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abstract  We review some of the impairments in motor control, 
motor learning and higher-order motor control in patients with 
lesions of the cerebellum, parietal cortex, and basal ganglia. We 
attempt to explain some of these impairments in terms of compu-
tational ideas such as state estimation, optimization, prediction, 
cost, and reward. We suggest that a function of the cerebellum is 
system identification: to built internal models that predict sensory 
outcome of motor commands and correct motor commands 
through internal feedback. A function of the parietal cortex is state 
estimation: to integrate the predicted proprioceptive and visual 
outcomes with sensory feedback to form a belief about how the 
commands affected the states of the body and the environment. 	
A function of basal ganglia is related to optimal control: learning 
costs and rewards associated with sensory states and estimating the 
“cost-to-go” during execution of a motor task.

Over the last 25 years, a large body of experimental and 
theoretical work has been directed toward understanding 
the computational basis of motor control, particularly visu-
ally guided reaching. Roboticists and engineers largely initi-
ated this work, with the aim of deriving from first principles 
some of the strikingly stereotypical features of movements 
observed in people and other primates. That is, they aimed 
to understand why we move the way that we do. The theo-
ries began to explain why in reaching to pick up a cup or in 
moving the eyes to look at an object, there was such consis-
tency in the detailed trajectory of the hand and the eyes. In 
many ways, the approach was reminiscent of physics and its 
earliest attempts to explain regularity in motion of celestial 
objects except that the regularity was in our movements, and 
the search was for theories that explained our behavior. 
Here, we will summarize these theories and then link them 
to experimental findings in healthy subjects and in patients 
with neurological disease.

The computational problem of motor control

In 1954, Fitts published a short paper in which he reported 
that there were regularities in people’s movements (Fitts, 
1954). He asked volunteers to move a pen from one “goal 
region” to another as fast and accurately as they could. He 
found that the movement durations grew logarithmically as 
a function of the distance between the goals (figure 40.1). 
This relationship was modulated by two factors. One factor 
was the size of the goal region. As the goal region became 
smaller, movements slowed down. A second factor was the 
mass of the pen. People slowed their movements when they 
moved a heavier pen. To explain these results, consider that 
the target box was surrounded by two penalty regions, so it 
seems rational to aim for the center of the target box. What 
if the penalty region was only on one side? Now one should 
aim for a point farther away from the penalty region and not 
at the center of the target box (Trommershauser, Gepshtein, 
Maloney, Landy, & Banks, 2005). This is because move-
ments have variability, and one will maximize reward (in 
terms of sum of hits and misses) if one take into account this 
variability. This variability explains the speed of movements 
in Fitt’s experiment and the sensitivity to pen weight: Rapid 
movements are more variable than slow movements, so one 
should slow down if there is a need to be accurate. Moving 
heavier objects tends to increase movement variability, again 
requiring a reduced speed to maintain accuracy. Therefore 
in planning our movements, our brain takes into account 
movement variability because variability affects accuracy, 
which in turn affects our ability to acquire reward.

Harris and Wolpert (1998) began formalizing these ideas 
by linking variability and movement planning. They noted 
that larger motor commands required larger neural activity, 
which in turn produced larger variability owing to a noise 
process that grew with the mean of the signal. Therefore, 
motor commands carried an accuracy cost because the 
larger the command, the larger the standard deviation of the 
noise that rides on top of the force produced by the muscles 
(Jones, Hamilton, & Wolpert, 2002). Noise makes move-
ments inaccurate.

In a sense, the theory restated the purpose of move‑	
ments using language of mathematics: Be as fast as possible, 
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while trying to be as accurate as the requirements imposed 
by the task. However, by doing so, it forced the theorists 	
to think how one would actually achieve this optimality. 
Certainly, the solution to the problem could not be “hard 
wired.”

First, costs and rewards of tasks are not constant. Take 
the simple saccade task in which an animal is given more 
reward for certain visual targets and less for others. Hikosaka 
and colleagues (Takikawa, Kawagoe, Itoh, Nakahara, & 
Hikosaka, 2002) examined eye trajectories when a monkey 
was asked to make saccades to various target locations. They 
noted that peak speeds tended to be higher and less variable 
when saccades were to rewarded target locations. Therefore, 
when the expected rewards of the task change, movement 
planning responds to these changes.

Second, the brain alters movement planning as the 
dynamics of the body or a tool change (e.g., the light versus 
heavy pens in figure 40.1). That is, the nervous system 
cannot rely on a motor plant that is time-invariant. Rather, 
it seems more reasonable that the nervous system should 
monitor these changes and form an internal model of the plant 
and/or the tool (Shadmehr & Mussa-Ivaldi, 1994). Indeed, 
maintaining performance in something as simple as a saccade 
or a reach probably requires constant adjustment of this 
internal model (Smith, Ghazizadeh, & Shadmehr, 2006; 
Kording, Tenenbaum, & Shadmehr, 2007).

