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not only functional similarities, but also simi-
lar connectivity features. However, more infor-
mation is required about both brain areas to 
understand how far this similarity extends. In 
Drosophila, the results of Fisek and Wilson8 
mark a fundamental step forward in our 
understanding of the mechanisms by which 
olfactory stimuli influence animal behavior.
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What are the computational benefits of 
stereotyped connectivity in the lateral horn? 
An obvious, yet intriguing, hypothesis is that 
connectivity in the lateral horn has evolved 
to optimize the representation of odor com-
ponents that are predictable and relevant 
for a species. More specifically, it may be 
hypothesized that LHNs become tuned to 
ecologically important features of natural 
odors, much like higher order neurons in 
the visual system are tuned to informative 
features of visual scenes. Consistent with this 
possibility, PNs converging onto type I* LHNs 
appear to respond to fruity odors, which may 
be relevant to fruit flies. However, systematic 
and exhaustive analyses of natural odor space 
will eventually be necessary to address this 
question. A more extreme hypothesis is that 
individual subtypes of LHNs become tuned 
to odor components that directly control 
behavioral outputs. This hypothesis views the 
lateral horn as a switchboard that interfaces 
complex sensory inputs to defined behavioral 
outputs. Stimulation or silencing of specific 
LHNs should therefore elicit or suppress 
distinct behaviors, a prediction that may be 
tested by opto- or pharmacogenetic experi-
ments. These hypotheses are not identical, 
not mutually exclusive and certainly not 
exhaustive. Indeed, type I and type II LHNs 
differ not only in their odor selectivity, but 

they also project to distinct subregions of 
the protocerebrum. It is therefore possible 
that subpopulations of LHNs use different 
mechanisms to integrate PN input to fulfill 
different functions.

Generally, the stereotyped connectivity 
between PNs and LHNs reinforces the idea 
that the lateral horn processes odor information 
that is predictable on evolutionary timescales, 
whereas the mushroom body modifies odor 
processing on the basis of an individual’s expe-
rience. However, stereotyped connectivity does 
not rule out the possibility that odor process-
ing in the lateral horn is subject to modification 
by experience-dependent plasticity. Moreover, 
the two processing streams appear to converge 
again in the lateral horn and possibly in other 
brain areas10,14. It will be interesting to examine 
whether odor-evoked activity of LHNs or down-
stream neurons can be modified by plasticity 
processes or by mushroom body outputs.

Similar to the PNs of insects, output neu-
rons of the vertebrate olfactory bulb project to 
multiple target areas. Projections to the corti-
cal amygdala, a brain region that likely controls 
defined behaviors, exhibit a coarse topography, 
whereas projections to piriform cortex, a large 
associative memory area, appear to lack topo
graphy15. Assuming that topography indicates 
stereotyped connectivity, the lateral horn and 
the cortical amygdala may therefore exhibit 

the basket to the left, exhibiting error e. The 
amount that you adjust the motor commands 
to your arm and shoot the next ball is a reflec-
tion of η, your sensitivity to error. This single 
equation, and its extensions3,4, account for a 
vast array of motor learning data. However, the 
error sensitivity term, η, varies substantially 

from individual to individual and task to task. 
What makes some individuals more sensitive 
to error and therefore faster learners?

Wu et al.1 investigated this question, with the 
hypothesis that the rate of learning in a novel 
motor task may be related to the amount of task-
related variability, or noise, that each subject  
naturally expresses in their baseline movements.  
This motor noise, which until now was thought 
to be an unwanted feature of movements, 
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Motor variability is not noise, but grist for the 
learning mill
David J Herzfeld & Reza Shadmehr

A study demonstrates that variability in how people perform a movement can predict the rate of motor learning on an 
individual basis. This suggests that motor ‘noise’ is a central component of motor learning.

As anyone who has tried to learn a new sport 
can attest, repeatedly performing a movement 
does not result in the same motor output on 
every attempt. Rather, there is variability 
in our motor commands. Until now, it was 
thought that this variability is due to noise, 
something that should be avoided. However, 
a study in this issue of Nature Neuroscience1 
demonstrates that variability has a crucial  
correlate: it can predict the rate of motor learning  

on an individual basis. That is, variability of 
movements can predict who will learn a specific  
motor task faster. These results provide intriguing  
evidence that some of the motor variability 
commonly attributed to unwanted noise is in 
fact exploration in motor command space.

