fits. The data 

shown is the combined data for both groups of subjects. 
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                                                                   Figure 1.11 

 

 

To quantify learning using force transducer readings in force channel trials we looked at 

the Similarity index (SI) between the force timecourse during the movement to the ideal 

velocity dependent force given full compensation using the following formulation:  

 

2

.

I

IT

F

FFSI r

rr

=           : Lateral force during a trial as measured by force transducer TF
r

       :  Ideal lateral force needed for complete force compensation IF
r

                1.23                         
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Similarity index has been calculated using the dot product of these two force profiles in 

time divided by the dot product of the ideal force profile by itself. SI values that are close 

to one indicate close to complete learning of the force pattern while smaller values mean 

under-compensation of the force field. 

 

The fitted parameters for the single state-space model using PDs are: 

 

985.0=A ,    with    therefore 222.0=B 71.02 =R 94.0=∞Z  and 2.4=τ trials 

 

The fitted parameters for the single state-space model using SIs are: 

 

963.0=A ,    with    therefore 078.0=B 94.02 =R 67.0=∞Z  and 7.8=τ trials 

 

Both measures provide reasonable fits for the single state-space model. Yet the fact that 

the fit to the SIs has a higher R-squared may imply that our single state-space model is 

more suited to describe the formation of the internal model compared to the total motor 

output. 

 

Notice that while the data for PD predicts a close to perfect compensation for ∞Z , SI data 

finds the final learning to be less than 70% of the total force needed for complete 

compensation. Also since the learning rate calculated from PDs can roughly be 

considered as a summation between the learning rate of the feed-forward and feed-back 
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modules, the learning rate derived using PDs overestimates the true learning rate of the 

internal model as expected.  

 

1.6 Extending the State-space learning models to account for generalization 

 

So far we have only discussed how we can learn a particular motor skill for a specific 

movement direction which in our case involved only outward movements. One of the 

most important issues in motor learning is the question of generalization and that is how 

learning a motor behavior in a specific set of states or situations may manifest itself in 

other similar or non similar sets of states or situations. 

 

To model the generalization of a learned motor output to all sets of possible motor states, 

a weighted combination of local basis functions of input space should be used, we have: 

 

)()(
1

xgwxZ j

m

j
j∑

=

=                    x: Input space  wj: Combination weights            1.24 

                                                 gj(x): Gaussian basis functions  

                                                 

                                                Z(x): Motor output as a function of the state 

 

Notice that here we have defined Z(x) as a learned motor output for each state x. This is a 

more general notation than what was presented as Z in 1.8 which was formulated to 

represent a single output index for one movement direction only. Position, velocity and 

acceleration are some of the important states to be considered in the case of our point to 
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point reaching tasks as represented by x. During the course of a single movement subjects 

visit various states of different positions, velocities and accelerations and he is supposed 

to learn the force associated with each state visited to be able to perform ideally in the 

task. The learning indexes like PD and SI used to fit the state-space model would only 

give us an overall measure of learning for the whole movement and in that sense equation 

1.16 is a more exact way of formulating the detailed association that takes place between 

motor output and each input state. 

 

But how does our new model update its output at each trial? 

 

It can be proved easily that to minimize the same quadratic cost function in 1.1 

representing the error between the current and ideal motor output, one should update the 

combination weights in 1.24 using a gradient descent rule. We have: 

 

)()(
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NNNj
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j

NNNN

xExgww

xZxZdxE

η+=

−=
+              :η Learning rate for gradient descent     1.25 

          :State visited on trial “ N”Nx

 

Depending on how broad the basis functions  are the error in one state can affect 

the performance in the neighboring states as well as its own. If we rewrite 1.25 in a state-

space format we get: 

)(xg j
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Here B is a learning rate which broadcasts the error observed in the last visited state  

onto all the other states x. The broadcast of the error is maximum for  itself since 

 has its peak at 

Nx

Nx

)()( N
T xGxGη Nxx =  and this value will decline depending on the width 

of  for all other x.  To make 1.26 a full generalization of 1.8 we can rewrite 1.25 by 

adding a state dependent retention capacity to the gradient descent update rule. It follows: 
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The retention capacity A governs the forgetting rate of the motor output for each state x as 

a function of the last state visited . It is conceivable that the amount of forgetting in the 

motor output for a particular state to be dependent on the last state in which motor output 

has been executed and error has been observed.  

Nx

 

This shows one of the complications of our experimental design for fitting the single 

state-space model 1.8 to the out movements. That is our estimates of learning rate and 

forgetting factor for the out direction can be affected by the generalized forgetting factor 

1-  caused by the back movement ( away in movement direction) in the 

force channel. Since our current experimental design leaves us with no intelligent way to 

extract the forgetting effects caused by moving back in the channel, we need to just 

assume such effects are negligible to be able to keep our current interpretations of the 

fitted values for A and B intact. Later in the chapter we will see that such an assumption 

about minimal effects of a movement  away might indeed not be so far from the 

reality. 

),( NxxA °180

°180

 

Equation 1.27 is the general form of the single-timecourse state-space equation 1.8 which  

formulates the evolution of motor output as a function of each state x. Recent studies 

have tried to explore the properties of and  using force field paradigms 

in motor learning by applying a velocity dependent curl field (Donchin et al 2003). 

),( NxxB  ),( NxxA

 

Figure 1.12 shows the fitted values for the generalization properties of B as a function of 

movement direction (Thoroughman and Shadmehr 2000). It can be seen that B is a 
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narrow function of movement direction. Its value falls to 50% of its peak value at 

 for  degrees away and it almost goes to zero away. ),( NN xxB °45 °90

 

 

 

                                           Figure 1.12  

 

 

An interesting phenomenon here is that the fitted values for B using PD suggests a small 

negative generalization to  away for the curl force field. We wondered if our 

experimental results can be used to explore this idea. 