Todorov and Jordan (2002) recognized that a key com-
ponent of the problem was presence of feedback. One 	
type of feedback is from sensory receptors that monitor the 
state of the body and the world. Another type of feedback is 
from internal models that monitor the motor output and 
predict their sensory consequences, effectively providing a 
form of internal feedback. Internal predictions can be made 
long before sensory feedback, making some very rapid 	
movements such as saccades depend entirely on internal 
feedback (Chen-Harris, Joiner, Ethier, Zee, & Shadmehr, 
2008). However, for longer movements, the two kinds of 
information would need to be combined to form a belief 
about the state of the body. Todorov and Jordan (2002) 
suggested that a more appropriate mathematical approach 
was to first describe the constraints of the task in terms of 	
a function that included explicit terms for gains and 	
losses and then maximize that function in the framework of 
feedback control. This new formulation was a breakthrough 
because it formally linked motor costs, expected rewards, 
noise, sensory feedback, and internal models into a single, 
coherent mathematical framework (see chapter 42 for a 
thorough introduction).

We summarize this framework in figure 40.2A. At the 
heart of the approach is the idea that we make movements 
to achieve a rewarding state. The rewards we expect to get 
and the costs we expect to pay determine the trajectory we 
choose to execute and how we will respond to sensory feed-
back. To make the “best” movement, our brain needs to 
solve three kinds of problems: We need to be able to accu-
rately predict the sensory consequences of our motor com-
mands (this is called system identification), we need to combine 
these predictions with actual sensory feedback to form a 
belief about the state of our body and the world (called state 
estimation), and then given this belief about the state of our 
body and the world, we have to adjust the gains of the sen-
sorimotor feedback loops so that our movements maximize 
some measure of performance (called optimal control).

Here, we will suggest a specific computational neuro-
anatomy of the motor system (figure 40.2B). In this frame-
work, the basal ganglia help to form the expected costs of 
the motor commands and the expected rewards of the 
sensory states. The cerebellum plays the role of predicting 
the sensory consequences of motor commands, that is, the 
expected changes in proprioceptive and visual feedback. 
The parietal cortex combines the expected sensory feedback 
with the actual sensory feedback, computing a belief about 
the current proprioceptive and visual states. Given the motor 
costs and expected rewards of the sensory states, the premo-
tor and the primary motor cortex assign “feedback gains” to 
the visual and proprioceptive states, respectively, resulting in 
sensorimotor maps that transform the internal belief about 
states into motor commands.

Figure 40.1  Accuracy constraints affect control of reaching. 	
Volunteers were instructed to tap the two goal regions with a pen 
as many times as possible during a 15-s period. Movement time 
increased as the accuracy requirements increased (width of target 
region decreased) and as the weight of the hand-held pen increased. 
(Figure constructed from data in Fitts, 1954.)
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Figure 40.2  A schematic model for generating goal-directed movements. See the text for explanation of variables and box labels.

The computational problem in reaching

Let us use the well-studied reach adaptation paradigm to 
formulate the problem in the framework outlined in figure 
40.2. What are the costs and rewards of a reaching task? 
Suppose that we are instructed to hold a tool and move it 
so that a cursor displayed on a monitor arrives at a target. 
If we accomplish this in a specific time period, we are pro-
vided a monetary reward, or juice, or perhaps a “target 
explosion.” We can sense the position of the cursor yv and 
the target r via vision and position of our arm yp via pro-
prioception. Through experience in the task, we learn that 

the objective is to minimize the quantity (yv
(t) − r)T (yv

(t) − r) 
at time t = N after the reach starts (e.g., this is the time that 
the movement is rewarded if the cursor is in the target). 
Superscript T is the transpose operator. To denote the fact 
that this cost is zero except for time N, we write it as

y r y rv
t T t

v
t

t

N

Q( ) ( ) ( )

=
−( ) −( )∑

1

where the matrix Q is a measure of our cost at each time 
step (which may be zero except at time N). That is, matrix 
Q specifies how important it may be for us to put the cursor 
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in the target. If we value the reward, then we set this variable 
to be large.