When we make a movement and experience 
an error, on the next attempt our brain updates 
the motor commands to compensate for some 
fraction of the error2. Mathematically, this can 
be written in its simplest form as an equation 
that relates the participant’s motor commands 
on the nth trial, u(n), to the motor command 
on trial n + 1: u(n + 1) = u(n) + ηe(n), where η 
is the error sensitivity and e is the error experi-
enced. For example, say you are playing basket-
ball and attempt a free throw. Your ball misses 
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the cerebellum7. The authors found that the 
variability along a specific dimension during 
the baseline condition (the dimension relevant 
to learning the movement) was an excellent 
predictor of the subsequent learning rate in 
the force-field task.

If variability contributes to a faster learning 
rate, then would an increase in the learning 
rate also result in an increase in task-specific 
motor variability? To answer this question,  
the authors designed an experiment in which 
perturbations were likely to repeat. With 
subsequent repetitions of the perturba-
tion, participants responded by increasing  
their learning rate upon re-exposure to the 
same perturbation (that is, η increased). 
The authors found that after increases in 
participants’ learning rates, the motor vari-
ability increased along a dimension associ-
ated with the type of perturbation that was 
just learned. For instance, when the forces 
applied to the hand were velocity-dependent, 
the largest component of the variance mea-
sured during baseline conditions became 
more velocity-dependent after repeated 
exposure. This implies that modulation of  
learning rate coincides with modulation of 
variance along the task-relevant dimension.

Until now, motor variability has been 
viewed as an unwanted feature of movements, 
a noise that the brain is able to reduce only 
with practice8. However, Wu et al.1 show that  
task-relevant motor variability, measured 
during baseline before people are exposed 
to a novel motor task, can be used to predict 
the rate of learning in the task. This relation-
ship exists in two different forms of learning: 
paradigms that depend on reward prediction 
errors and paradigms that depend on sensory 
prediction errors. Therefore, a portion of 
what has been historically considered motor 
‘noise’ is in fact an asset used by the brain to  
promote learning.
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Once the baseline period ended, in the 
training period subjects received a numeri-
cal score after each trial (a reinforcement 
signal), providing feedback on how well 
they were able to match the new goal trajec-
tory, although they still could not see their 
movements. The authors found a significant 
correlation between the amount of task- 
relevant variance during the baseline period 
and the rate of motor learning, supporting 
the hypothesis that variability in the baseline 
period was not noise, but exploration, which 
then predicted faster learning of the task.

Reinforcement learning, which relies on 
learning from reward prediction error (for 
example, discrepancy between predicted and 
observed score of a movement), likely relies on 
different neural circuitry than learning from 
sensory prediction error (for example, discrep-
ancy between predicted and observed proprio-
ceptive feedback). The former is thought to 
rely on the basal ganglia5, whereas the latter is 
thought to rely on the cerebellum6. Therefore, 
the correlation that the authors observed in 
their first experiment may only be true in 
reinforcement learning tasks and not when 
learning relies on sensory prediction errors. 
In another experiment, the authors addressed 
this by first measuring variability of move-
ments in a baseline reaching task and then 
using that variability to predict how fast each 
subject could learn to reach in a force-field 
motor adaptation task. This form of motor 
learning is largely dependent on sensory pre-
diction errors and is critically dependent on 

something to be avoided and reduced with 
practice, is shown to have a very useful feature: 
it allows the brain to learn faster.

Consider a classic children’s game, hitting a 
piñata. In the game, the child is typically blind-
folded and told to hit the piñata until breaking it 
(Fig. 1). The child begins the game by swinging  
wildly all around, attempting to locate the 
hanging piñata. However, once contact is 
made, the location where the child swings is 
similar from one swing to another. These two 
strategies, exploration and exploitation, are the 
basis for reinforcement learning. The authors 
hypothesized that better exploration (charac-
terized by movement variability) in the task-
specific dimension may contribute to a faster 
learning rate (exploitation).

To test their hypothesis, in their first experi-
ment Wu et al.1 considered a reaching task in 
which participants were asked to move their 
arm so that it matched a guide trajectory. 
Subjects could not see their movements, and so 
they simply tried as best as they could to match 
the presented trajectory. However, unbe-
known to them, the authors were measuring  
the variability of the movements along a 
dimension that was irrelevant to the guide 
trajectory but relevant to an unrelated tra-
jectory, one that their movements would be 
evaluated against in a subsequent task. If the 
variability in this baseline task was not simply 
noise but a form of natural exploration, then 
people who showed a greater variability during 
baseline should exhibit faster learning of the 
subsequent task.

Figure 1  Motor variability. In trying to find the piñata, the child begins by exploring the space of possible 
swing locations, with a large amount of variability between each stroke. Once contact is made, the child 
switches to a strategy of exploitation, in which the same movement is repeated on subsequent swings.
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