°180

 

 

1.7 Bimodality in generalization: Reality or a Fitting artifact? 

 

In our point to point reaching experiment, subjects always moved back to the origin in a 

force channel. This would give us the opportunity to measure the changes in the behavior 

of the internal model for back movements as learning takes place in outward direction. It 
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is worth mentioning that the use of force channel would clamp the error in back 

movements providing us with two advantages: 

 

1. Since subjects observed little deviation from straight line in back movements 

<1mm,  learning would be limited to out movements and as such all motor output 

changes in back movements can be assumed to arise form generalization to  

away. 

°180

 

2. Clamping errors on back movements minimizes the effects of feedback output 

contaminating the output of the internal model. Therefore we can be confident of 

the force readings to reflect mostly the changes in internal model. 

 

Figure 1.13 shows trial by trial evolution of the force output perpendicular to movement 

direction in back movements as learning takes place in out movements. The data shown 

is the combined data from our both groups of subjects. 
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                                                                  Figure 1.13 

 

 

 

 

As learning progresses in out direction, there is hardly any evidence for generalization of 

learning to  away as shown in figure 1.13.  Nevertheless one should remember that 

the result in figure 1.12 is calculated from measures of PD and we already have shown 

that this measure can also reflect the learning processes in feed-back module although the 

°180
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fact that the generalization predicted for  away is negative make this explanation to 

be an unlikely candidate. 

°180

 

A statistical analysis on the mean SI level before and after introduction of the field for the 

back movements as subjects learned to compensate for the force fielding on the out 

movements does not show a meaningful difference (p=0.28,Two tailed t-test, df=178). 

The same t-test this time on the out movement where learning is taking place, shows a 

significant difference for SI levels in force field vs. null (p<0.05,CI=[ 7.5921   8.7732], 

df=26). Yet it seems that the variability of the subjects’ performance as measured by SI 

increases significantly for force field vs. null for both out movements as well as back 

movements (p<0.05 df=26, for out movements; p<0.5 df=26, for back movements). This 

means that learning the force field in one direction can increase the variability of motor 

control in the same direction as well as in the away but it has almost no significant 

effect on the mean motor output for the away.  

°180

°180

 

1.8 Summary 

 

In this chapter we introduced the idea of online trial to trial motor learning using a single 

state-space model. We showed that this model can explain a great portion of the general 

learning trend in the data (high R-squared ) . In the next chapter we are going to discuss 

some of the shortcomings of the current state-space model in explaining some of the 

other well known phenomena in motor learning. We then will introduce an extension to 

the current model to overcome these difficulties. We also report for the first time a 
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transient recovery of the older memories in motor adaptation and show how this new 

peculiar phenomenon can be explained in the light of the new extension to our current 

single state-space model. 
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Chapter II 

Multi-State Models of Learning 

 

In the previous chapter we introduced an online learning mechanism which was able to 

explain the main learning trends in motor skill learning as studied by using a velocity 

dependent curl force field. Here we are going to present some of the motor skill learning 

behaviors that are not easily explained by our current version of the state-space model.   

 

2.1 Savings 

 

“Savings” is a fundamental behavioral phenomenon where prior adaptation to a novel 

environment increases the speed of subsequent adaptation to the same environment.  In 

some cases, savings is observed even after performance has been brought back to 

baseline during a washout period. This means that one can still observe a faster relearning 

of a certain motor skill after all the measurable performance indexes has been brought 

back to base line. This phenomenon was observed initially in classical paradigms for eye 

blink conditioning where re-exposure to paired stimuli after extinction induces 

reacquisition that is much faster than the original acquisition (Frey and Ross, 1968; 

Napier et al., 1992).   

 

A recent study by Kojima et al 2004 reported the conditions under which savings may or 

may not occur in saccade adaptation. It is known that humans as well as the animals can 
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change the gain of their saccades to ensure accuracy of saccades throughout life despite 

growth, aging, and some pathologies of the oculomotor plant or nervous system. This 

means that if saccades consistently overshoot the target, their amplitude gradually 

decreases, and if they consistently fall short, their size gradually increases. There is good 

evidence that saccadic adaptation is a form of motor learning driven by visual error 

immediately after the end of saccades (Wallman and Fuchs, 1998; Shafer et al., 2000; 

Noto and Robinson, 2001). This is consistent with our online trial-to-trial motor learning 

discussed in previous chapter. Yet our current model seems to be unable to provide a 

satisfactory explanation for the effects of savings seen in saccade adaptation. Below we 

are going to discuss the experimental results by Kojima et al and show single state-space 

model predictions for each of their experimental paradigms. 

 

2.2 Experimental results (Kojima et al 2004) 

Two rhesus monkeys were prepared for eye movement recording by the magnetic search 

coil method with the use of surgery. During recording sessions, the monkey sat in a 

primate chair in a darkened booth with its head restrained. The animal was required to 

make saccades toward a target spot presented on a monitor screen 

Double reversal paradigm 

In their experiment Kojima et al. induced a series of three alternating gain changes by 

reversing the polarity of visual error twice during ongoing adaptation. After collecting 

100-400 pre-adaptation saccades to horizontal steps of the target, they started the first 

block of adaptation session by subjecting the animal to 35% forward or backward target 
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jump during the saccade (learn block). When the gain was altered by 0.1-0.2 after 400-

800 saccades, the direction of target jump was reversed to bring the gain back to the pre-

adaptation value, i.e., 1.0 (unlearn block). They then reversed the target jump direction 

again and induced a gain change using a jump of the same size as in the learn block.  

 

 

     Figure 2.1 

 

Figure 2.1 schematically illustrates these procedures for gain increase (A) and gain 

decrease (B) adaptation. These paradigms will be called the standard gain-increase or 

gain-decrease paradigms. The experimental data obtained indicates that indeed the 
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relearning block of adaptation evolves faster than the initial learning block. Figure 2.2 

shows their results from two monkeys. 