There is also a cost associated with motor commands u. 
This cost may reflect a desire to be as frugal as possible with 
our energy expenditure, or it may reflect the fact that the 
larger the motor commands, the larger the noise in the forces 
that are produced by the muscles, resulting in variability. 
This variability increases the difficulty in controlling the 
movement. As a result, we want to produce the smallest 
amount of motor commands possible. Now the total cost 
becomes

	
J Q Lv

t T t
v
t

t

N
t T t= −( ) −( ) +( ) ( ) ( )

=

( ) ( )∑ y r y r u u
1

	 (1)

where matrix L is a measure of the costs associated with the 
motor commands. The relative weight of Q and L is an 
internal measure of expected value of achieving the goal 
versus expected motor costs.

To be successful in this task (consistently arrive at the 
target in time), we need to find the motor commands that, 
on the one hand, are as small as possible and, on the other 
hand, are large enough to get the cursor to the target in time. 
To do so, we need some way to relate motor commands to 
their outcomes. This is called an internal model. For example, 
through observation, we learn that moving the tool moves 
the cursor on the screen. In particular, motor commands u(t) 
are expected to produce proprioceptive and visual feedback 
ŷ (t) = [ŷv

(t), ŷp
(t)]. These are the expected sensory consequences 

of our action. Here, we write this “internal model” as a 
linear function of motor commands:

	

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ

x x u
y x

t t t t t

t t
A B
H

+( ) ( ) ( )

( ) ( )
= +
=

1

	 (2)

where x̂ (tt) represents the predicted state (of our body and 
the world) at time t given the sensory feedback up until that 
time, H is a transformation of those states to expected sensory 
feedback ŷ (t) (i.e., proprioception and vision), and x̂ (t+1t) is 
predicted state at time t + 1 given the state and motor 
command at time t. Equation 2 describes an internal 	
model of the dynamical system that we are trying to control. 
The actual dynamics of that system may be more compli-
cated. For example, the motor commands may carry signal-
dependent noise åu

(t), that is, a noise in which the standard 
deviation grows with the size of the motor command. In 
general, there may be similar signal-dependent noises on our 
sensory system, åy

(t). In sum, a reasonable representation of 
the stochastic system that we are trying to control might be 
written as

	

x x u
y x

t t t
u
t

t t
y
t

A B
H

+( ) ( ) ( ) ( )

( ) ( ) ( )
= + +( )
= +( )

1 å
å 	 (3)

As motor commands are generated, we receives a 	
continuous stream of sensory feedback y. We combine the 

predicted sensory feedback with the observed quantities to 
form a belief about states:

	
ˆ ˆ ˆx x yt t t t t t tK+ +( ) +( ) +( ) +( ) +( )= + −( )1 1 1 1 1 1y 	 (4)

In this equation, the term x̂ (t+1t+1) is the belief state at time 	
t + 1, given that we have acquired sensory information at 
that time. K is a mixing gain (or a Kalman gain) that deter-
mines how much we should change our belief on the basis 
of the difference between what we predicted and what we 
observed. Therefore, equation 2 describes how we make 
predictions about sensory feedback, and equation 4 describes 
how we combine the actual sensory observations with pre-
dictions to update beliefs about states.

Our task is to perform the movement in a way that maxi-
mizes our chances for reward. If equation 2 is an accurate 
model of how motor commands produce changes in the 
states, then we can use it as a set of constraints with which 
to minimize equation 1. Because there is noise in our system, 
the cost J in equation 1 is a stochastic variable. At each time 
point during a movement, the best that we can do is mini-
mize the expected value of this cost, given the state that we 
believe to be in and the motor commands that we have 
produced: E{J (t)x̂ (t−1), u(t−1)}. The term E{J(t)} reflects the 
expected value of the cost-to-go, that is, the total cost remain-
ing in the current trial. The result is a feedback control 
“gain”:

	

u x
x x

t t t t

p
t

p
t t

v
t

v
t t

G
G G

( ) ( ) −( )

( ) −( ) ( ) −( )
= −
= − −

ˆ
ˆ ˆ

1

1 1 	 (5)

The new variable G is a matrix that changes with time 
during a movement. It tells us how at time t, we can trans-
form beliefs in sensory states (in terms of proprioception and 
vision) into motor commands so that we maximize perfor-
mance in the remaining task time.

Some examples

As an example, consider a simple task first described by Uno, 
Kawato, and Suzuki (1989) and shown in figure 40.3A. The 
objective is to reach from point T1 to T2. In one condition, 
the subject is holding a lightweight tool that moves freely in 
air. In a second condition, the tool is attached to a spring 
that pulls the hand to the right. Without the spring, people 
reach in a straight line. This is the path that minimizes the 
cost. However, once the spring is attached, the straight path 
incurs substantially more motor costs than a curved path. 
The curved path is the one that subjects choose (Uno et al., 
1989).

In our second example, the task is to move one’s hand 
from one point to another in a given amount of time (450 ms), 
but now instead of a spring, there is a velocity-dependent 
field that pushes the hand perpendicular to its direction of 
motion. Before the field is imposed, the motion that mini-
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To see the rationale for this behavior, figure 40.3C plots the 
forces produced by the optimal controller and compares it 
to forces that must be produced if a mass is moving along a 
“minimum-jerk” trajectory. By moving the hand along a 
curved path, the optimal controller produces less total force: 
It overcompensates early into the movement when the field 
is weak but undercompensates at peak speed when the field 
is strongest. Therefore, the curved path actually produces 
less total force than a straight trajectory does. People produce 
similarly curved trajectories when they move in such fields 
(Thoroughman & Shadmehr, 2000).

The cerebellum: predicting sensory consequences of motor 
commands

According to the theory, we generate motor commands the 
basis of on beliefs about the state of our body and the envi-
ronment (equation 5). This state estimate depends on two 
quantities: a prediction and an observation. The prediction 
comes from an internal model that uses a copy of the motor 
commands to estimate the state change that is expected to 
occur. The observation comes from the sensory system that 
provides a measure of those state changes. That is, our 
beliefs are not based on our observations alone. Rather, our 
beliefs are a combination of what we predicted and what we 
observed (Kording & Wolpert, 2004a; Vaziri, Diedrichsen, 
& Shadmehr, 2006).

Some movements are so fast that there is no time for 	
the sensory system to play a role. A prominent example is 
control of saccades (rapid eye movements that move the eyes 
to a new location typically within 50–80 ms). Such move-
ments are too brief for visual feedback to influence saccade 
trajectory. In fact, the brain actively suppresses visual pro-
cessing during saccades to reduce the perception of motion 
(Thiele, Henning, Kubischik, & Hoffmann, 2002). Further-
more, proprioceptive signals from the eyes do not play any 

Figure 40.3  Task dynamics affect reach trajectories. (A) The task 
is to reach from point T1 to T2. In one condition, the reach takes 
place in free space (straight line). In another condition, a spring is 
attached to the hand. In this case, the subject chooses to move the 
hand along an arc. (B) A velocity-dependent force field pushes the 
hand perpendicular to its direction of motion. For example, for an 
upward movement, the forces push the hand to the left. The motion 
that minimizes cost of equation 1 is not a straight line but one that 
has a curvature to the right. The data show hand paths for a typical 
subject at start of training on day 1 and then at the end of training 
each day. Except for the first and third trials, all other trajectories 
are average of 50 trials. (C ) A rationale for why a curved movement 
is of lower cost. The curves show simulation results on forces that 
the controller produces and speed of movement in the optimal 
control scenario of equation 1 and in a scenario where the objective 
is to minimize jerk. (A is redrawn from Uno et al., 1989. Data in 
parts B and C are  from Izawa et al., 2008.)

mizes the cost (and maximizes probability of reward) is 
simply a straight line with a bell-shaped velocity profile. 
However, when the field is imposed, the solution is no 	
longer a straight line (Izawa, Rane, Donchin, & Shadmehr, 
2008). For example, if the field pushes the hand to the 	
left, the policy that produces the least cost in terms of equa-
tion 1 is one that moves the hand slightly to the right of a 
straight line, resulting in a curved movement that appears 
to overcompensate for the forces (figure 40.3B). As subjects 
train, their hand paths converge to this curved trajectory. 
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significant role in controlling saccade trajectories (Keller & 
Robinson, 1971; Guthrie, Porter & Sparks, 1983). Thus the 
brain must guide saccade trajectories in the absence of 
sensory feedback. How is this accomplished? A plausible 
solution is for the brain to use an internal estimate of the state 
of the eye, derived from a copy of ongoing motor commands 
(Robinson, 1975). This internal feedback probably accounts 
for the fact that variability at saccade initiation is partially 
corrected as the saccade progresses (Quaia, Pare, Wurtz, & 
Optican, 2000). That is, saccades are steered midflight via 
an internal feedback system (Chen-Harris et al., 2008).