 

 

       Figure 2.2 

 

Linear regression lines shown are fitted for the first 150 saccades of learn and relearn 

blocks. The slope of relearn adaptation was larger than that of learning block as shown in 

both Figure2.2 A for gain-increase and B for gain-decrease.  The current state space 

model with a single learning process cannot explain this result. In other words our single 

state space model will always show a single learning rate which is independent of the 

paradigm and the learning history.  To demonstrate savings, the system somehow needs 

to have the ability to remember its previous adaptation state while all apparent 

manifestations of such adaptation have been wiped out.  
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To explain this data the authors suggested that savings occurs because the nervous system 

maintains separate neural mechanisms for gain-up vs. gain-down adaptation (termed the 

gain-specific model). In other words in this model we have a system whose output is a 

summation of two independent learning processes. One of the processes can only produce 

a positive output (gain-up) while the other one can only produce a negative output 

 (gain-down)  during adaptation. Figure 2.3 shows the schematic that Kojima et al 

suggested for their gain-specific model for the adaptation to the standard gain-increase 

paradigm. 

 

Figure 2.3 

 

It is important to notice that both processes can be active simultaneously in this model 

during gain-increase or gain-decrease depending on the history of adaptation. Actually 

this co-activation of gain-up and gain-down processes together is the reason behind the 

increase in learning rate to almost the double of initial learning block during which only 

one of the two processes are active. The idea for the gain-specific model can be used to 

modify our current formulation of online learning as follows: 
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Notice that in 2.1 we did not make any assumptions about the learning rate and retention 

capacity of  vs. .  Based on the relationship between the learning rates and 

retention capacities of the two processes we can further divide this model into two 

general categories: 

up
NZ dn

NZ

  

• The model is  symmetric gain-specific if  dnup AA =  and  dnup BB =

 

• The model is asymmetric gain –specific if  dnup AA ≠  or  dnup BB ≠

 

Unless explicitly mentioned, from this point on, by gain-specific we imply a symmetric 

gain-specific model. Figure 2.4 shows how facilitation in learning can be predicted by the 

gain-specific model while a single state model fails to do so. 

 50



0 200 400 600

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trial Number

Single−State Model

Net Adaptation

0 200 400 600

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trial Number

Gain−Specific Model

Net Adaptation
Up State
Down State

0 100 200 300

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Trial Number

Initial Learning
Relearning

0 100 200 300

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Trial Number

Initial Learning
Relearning

0 200 400 600

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Trial Number

Paradigm for Relearning Experiment

learning
relearning
unlearning

 

 

 

                                                                              Figure 2.4 

 

The gain-specific model predicts a faster relearning as compared to the initial learning 

block as can be seen in Figure 2.4 bottom figures. The gain-specific model also predicts 

that if one interleaves enough washout trials after the unlearning block the effects of 

savings can be wiped out, and that is what Kojima et al found next in their series of 

saccade experiments. 
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Saccade adaptation experiments with zero-error paradigm 

In their next experiment, Kojima et al subjected the animals to saccadic steps not coupled 

with target jumps (zero-error trials) after the saccadic gain returned to 1.0 by the de-

adaptation block (unlearning block).  Figure 2.5 shows the result of a gain-increase and a 

gain-decrease experiment.  The fitted regression slopes during the relearning block were 

not significantly different from the learning block in both conditions in Figure 

 2.5 A and B. 

 

 

      Figure 2.5 

 

The results indicate that the re-adaptation is not accelerated after hundreds of  

normo-metric saccades (saccades with zero error). This result can be replicated under the 

gain-specific model as shown in simulation below. 
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                                                                          Figure 2.6 

Figure 2.6 shows that the initial adaptation curve exactly matches that of relearning and 

as such it shows that after enough null trials the effects of savings has been washed away. 

The reason for the lack of savings in this case is simply because the state of gain-up and 

gain-down processes are back to their state for a naive system as shown in  

figure 2.6. 

 

Gain-increase experiments with dark paradigm 

 

The next question authors explored was to ask what will happen if the block of  

zero-error trials is replaced with a period of darkness during which any visual feedback is 

withheld. Any change in the output of the system in this case should only be mediated by 
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system’s own internal processes without the external input. Figure 2.7 shows the 

experimental result. 

 

      Figure 2.7 

 

It can be seen that although the dark period has the same duration as the zero-error block, 

there is still facilitation in relearning block. This facilitation shows itself in Figure 2.7 B 

as the usual increase in the fitted regression slope, but the interesting phenomenon can be 

seen as a jump-up in performance after the dark period for the gain-increase paradigm in 

figure 2.7 A.  

 

The gain-specific model proposed by Kojima et al. this time fails to predict the result 

presented in Figure 2.7.  Precisely a symmetric gain-specific model cannot explain the 

jump-up seen in part A of Figure 2.7 while it may still account for an increase in slope 

after dark period depending on the dark period duration. Figure 2.8 shows the simulation 

results for the symmetric gain-specific model. 
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                                                                 Figure 2.8  

 

 Due to the equal decay rate for both processes of gain-up vs. gain down, the sum of 

theses two processes will always cancel each other out during the zero-feedback after the 

gain is brought back to zero and thus a jump-up (or jump-down) will never occur using 

symmetric gain-specific formulation. 

  

What if we assume an asymmetry in the gain-up vs. gain-down processes?  
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Specifically speaking what if we have a gain-up process which has a slower forgetting 

rate than the gain-down process. Will such modification helps predict the result Kojima et 

al observed in their dark paradigm?  Figure 2.9 shows the results of such simulation. 
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                                                                                  Figure 2.9  
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The asymmetric gain-specific model always predicts a jump in the direction of the 

process with a slower forgetting rate. Therefore this modification can go so far as to 

explain half of the results obtained in the dark paradigm. That is it explains the jump-up 

in the gain-increase condition but also falsely predicts the same jump-up to happen in the 

gain-decrease condition.  

 

2.3 Multi-timecourse model for motor adaptation 

 

We suggest an alternate model for the savings effects seen by Kojima et al. in their study 

of saccade adaptation. We hypothesize that during adaptation, performance is a reflection 

of two motor learning systems in the brain.  The first process is a slow learner which has 

a high retention capacity and can work either to facilitate or delay learning based on the 

prior experience in the environment. The second process on the other hand has a high 

learning rate but a poor retention of what is being learned, providing the advantage of 

short term compensation for the rapidly changing environment.  We first show that the 

proposed model (termed a Multi-timecourse model) like the model proposed by Kojima 

et al can account for the effects of savings observed in the saccade adaptation task.  We 

then show that the two models, i.e., the multi-timecourse model and the gain-specific 

model, can make different and testable behavioral predictions.   