What are the neural substrates of this internal feedback? 
The available evidence points to the cerebellum (Optican 	
& Quaia, 2002; Optican, 2005). That is, the cerebellum 
appears to act as a forward model of the plant to produce 
midflight corrections. A simple experiment can test whether 
the cerebellum plays a role in predicting consequences of 
self-generated motor commands. Nowak, Timmann, and 
Hermsdorfer (2007) asked subjects to hold a force transducer 
that measures grip force, and then they attached a basket to 
the transducer. The experimenter dropped a ball into the 
basket. When the ball dropped, it exerted a downward force 
on the hand. The subject responded by squeezing the trans-
ducer so that it would not slip out of his or her hand. Because 
there are delays in sensing the impact of the ball, the grip 
response came about 100 ms after the ball’s impact. Nowak 
and colleagues (2007) described patient HK, who did not 
have a cerebellum, owing to a very rare developmental con-
dition. When the experimenter dropped the ball into the 
basket, both the healthy individuals and HK showed the 
delayed response. Therefore, the sensory feedback pathways 
appeared to be intact. In a subsequent trial, the subject 
(rather than the experimenter) dropped the ball. In a healthy 
individual, the brain can predict that the release of the ball 
will soon result in an impact that will increase the downward 
load. In anticipation of this event, the healthy individual 
squeezed the basket’s handle harder around the time when 
the ball was released. HK, however, could not make this 
anticipatory adjustment. Rather, she responded to the per-
turbation in the same way that she responded when the ball 
was dropped by the experimenter. Therefore, the cerebel-
lum appears to be required for the ability to predict the 
sensory consequences of motor commands (Wolpert, Miall, 
& Kawato, 1998).

The cerebellum and construction of internal models

It is not easy to make accurate predictions about the sensory 
consequences of motor commands; our muscles respond dif-
ferently depending on their fatigue state, and our limbs move 
differently depending on whether we are holding a light or 
heavy object. To maintain accuracy of the predictions, our 
brain needs to learn from the sensory feedback and adapt 

its internal model. This adaptation can be simple, such as 
changing parameter values of a known structure (changing 
A, B, or H in equation 2), or complex, such as identifying 
the structure de novo (replacing the linear form of equation 
2 with some nonlinear function). The cerebellum appears to 
be one of the crucial sites of this process.

Cerebellar damage often prevents individuals from learn-
ing how to use novel tools. For example, when subjects are 
asked to move the handle of a robotic tool to manipulate 
cursor positions, they may not be able to learn to compen-
sate for forces generated by the robot (Maschke, Gomez, 
Ebner, & Konczak, 2004; Smith & Shadmehr, 2005) or to 
compensate for the novel visual feedback through a mirror 
(Sanes, Dimitrov, & Hallett, 1990). If the cerebellum is the 
crucial site for learning internal models, then it probably 
makes its contribution to control of reaching via its outputs 
to the thalamus, which in turn projects to the cerebral cortex. 
In humans, it is possible to reversibly disrupt this pathway. 
Essential tremor patients are occasionally treated with deep-
brain stimulators that artificially disrupt the ventrolateral 
thalamus, improving their tremor. However, these patients 
learn the reach task better when the stimulator is turned off 
(Chen, Hua, Smith, Lenz, & Shadmehr, 2006). In contrast, 
patients with damage to the basal ganglia showed little 	
or no deficit in adaptation with either the robot task (Smith 
& Shadmehr, 2005) or the mirror task (Agostino, Sanes, & 
Hallett, 1996; Gabrieli, Stebbins, Singh, Willingham, & 
Goetz, 1997). Therefore it seems quite likely that the cere-
bellum is a key structure that allows us to learn tool use.

Experiments show that the cerebellar damage causes 
abnormalities in adaptation to both kinematic (Tseng, 	
Diedrichsen, Krakauer, Shadmehr, & Bastian, 2007) and 
force (Smith & Shadmehr, 2005) perturbations. One unifying 
concept is that the cerebellum may be the site of the internal 
model that predicts the sensory consequences of motor com-
mands (equation 2). The output of the internal model could 
be used to generate a prediction error that drives adaptation 
and also be used to update a previous estimate of limb state. 
Support for this idea comes from a recent experiment in 
which transcranial magnetic stimulation was used to disrupt 
the lateral cerebellum in human subjects while they slowly 
moved their arm in preparation for a making a rapid reach-
ing movements (Miall, Christensen, Owen, & Stanley, 2007). 
Reaching errors in initial direction and final finger position 
suggested that the reaching movements had been made from 
an estimated hand position that was approximately 140 ms 
out of date, consistent with a role for the cerebellum in itera-
tively updating limb state.

Learning the rewarding nature of sensory states

You might expect that a severely amnesic individual who 
was performing a novel task would have to be regularly 
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reminded of the task’s instructions. For example, if it is a 
reaching task, we might have to repeat “try to move the 
cursor to the target fast enough so it explodes.” However, 
when we examined the severely amnesic patient HM on the 
standard reach adaptation task with the robot (Shadmehr, 
Brandt, & Corkin, 1998), after he had exploded a few targets, 
he no longer needed verbal reminders. The visual appear-
ance of the target was enough for him to initiate a reaching 
movement. Strikingly, when he returned a few hours later 
(or the next day), he voluntarily reached for the robot handle 
and began preparing for onset of targets by moving the 
cursor to the center location (naïve individuals avoid touch-
ing the machine). It was clear that despite having no con-
scious recollection of having done the task before, some part 
of HM’s brain recognized that the contraption was a tool 
that had a particular purpose: to manipulate cursors on a 
screen. This behavior suggested that during the first session, 
he implicitly learned the reward basis of the task (equation 
1). (For HM, the target explosion triggered a childhood 
memory of going bird hunting. As he was performing the 
task and was able to get a target explosion, he would spend 
the next few minutes describing the memory in detail: the 
type of gun that he used, the porch in the rear of his child-
hood home, the terrain of the woods in his backyard, and 
the kinds of birds that he hunted.) What brain regions were 
involved in learning the rewarding nature of bringing the 
cursor to the target?

Experiments on action selection in rodents provide impor-
tant insights into this question. For example, suppose that a 
rat is released into a pool of water from some random start-
ing point. A platform is positioned in a specific location just 
below the water line and cannot be seen. The platform is 
always at the same location in the pool. Rats dislike being 
wet and will try to find a way to elevate themselves. The 
normal rat can learn to locate the platform position by 
paying attention to the visual cues that surround the pool. 
This requires learning a spatial map of where the platform 
is located with respect to the surrounding visual cues. With 
repeated swims, the animal learns a spatial map. This spatial 
map is analogous to a reward function that associates places 
in the pool with the likelihood of the platform (and therefore 
the likelihood of not having to be wet).

Once the map has been learned, the animal can find the 
platform regardless of where the rat is released into the water 
because the map is with respect to the cues on the walls. If 
the platform is removed, the normal animal will spend most 
of the time searching in the region where the platform should 
be. Sometimes, certain cues are rewarding no matter where 
they are located. Consider a pool where there are two hidden 
platforms: one that is large enough for the rat to mount and 
one that is too small. Both have a distinct visual cue associ-
ated with them: a little flag attached to each platform, each 
of a different color, sticking out of the water. Suppose that 

the flag attached to the large platform is red and the flag 
attached to the small platform is green. The platforms may 
be positioned in any part of the pool and will change from 
trial to trial. Therefore, in this experiment, the animal needs 
to learn that the red flag indicates the location of the suitable 
platform and is a rewarding object. In another version of the 
experiment, the large platform will always be located in a 
particular spatial location, but the flag on top of it will be a 
random color. In this version of the experiment, the animal 
needs to learn that it is not the color of the flag that is impor-
tant, but the spatial location.

We see that there is a natural competition between the 
learning systems that might be involved in these two condi-
tions: Is the platform in the same “place” as before (where 
place refers to a location in the spatial map), or is the plat-
form always where the red flag is located? Packard and 
McGaugh (1992) performed both experiments by having 
their animals swim eight times per day for a number of days. 
They recorded the number of times the animals mounted 
the small platform and labeled these as errors. In the first 
experiment, in which reward was associated with the red 
flag, healthy animals gradually learned to swim to the red 
flag. Interestingly, animals with damage to the medial tem-
poral lobe learned the task just as well as the healthy controls 
did. However, animals with damage to the caudate nucleus 
were much slower in learning the association. After days of 
training, they continued to attempt to mount the platform 
under the green flag. Therefore it appears that the ability to 
associate reward to stimuli regardless of its spatial location 
depends on the basal ganglia.

In the second experiment, in which reward was associated 
with a spatial location, healthy animals gradually learned to 
swim to that location and ignore the color of the flag. Animals 
with damage to the caudate nucleus performed similarly to 
the healthy controls. However, animals with damage to the 
medial temporal lobe were much slower in learning the 
association. Therefore the ability to associate reward to a 
spatial location depends on the medial temporal lobe.

Returning to our observations in HM, we would speculate 
that it was his basal ganglia that learned that if he were to 
place the cursor in the box on the screen and do so rapidly, 
a rewarding state would be experienced (explosions, which 
triggered a pleasant childhood memory). During the later 
sessions, the visual appearance of the machine and the act 
of holding its handle likely triggered a recall of this reward 
structure.

Effects of striatal damage on the assessment of  
movement costs and rewards

One of the striking features of damage to the human stria-
tum is micrographia, an impairment of writing in which 
letters become very small and writing speed becomes slow. 
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This condition is most common in degenerative diseases of 
the basal ganglia such as Parkinson’s disease (Van Gemmert, 
Teulings, & Stelmach, 2001). However, it can also occur 
with focal lesions. Consider patient FF, an individual who 
suffered an ischemic stroke in the left basal ganglia, in 	
the head of the caudate nucleus and the anterior part of 	
the putamen (Barbarulo, Grossi, Merola, Conson, & 
Trojano, 2007). When FF was asked to copy a four- or eight-
letter string of characters, writing with the right hand 	
was much smaller than with the left hand. Micrographia 
reflects an abnormal choice of speed and amplitude and is 
one manifestation of generalized slowing of movement 
(bradykinesia).