 

Our two dimensional state-space model can be written as follows: 
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   Multi-timecourse model         2.2  

 

f
NZ  represents the fast process in the model which has a high learning rate Bf but a small 

retention capacity Af .  represents the slow process in the model which has a lower 

learning rate B

s
NZ

s but a high retention capacity As. In other words we have: 

 

sf AA <    and   fs BB <

 

Figure 2.10 shows in simulation how our multi-timecourse model predicts savings in 

double reversal learning paradigm discussed before (learn-unlearn-relearn). Notice that 

the amount of savings observed is a monotonically decreasing function of the number of 

unlearn trials. This relationship is predicted by both our multi-timecourse model as well 

as by Kojima’s gain-specific model. In fact both models here predict the pattern of 

savings as well as savings washout if enough base line trials are interspersed between 

learn and relearn blocks. The single state-space model does not predict any change in the 

learning rate as a function of learning history as illustrated below.  
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                                                                     Figure 2.10  
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Also the multi-timecourse model correctly predicts the jump-up effect seen after zero-

feed back trials termed as dark period. This model predicts the jump-up to always occur 

in the direction in which the subjects received most of their training. In our paradigm this 

is the gain learned during the long learning period i.e. a jump-up for gain increase and a 

jump down for gain decrease. This model as well as the asymmetric gain-specific model 

can only explain the result of gain-increase adaptation where there was a jump-up in 

performance. 
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                                                                  Figure 2.11  
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While the multi-timecourse model predicts a jump in both gain increase and gain 

decrease conditions, Kojima et al study of saccade adaptation reports such a jump in 

performance to happen only for the gain-increase paradigm. Therefore our multi-

timecourse model of learning also cannot explain the result of the dark period in its full 

totality. 

 

As yet both the multi-timecourse model proposed by us as well as the asymmetric version 

of the gain-specific model hypothesized by Kojima et al seem to be able to explain a 

large portion of the saccade adaptation data. In order to contrast these two models’ 

behavioral predictions and to see which one can stand up to further experimentations, we 

considered an error clamp experiment discussed below. 

 

2.4 Error clamp experiment 

 

Using the experimental setup discussed in detail in previous chapter we asked 14 right 

handed subjects (9 females and 4 males) to participate in our error-clamp study. The 

subjects were trained first in two sets of “null” (60 out and 60 back movements each set) 

where robot motors were not turned on. The back movements throughout the experiments 

were performed in the force channel. The reason to have “null” trials was to train subjects 

to learn the passive dynamics of the robot arm and the basics of the task. We randomly 

included force channel trials (1 in 6) in the second set of “null” in order to obtain a 

baseline reading for the lateral forces subjects produced in the “null” trials. We then 
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divided our subjects into two groups of 7 subjects each. The first group of subjects was 

exposed to a clockwise velocity dependent curl force field while the second group had to 

learn a counterclockwise field. We included occasional (9 in 60) force channel trials on 

out movements to monitor the learning of the force field by the subjects. Both groups of 

subjects were trained in the same field for two sets.  In the next set the subjects moved in 

the same field for another 10 trials before the direction of the force reversed for 15 trials.  

During these 15 trials-called the unlearning trials- the group that was trained in a clock-

wise field experienced a counter clock-wise field and vise versa.  

 

After this brief period of unlearning both groups moved out and back for the rest of the 

set (35 trials) and another full set (60 trials)  in the force channel. We used the force 

channel trials to monitor the motor output of the subjects during a zero-feedback period 

which resembles the dark period in saccade adaptation. 

 }
Baseline

A B }

Force field +

C D E F}

Force channel

 Force field -

 

 

 

 

 

Figure 2.12 Experimental paradigm sets A to F ; black represent baseline trials, light green is the 

first force field, red is the washout using the opposite force field and purple represents force channel 

trials.  
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Before moving on to the experimental results lets look at the predictions of both multi-

timecourse model and gain-specific model in this paradigm. Figure 2.13 shows the 

experimental paradigm and the predictions of both models. 
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                                                                              Figure 2.13  

 

 

One can see that the gain-specific model maintains zero motor output throughout the 

error-clamp trials after the short unlearning period. On the other hand the multi-

timecourse model for motor adaptation makes an interesting prediction about the 

 63



evolution of motor output during error-clamp trials. As seen in figure 2.13 our model 

predicts that the motor output starts from zero or a slightly negative value but shows a 

positive rebound toward the learned force field and then dies out slowly back toward 

baseline. It is as if our model shows a transient recovery of the prior training in spite of 

the apparent washout of the learned skill. 

 

As such this experimental paradigm can provide a powerful way of distinguishing 

between the two models, and as a matter of fact it does. The following figure shows the 

combined results of our analysis for the two groups who participated in the study. 

Similarity index (SI) is used as the measure to quantify learning. 
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                                                                  Figure 2.14  

 

 

As predicted by our multi-timecourse model the data averaged across all subjects show a 

clear rebound toward the learned state which reaches its peak of about 20% recovery in 

about 25-30 trials into the error clamp block. We fitted the data with our multi-

timecourse model as shown above. The fitted values are as follows: 

 

611.0=fA    275.0=fB 992.0=sA  019.0=sB                97.02 =R
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The multi-timecourse model fits the experimental data pretty well. One can see that the 

fast process has a learning rate which is ~ 15 times higher than the slow system. On the 

other hand the forgetting of the fast process is ~50 times higher than the slow system as 

well. Forgetting rate is defined as one minus the retention capacity that is 1-A for each 

process. 

 

Figure 2.15 shows the data for two single subjects one from each group. It shows the 

actual forces of the two subjects during the movement as well as the force profiles for 

100% compensation of the force field. One can observe the increasing similarity of the 

subjects’ force output profile compared to the force field as subjects experience more 

trials in the field. This figure also shows the transient rebound of lateral forces toward the 

learned state following unlearning trials as subjects move in the force channel. 
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                                                                    Figure 2.15  

 

Figure 2.14 and 2.15 together show that the gain-specific model fails to correctly model 

the process of motor adaptation while the multi-timecourse model provides an intuitive 

explanation for the motor adaptation phenomena seen so far. But can we rescue the gain-

specific model once again by assuming an asymmetry between gain-up vs. gain down 

processes? 

 

The following plot shows the predictions of the asymmetric gain-specific model for both 

of our group conditions. The asymmetric gain-specific model predicts a rebound which is 

always toward the process with better retention capacity and is independent of the 

learning history and thus it predicts the same rebound for both groups. This is not 
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consistent with the data for the two single subjects shown in figure 2.16 where the 

rebounds are in opposite direction. 
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To further explore this prediction of the asymmetric gain-specific model we looked at the 

results of each group of subjects separately. Figure 2.16 shows the experimental results 

for both groups. The rebounds for the two groups are not in the same direction. They are 

oppositely directed and are toward their trained state. So gain-specific model in both 

symmetric and asymmetric format is unable to explain our data. 
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                                                              Figure 2.17  

 

 

The bar-plot below shows that the effect of rebound is significant for each group 

separately as well as both groups put together.  
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                                             Figure 2.18 

 

2.5 Additional results explained 

 

Our multi state-space model can be used to explain some of the other important motor 

behaviors in human subjects which are hard to understand in the framework of present 

models of trial to trial motor adaptation. 

 

One such well-known effect is “Anterograde interference” which refers to the reduction 

of the learning rate in adaptation to a novel field after adaptation to an opposite field has 

already taken place. Several studies have shown that the time constant for an initial motor 

adaptation is faster than the time constant for subsequent adaptation to the oppositely 

directed adaptation stimulus (Shadmehr and Brasher-Krug 1997, Thoroughman and 

Shadmehr 1999, Davidson and Wolpert 2004). Figure 2.19 shows how prior adaptation to 
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a clock-wise field make subjects slower in their subsequent learning of a counter clock-

wise field when compared to naive subjects learning the same counter clock-wise field. 

 

 

     Figure 2.19 

 

We have adjusted for the errors of naive subjects in the first block of 64 movements in 

the new field equalizing it to the first block of errors for the subjects trained in the 

opposite field in order to make the difference in the adaptation time constants easily 

observable.  

 

The multi-timecourse model can easily explain this slowing down in adaptation caused 

by prior training in the opposite field. In fact the effect of the anterograde interference is 

nothing but the opposite of the effect seen in savings.  Below we show how multi-

timecourse model produces the effect seen in anterograde interference. Gain-specific 

model proposed by Kojima et al cannot predict the elongation of the time constant in this 
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case but instead predicts that we should observe the same facilitation in learning caused 

by savings in the case of adaptation to the opposite field which is inconsistent with the 

experimental evidence. 
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The reason for the slower adaptation seen in anterograde interference is explained by our 

multi-time course model of motor learning. Training in the opposite field biases the slow 
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module of the multi-timecourse model against learning the new field. Therefore it will 

take longer for the system to reach its asymptotic state in which both processes are at 

steady state. It also predicts that the slowness of relearning is dependent on the number of 

unlearning trials, that is the longer the interference trials are; the slower the process of 

relearning becomes (see fig 2.20). 

 

 The same argument can be used to explain the effects of savings, that is biasing of the 

slow system in favor of the learning is the underlying mechanism for savings and its 

various manifestations. 

 

It is also known that the process of de-adaptation to the baseline or adaptation to a 

reduced version of a force field happens faster and with smaller time constants than the 

initial adaptation to a novel field (Davidson and Wolpert 2004). This effect also can be 

accounted for in the light of our new formulation for motor adaptation. Figure 2.20 shows 

the simulations using the multi timecourse as well as the gain-specific model. Both 

models seem to be able to explain the general trend of faster de-adaptation and down-

scaling of the force field. Yet Wolpert’s group observed that down-scaling happens even 

faster than de-adaptation and this subtlety of the experimental results can only be 

captured by the multi-timecourse model and not by the gain-specific model. Looking at 

the τ  fitted to the learning curves one can see that the down-scaling in the multi-

timecourse model happens faster than the de-adaptation which is consistent with 

experimental data while for the gain-specific model it is the other way around. 
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                                                                    Figure 2.21      

 

It is needless to say that a state-space model with a single learning process can not 

reproduce any of these motor learning effects which involve changes in the time course 

of learning. 
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2.6 Multi-timecourse model: Current version and the Alternatives 

 

  In this section we are going to take a closer look at the multi-timecourse model and 

study its properties from a theoretical point of view. In our current formulation of the 

model we have: 
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We can solve for the solution to equation 2.3 directly by rearranging it into the standard 

format for the first order discrete differential equations (See Chapter I section 1.4). We 

have: 
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The solution is the same as for the single state model except that it is represented in 

matrix format: 
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If we further write  in terms of the eigenvectors of ∞Z
v

α , we get: 
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The trial constants of the system consist of the two eigenvalues of the matrix 

. As long as the forgetting rates and retention capacities of the two 

processes remain between zero and one, these eigenvalues remain between -1 and 1 and 

therefore system maintains stable behavior. 

⎥
⎦

⎤
⎢
⎣

⎡

−−

−−
=

sss

fff

BAB

BBA

;

;
α

 

As with the single state model in Chapter I, we can illustrate the mechanisms of our two- 

state model with an electrical circuit: 
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                                                          Figure 2.22  

 

Using Kirchhoff’s voltage and current equations and rearranging the variables we have: 
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Comparing 2.7 with 2.3 we have   
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At steady state the transfer function of the circuit in figure 2.22 is: 
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Using the relationship in 2.9 and 2.8 we have: 

 

ZdZd

A
B

A
B

A
B

A
B

Z

s

s

f

f

s

s

f

f

s

s

f

f

s

s

f

f

×
+

−
+

−

−
+

−
=×

+
−

+
−

−
+

−
=∞

1
11

11

1
11

11

β
β

β
β

β
β

β
β

      2.10 

 

Using the same analogy for the steady state values of the fast and slow system we have: 
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Using the fitted values of A and B to our data and substituting in 2.11 and 2.10 we have: 

 

ZdZ ×=∞ 755.0                        2.12 ZdZ s ×=∞ 582.0 ZdZ f ×=∞ 173.0
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The results in 2.9 shows that using our fitted values subjects can at most compensate for 

~ 75% of the force field and of this amount ~ 58% is learned by the slow system while 

the fast process contributes only to ~ 17%  of total learning. This means that by the end 

of a long training in a force field the slow process learns more than 3 times more than the 

fast process. 