In the optimal control framework, there are no desired 
trajectories for our movements. Rather, the path is a result 
of a control policy (equation 5), which itself is a result of 
minimization of a cost (equation 1). The cost depends on 
two quantities: spatial accuracy (error cost) and required 
effort (energy cost). Accuracy requirements influence speed 
selection, due to the signal-dependent noise property of 
motor commands. The desired accuracy of a movement 	
sets an upper limit on the maximum speed of a movement. 
The accuracy term of the cost function offers an explanation 
for the wealth of experimental data demonstrating speed-
accuracy tradeoff in reaching movements. Normal move-
ments, however, do not appear to be made at the limits 
imposed by the speed-accuracy tradeoff: We can reach for 
an object faster than usual without appreciable loss of accu-
racy. Although very little experimental data exist on spon-
taneous speed selection, the effort term of the cost function 
offers a potential explanation for this phenomenon; that is, 
perhaps micrographia is an indication of an abnormally high 
motor cost.

One of us recently tested this idea that in Parkinson’s 
disease, there may be an abnormally high cost associated 
with motor commands (Mazzoni, Hristova, & Krakauer, 
2007). We required healthy control subjects to make accu-
rate reaching movements of specified speeds. As the required 
speed increased, subjects took longer (required more trials) 
to accumulate a set number of movements at the required 
speed. This reluctance to move faster could be explained by 
the increase in required energy as well as by the degradation 
of spatial accuracy and thus did not disambiguate the con-
tribution of these two costs. We then compared the perfor-
mance of patients with Parkinson’s disease to that of control 
subjects in this task. Parkinson’s disease patients demon-
strated normal spatial accuracy in each condition but 
required more trials than controls to accumulate the required 
number of movements in each speed range. The patients’ 
increased reluctance to execute movements requiring greater 
effort, in spite of preserved spatial accuracy, provided exper-
imental demonstration of the contribution of energy cost to 

speed selection, independent of spatial accuracy. The impli-
cation is that bradykinesia results when striatal dysfunction 
changes the value of effort minimization (increased sensitiv-
ity to effort cost; L in equation 1) relative to that of accuracy 
optimization (error cost; Q in equation 1). Thus it appears 
that the basal ganglia either provides the motor motivation 
signal, which is then used to compute the cost-to-go else-
where, or is where the cost-to-go is computed.

Parietal cortex damage and state estimation

Sometimes goal states change as the task is being performed. 
For example, when one reaches to pick up a pen, the pen 
may start rolling away. Healthy individuals have no prob-
lems adjusting their movements to compensate for this 
change. However, parietal patients show particular difficul-
ties with this task. For example, if parietal damage impairs 
representation of visual states contralateral to the fixation, 
then motion of the goal state to this region during a move-
ment impairs the ability to adjust the reach mid-flight. Grea 
and colleagues (2002) observed this phenomenon in a patient 
with bilateral posterior parietal cortex damage. The patient 
had no problems reaching to targets in central fixation. 
However, when the target shifted to the right at reach onset, 
the subject continued to reach to the original location of the 
target as if the target had not moved.

Disruption of the parietal cortex in healthy individuals 
can produce a similar phenomenon. Desmurget and col-
leagues (1999) provided a single pulse via a transcranial 
magnetic stimulator as the reach to the target began. On 
trials in which the target jumped, most of the participants 
had hand movements that disregarded the shift in the target 
location.

Let us examine these results in the framework of figure 
40.2. The relevant state variables in this task include position 
of the limb (in proprioceptive and visual coordinates) and 
the position of the target (in visual coordinates). As motor 
commands are generated, the forward model should update 
its predicted state of the limb. Generally, we expect targets 
to remain stationary, and therefore the output of the forward 
model should continue to predict the target position. 
Together, these predictions represent the prior belief about 
the state of the body and the world. The sensory feedback 
from proprioception and vision is integrated with this pre-
diction to make a posterior belief. When the target jumps, 
the novel sensory information needs to be integrated with 
the output of the forward model. If it is not, the reach will 
continue to the prior expectation of its location. The results 
noted above suggest that either this integration step is 
affected by damage or stimulation of the parietal cortex or 
that the sensory information outside the central fixation 
region cannot reach the integration step.
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Limitations in applying the theory to biological  
motor control

This review of motor control has been written within the 
framework of optimal feedback control. At the heart of the 
theory is the conjecture that animals make voluntary move-
ments in order to acquire the most reward while expending 
the least effort. However, the theory cannot make a behav-
ioral prediction unless we can specify three kinds of informa-
tion: (1) what the costs and rewards are; (2) what the 
constraints are, that is, dynamics of the task; and (3) what 
the mechanisms of state estimation are. In this review, we 
have chosen a specific set of equations to represent each kind 
of information. However, it is not difficult to find examples 
of behavior that are inconsistent with our formulation.