 

In our current model both fast and slow processes learn independently from the external 

errors and the final motor output is considered to be the sum of their values together. This 

is shown in the output and update equations in 2.3. For reasons that become clear later in 

this section we call this version of model, the “multi-timecourse model with parallel 

updating”. 

 

People who have studied motor learning in cerebellum often think of fast and slow 

processes in learning to have a sequential updating rule. In a recent study of savings in 

classical eye blink conditioning in rabbits by Medina et al, the authors hypothesized two 

sites of plasticity one in the cerebellar cortex and the other in cerebellar nucleus. During 

eyelid conditioning, the first changes involved decreased activity of Purkinje cells during 

the CS . This decrease was produced by the US activating the climbing fiber input and 

lead to the induction of LTD at CS-activated granular to Purkinje synapses as soon as 

acquisition training was started. In contrast, induction of plasticity at the mossy fiber to 

nucleus synapses was not directly under the control of inputs activated by conditioning 

stimuli but was instead under the control of Purkinje cells (see Figure 2.23). 
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Figure 2.23 

 

Therefore, during the eye lid conditioning, the induction of LTP at mossy fiber to nucleus 

synapses begins after plasticity in the cerebellar cortex have started to produce transient 

decreases in Purkinje activity during the CS. This necessarily makes the induction of 

plasticity at simulated mossy fiber to nucleus synapses lag behind plasticity at granular to 

Purkinje synapses. This interaction between cortex and nucleus can make the induction of 

plasticity somewhat sequential. In this learning scheme the fast learning module which is 

dependent on the cerebellar cortex (Purkinje cells) learns directly from input while the 

slow learning system in the nucleus learns from the input indirectly through the fast 

process.  
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We can write a new state space equation for the sequential updating of the fast and slow 

process, we have: 
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This is the multi-timecourse model with sequential updating. Here the slow process 

learns from the fast system with learning rate being  and it has a retention capacity C. sK

The fast process learns with the learning rate D. Instead of forgetting toward zero we 

assumed that the fast system forgets toward the slow process with rate .  fK
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                                                                     Figure 2.24  

 

Figure 2.24 shows the step response of this version of the multi-timecourse model as well 

as the parallel version discussed before. The sequential updating can also predict the 

transient recovery of the old memories observed in our error-clamp experiment as shown 

in Figure 2.24. One can see that although both model versions have very similar 

behaviors their internal states are evolving quite differently from each other. This 

difference is most evident in comparing the relative levels of the fast and slow processes 

in both updating versions. Yet it seems that this internal difference has not resulted in a 

measurable net adaptation difference in performance for the paradigms shown in figure 

2.24. 
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Shown below is the experimental data together with the sequential updating model as 

fitted to the data: 
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                                                                           Figure 2.25  

 

The fitted values for the sequential model are as follows: 

375.0=fK         295.0=D 991.0=C   012.0=sK       97.02 =R
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We can see that the quality of the fit using the multi-timecourse model with sequential 

updating is as good as the fit with the parallel version of the model. 

 

One can easily show that this model can also explain the other motor memory behaviors 

explained by the parallel version including savings, anterograde interference, rapid 

unlearning and rapid down scaling. So the question is which of the two versions of the 

model are closer to the reality of what happens in the brain? Do we have two learning 

processes that learn independently from errors or is it the case that the learning of the 

errors propagates sequentially between the two? 

 

  Because these two representations can have very similar input-output behavior, 

behavioral experiments alone in animals or people with normally functioning motor 

learning systems may not be able to distinguish between them.  However the combination 

of behavioral experiments with neurophysiology and lesion studies may be able to extract 

the neural architecture of this multi-rate system, by assigning the properties of partially 

functioning systems and accessing intermediate internal representations.  
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2.7 Summary 

 

We hypothesized a motor adaptation model with two learning processes with distinct 

time courses of learning, and showed how this model can be used to explain various 

puzzling phenomena observed in motor skill learning so far. The successes of this model 

open a new direction for investigating the properties of the fast and slow processes in 

motor learning. There are a series of interesting questions one might want to explore in 

relation to the multi timecourse model: 

 

1. Apart from the different time constants of trial to trial learning, how the 

contribution of the fast vs. slow system may be different to the total motor output 

during a trial? 

 

2. How does each of these two processes generalize across arm configurations as 

well as between arms? 

 

3. How can we relate these two learning systems to regions of brain involved on 

learning? 

 

4. How can we expand the present multi time-course model to account for formation 

of multiple motor memories which can act as priors to facilitate or inhibit new 

learning? 
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We will try to look at the generalization patterns of the two processes between two arms 

in the next chapter. A complete treatment of each of these questions can provide 

guidelines for future research. 
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Chapter III 

Interlimb Generalization of Learning 

 

In this chapter we are going to study how the generalization of the fast and slow 

processes might be different in the interlimb transfer of learning.  

 

3.1 Interlimb transfer paradigm: Generalization properties of fast and slow 

processes? 

 

The motivation to study this topic came form an experimental report by Malfait and Ostry 

2004 in which the authors claimed that with long gradual introduction of the curl force 

field there was no significant transfer of learning from trained to untrained hand while 

adaptation to a sudden introduction of load for a short time with one hand shows 50% 

generalization to the untrained hand if the trained hand was dominant. They explained 

this data by proposing that the cognitive factor of seeing large errors makes subjects 

aware of the fact that they are actively adapting to a new environment and that is this 

cognitive awareness which indeed is causing an inter-limb transfer of learning to happen. 

They then argued that for the same reason in the case of gradual increase of the field 

strength, subjects are mostly unaware of the small trial-to-trial adjustments they make to 

maintain a straight and smooth trajectory to the target because they do not observe 

noticeable and consistent visual errors.  
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We thought that maybe our multi-timecourse model of learning can provide a better and 

less presumptive explanation for the transfer experiment by Malfait et al. Figure 3.1 

shows the adaptation of the multi-timecourse model1 to a step change in input which is 

the same as a sudden turning on of the force field. One can see as a response to the abrupt 

change in the input the fast system changes quickly to compensate for the errors while the 

slow system is lagging behind and slowly building. Therefore by the end of a short 

training period the fast system is carrying 68% of the total learning while the slow 

process is only contributing to 32%.  On the other hand for the gradual input the slow 

process has enough time to catch up with the input. So for the same level of total 

performance this time the slow system carries up to 61% of the learning which is 

considerably higher than the sudden input turn on. The vertical black line in the lower left 

plot of figure 3.1 shows the trial number in which the total performance of the system 

given the gradual input is equal to the total performance given the sudden input on the 

right plot.  

                                                 
1  Here we assume a multi-timecourse model with parallel updating. The sequential updating in this case 
cannot make the same predictions as the parallel updating. (See figure 2.24 for relative levels of the fast 
and slow systems in both updating regimes) 
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                                                                               Figure 1.3  

 

 

But could this difference in the contribution of the fast vs. slow system to the total 

amount of learning explain the different generalization pattern seen for the abrupt vs. 

gradual input change seen by Malfait et al.? 

 

We can explain Malfait et al. data if we assume that the slow system has a poor 

generalization between arms while the fast process generalizes well across limbs. This 

way one can easily see that since during a short sudden training most of the learning is 
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being carried by the fast system naturally the transfer of this learning will be much better 

than the transfer with a gradual input training where the slow process is mostly 

responsible for learning.  

 

One of the interesting properties of the linear time invariant (LTI) systems like the multi-

timecourse models is that regardless of the history of the input, the final steady state of 

the system and its processes are only dependent on the final input steady state value. This 

means that no matter if the input is applied gradually or suddenly as long as it maintains a 

steady state level long enough, the steady state values of the fast and slow systems are 

going to be the same for the same final input levels. Figure 3.2 illustrates this situation. 
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                                                                 Figure 3.2  

 

This means that if our hypothesis about generalization differences for the fast and slow 

systems across arms is right we should be able to see transfer results similar to the long 

gradual input case if we apply a sudden input but train the subjects long enough so that 

the slow process takes over. In other words our theory makes a somewhat counter 

intuitive prediction that with short amounts of training in an abrupt field there will be 

bimanual transfer while with long periods of training this transfer would be diminished. 
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We can use this phenomenon to design a simple experimental paradigm to contrast our 

hypothesis about different generalization properties of the fast and the slow system 

against Malfait’s idea about involvement of cognition in the bimanual transfer of 

learning. Notice that the cognitive transfer of learning should not depend on whether 

subjects are trained for a long or a short period as long as the introduction of the load is 

sudden; subjects observe noticeable errors in the training which will make them aware of 

their adaptation. This means that according to Malfait et al. we should see the same 

pattern of transfer for the long training as with the short training for the sudden input 

change. 

 

3.2 Experimental design 

 

16 healthy (10 female 6 male) right handed subjects participated in our study. The 

experiment consisted of three training paradigms that we were interested to study, 

namely: Short training with Sudden force field introduction (SS), Long training with 

Sudden force field introduction (LS) and Long training with gradual force field 

introduction (LG). We wanted to study how the transfer of learning is different for these 

three paradigms. To be able to do within subject comparison we decided to do all three 

input conditions in each subject. In their study Malfait and Ostry compared SS with LG in 

each subject and they found a difference in the amount of generalization for each 

condition, that is SS training transfers to the untrained hand while LG training does not. 

In order to be able to draw sensible conclusions comparing our data with Ostry’s group 

we designed the experimental procedures to be exactly like theirs: 
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Subjects made 12 cm point-to-point reaching movements to 1 cm diameter targets. They 

were trained to have movement times within ±50 msec of the desired time which was set 

to be 500ms. Two sets of targets were defined, one set for each hand (see Fig. 3.3). Both 

arms had roughly the same configuration; initial elbow angles were set at 90°, and 

shoulder angles were 50°. For each arm, target 1 corresponded to a movement away from 

the body, and target 2 corresponded to a movement toward the body. The robot produced 

a force field in which the force f was a function of the velocity of the hand v; 

specifically , where , with Bvf = ⎥
⎦

⎤
⎢
⎣

⎡
−

=
0;

;0
α
α

B 1sec −⋅⋅ mN 150 ≤< α .  

 

                                                                                                 Figure 3.3 

 

At the end of each movement, subjects moved back toward the origin in a force channel 

which was supposed not to have any considerable effect on the motor adaptation (In 

Malfait’s experiment robot brings the hand back). Subjects were trained to move in the 
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force-field environment with their right hand and were tested for transfer of adaptation to 

their left hand.  

Before training with the right hand all the subjects did a familiarization set of 30 trials 

and then a single set of 60 movements in null with their left hands. Three pseudo 

randomly selected “force-field catch trials” during which the motors of the robot were 

turned on, were introduced in this set to evaluate the effect of the force field before any 

learning. 

 

 After these initial movements with the left hand the following two training conditions 

were defined: a “sudden training,” in which the load was introduced suddenly, and a 

“gradual training,” in which it was gradually introduced. The sudden training itself had 

two subcategories. 

 

 The short sudden paradigm (SS), consisted of a familiarization set of 30 trials and a 

single set of 60 trials (60 out and 60 back in force channel). The long sudden paradigm 

(LS) consisted of a familiarization set, two sets of 60 trials and a set of 85 trials. The 

gradual training paradigm (LG) had the same set structure as LS, one familiarization set, 

two set of 60 trials and a set of 85 trials.  