The cost that we wrote in equation 1 is perhaps the sim-
plest possible cost function for goal-directed movements. 
How seriously can we take this specific representation? As 
demonstrated by attempts to reverse-engineer the cost 
(Kording & Wolpert, 2004b), the quadratic cost function 
should not be taken too seriously.

Consider a set of experiments that highlighted the impor-
tance of costs associated with postural stability, a quantity 
that we did not include in equation 1. Scheidt and Ghez 
(2007) explored a task in which continuous random noise 
perturbed the hand at rest. This constraint encouraged 
increasing the cocontraction levels of muscles. However, the 
noise was present only during the postural phase of the task 
and disappeared when subjects made a reaching movement. 
They found that if a kinematic perturbation required adap-
tation of the movement, the learning did not generalize to 
the postural phase at the end of the movement. They sug-
gested that the control processes that moved the limb 
appeared distinct from control processes that set muscle 
activity levels during posture. If so, do these processes have 
separate costs? A recent study suggests that the answer is yes, 
the weighting of postural cost is flexible and can be deter-
mined by task context (Liu & Todorov, 2007).

Finally, consider an experiment by Jax and Rosenbaum 
(2007) in which they asked subjects to make arm movements 
to an array of 12 targets positioned in a 16-cm radius circle 
on a vertical screen. Targets were presented randomly, and 
in some trials, an obstacle was presented halfway between 
the start and the target. The same target was never shown 
twice in a row. Interestingly, whenever a no-obstacle trial 
followed an obstacle trial, subjects made curved rather than 
straight trajectories. However, the movements straightened 
out when a no-obstacle trial followed another no-obstacle 
trial. Why make a suboptimal curved trajectory when you 
see that there is no obstacle?

These results highlight a number of important problems 
with our framework. First, without knowing precisely the 

costs and rewards of a movement, it will not be possible to 
make quantitatively reliable predictions of behavior. Without 
a priori predictions, how can the theory be falsified?

Second, what are the timescales of optimization? Is opti-
mization computed in the reaction time of each trial de 
novo? The timescale appears to be longer than a single trial, 
as exemplified by the example from Jax and Rosenbaum 
(2007). Certainly, new costs can be conjured up. For example, 
in this case, we can assume that finding feedback control 
gains that minimize a cost requires neural processing that 
itself has a cost, so it might be more efficient to allow the 
solution in one trial to linger on to influence the solution in 
the next trial. Or perhaps there is a cost in switching control 
policies.

Third, what is the timescale of system identification? Our 
body changes over multiple timescales. Muscles fatigue and 
recover quickly, objects are lifted and replaced rapidly, yet 
aging can produce gradual loss of motor neurons and trans-
formation of muscle fibers. In other words, the parameters 
of the constraint equation and perhaps its structure are 
changing over multiple timescales. Unfortunately, we cannot 
make optimized movements unless we have an accurate set 
of constraint equations, that is, an accurate internal model. 
When we see a suboptimum movement, can we dissociate 
the effects of an inaccurate internal model from effects of an 
inaccurate cost function?

Finally, what is the alternative hypothesis to this theory? 
At this time, the alternative is another cost or constraint, not 
a fundamentally distinct theory. However, formalization of 
a theory is the key step that accelerates its evolution toward 
acceptance or rejection.

Conclusions

The relationship between theories and the neural machinery 
that implements them is still in the courtship stage, but 
despite the separation, it has begun to bear modest fruit; 
theories have informed the neural basis of motor control in 
patients, while lesion studies have informed the algorithms 
and representations that implement the computational 	
theories. The result is the functional anatomy of voluntary 
movements outlined in figure 40.2B. In this framework, a 
role for the cerebellum is system identification, that is, pre-
dicting the changes in state that arise as a result of motor 
commands. A role for the parietal cortex is state estimation, 
in which predictions about sensory feedback are integrated 
with visual and proprioceptive observations to form beliefs 
about states of our selves and objects/people around us. The 
basal ganglia may play a role in computing a cost-to-go 
function, estimating value of states and costs of motor com-
mands. Finally, once a goal state has been selected, motor 
cortical areas minimize this cost function and transform 	
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state estimates into motor output by formulating a feedback 
control policy.
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