 

In the sudden-training condition, after 45 movements were performed with the motors of 

the robot turned off (“null field”), the force field was unexpectedly and abruptly turned 

on; that is, the value of α flipped from 0 to 15  between the 45th and the 46th 

trial and remained at this value for the final 15 trials (from 46

1sec −⋅⋅ mN

th trial to the 60th trial). In 

 94



contrast, in the gradual-training condition, the force field was gradually increased; the 

value of α changed smoothly from 0 to 15  over 145 trials after 45 movements 

in null. Specifically, the change in α was nonlinear: , with n = trial number and  

1sec −⋅⋅ mN

xn=α

x = log(15)/log(145), to obtain 15145 )15log(
)145log(

==α   on the 145th trial. As 

in the abrupt-training condition, the amplitude of the field remained constant for the final 

15 trials. Figure 3.4 depicts the experimental paradigms and the set designs as explained 

above. 

1sec −⋅⋅ mN
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                                                                 Figure 3.4  

 It should be noted that subjects performed an unequal number of trials in the three 

training conditions (160 trials in field for LS and LG and 15 trials in field for SS ). 

Subjects received more training in the LS and LG conditions than in the SS. These 

differences can only favor transfer of learning for the LS and LG condition. 
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Figure 3.5 shows the experimental results obtained by the Ostry’s group. In their 

experiment they only studied the differences in the transfer of LG vs. SS. To be able to do 

within subject comparisons, each subject first moved to one of the two targets in one of 

the two paradigms (i.e. LG or SS) then after finishing the first paradigm, moved to the 

other target  away in the second paradigm. The order of targets and paradigms were 

randomized into 4 groups as shown in table 3.1. 

°180

 

   Table 3.1 

 

 

 

As shown the Short Sudden (SS) training shows a significant reduction of the errors 

compared to the naïve group as measured by the angular difference from the straight line. 

The Long Gradual (LG) training shows no transfer and its performance seems to fall on 

top of the performance of the naïve subjects who were doing the task for the first time 

with their left hand. 
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  Figure 3.5  

Comparing the performance of the first transfer trial with subjects’ force field catch trials 

in the Short Sudden (SS) paradigm also shows some 50% improvement in the angular 

deviation. This effect is absent for the Long Gradual (LG) paradigm. 

 

 In order to test our hypothesis we needed to compare the performance of the Short 

Sudden (SS) and Long Gradual (LG) paradigm with Long Sudden (LS) paradigm. We 

asked each subject to do two experiments. In one of the experiments we had a 

comparison of LS vs. SS transfer properties while in the other experiment we compared 

the transfer properties of LS and LG. Each experiment took approximately 1 hour. To 

randomize all the orderings in the experiment we needed to have a total of 32 groups of 

subjects which seemed impractical. Instead we decided to have 8 groups of two subjects 

each. Table 3.2 shows our group trainings. In each experiment training #1 was done in a 

clockwise field while training #2 was done in a counter clockwise field. 
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                                                                                                                                                          Table 3.2  

 

3.3 Experimental results 

 

Figure 3.6 shows our experimental results for all groups of subjects combined using 

angular deviation from the straight line to quantify learning. As can be seen all our 

training paradigms result in similar performance indexes in the transfer trials. As shown 

below we did not see any significant transfer in any of the three training paradigms, 

comparing the first transfer trial with the force field catch trial. This data seems really 

puzzling when contrasted to what Ostry’s group has reported which showed a clear and 

significant transfer up to 50% of learning in the Short Sudden (SS) paradigm. The 

difference between our results and Ostry’s group becomes more striking when one bears 

in mind that our experimental procedures were designed to exactly match Ostry’s group. 
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      Figure 3.6 
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Figure 3.7 shows that learning is taking place normally during training with the right 

hand. 
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         Figure 3.7 
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To have a more direct comparison of the transfer of the learned force field to the left hand 

with naïve condition, we further conducted a control experiment using 4 healthy 

individuals. The control group always moved in the null condition with the right hand 

therefore their performance on the transfer trials with the left hand can be considered as 

naive movements in the force field. Since there is no force field applied to the right hand, 

the control subjects had only two different training conditions: a short training condition 

during which subject did a familiarization set of 30 trials and then a single set of 60 

movements in null with their right hand and a long training condition in which subjects 

did a familiarization set of 30 trials, two sets of 60 trials and a set of 85 trials. The set 

design for the left hand was the same as the main experiment. We divided our four 

subjects into two groups each consisting of two subjects. First group received short 

training in one direction first and the long training in the other direction while the other 

group had first the long training and then the short training. Table 3.3 shows the 

experimental conditions for both groups.  

                        Table 3.3 

 

Shown below are the results of the transfer trials with the left hand for both groups of 

control subjects combined. 
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Figure 3.8 

 

If we superimpose the performance of the control groups with our main experimental 

groups, one can see that there is hardly any evidence that the performance of the left hand 

in the field might be affected by training of the right hand since the error sequence for the 

control group seems to overlap with the data from our main experimental paradigm. 

Notice that we have used the Long control trials as the control for LS and LG conditions 

and the Short control trials as the control for the SS condition. 
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                                                                         Figure 3.9 

  

 

 

 

 103



3.4 Summary  

  

Our goal in this chapter was to provide an alternative explanation for the results of the 

interlimb transfer experiment done by Malfait and Ostry based on our Multi-timecourse 

model. We hypothesized that by assuming considerable bimanual transfer for the fast 

process but not for the slow process, one can easily explain the advantage of the short 

sudden training over the long gradual training in transfer of learning to the untrained arm. 

This explanation can be contrasted with the Ostry’s theory which emphasizes the role of 

cognitive awareness in the amount of transfer to the naïve arm, using the experimental 

paradigm described in this chapter. Unfortunately we were not able to see any transfer to 

the untrained arm in any of our conditions. The source of this failure to reproduce the 

transfer results is not evident for us at the moment especially since we tried to copy our 

experimental paradigm exactly the same way as it was designed by Ostry’s group.  

 

Although we have not been able to show any difference in bimanual generalization 

properties of the fast and slow system, the questions raised in the previous chapter related 

to the differences in the neural substrates and output properties of these two processes as 

well as the possible existence of other motor memory systems that work on longer time 

scales can provide us with new directions for future research in motor learning.  
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