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First published June 3, 2009; doi:10.1152/jn.00237.2009. Learning to
control a new tool (i.e., a novel environment) produces an internal
model, i.e., a motor memory that allows the brain to implicitly predict
the behavior of the tool. Data from a wide array of experiments
suggest that formation of motor memory is not a single process, but
one that is due to multiple adaptive processes with different time
constants. Here we asked whether these time constants are invariant or
are they influenced by the statistics of the learning event. To measure
the time constants, we controlled the statistics of the learning event in
a reaching task and then assayed the decay rates of motor output in a
set of trials in which errors were effectively removed. We found that
prior experience with a rapid change in the environment increased the
decay rate of memories acquired later in response to a gradual change
in the same environment. Prior experience in an environment that
changed gradually reduced the decay rates of memories acquired later
in response to a rapid change in that same environment. Indeed we
found that by manipulating the prior statistics of the learning experi-
ence, we could readily alter the decay rates of a given motor memory.
This suggests that time scales of processes that support motor memory
are not constant. Rather decay of motor memory is the brain’s implicit
estimate of how likely it is that the environment will change with time.
During motor learning, prior statistics that suggest changes are likely
to be permanent result in slowly decaying memories, whereas prior
statistics that suggest changes are transient result in rapidly decaying
memories.

I N T R O D U C T I O N

In principle, decay of memories should be a reflection of the
rate of change in the environment: we should retain what we
learned in environments that changed slowly and forget what
we learned in environments that changed rapidly. Do statistics
of the environment affect retention rates? There is evidence
that specific training protocols have a strong effect on the
decay rates of the resulting motor memory. Typically, motor
memory decays with passage of time. However, when a per-
turbation is imposed gradually on movements over many trials,
training produces a memory that is more resistant to passage of
time than when the same perturbation is imposed in a single
step (Hatada et al. 2006; Kagerer et al. 1997; Klassen et al.
2005; Michel et al. 2007). Decay rates of a memory may also
be quantified as a function of trial (Criscimagna-Hemminger
and Shadmehr 2008). For example, one can train a subject and
then measure performance during a washout period (i.e., via
after-effect trials), or during a period when errors are clamped
to zero (i.e., via error-clamp trials) (Scheidt et al. 2000).

Interestingly, studies that have quantified trial dependent decay
have also found slower decay rates following gradual training
(Kluzik et al. 2008; Reisman et al. 2007). That is, both the
time- and trial-dependent rates of decay appear to be affected
by the training schedule.

Here we will focus on the trial-dependent decay rate of
motor memory and consider the question of why the training
schedule should affect this rate. We demonstrate that the decay
rate is affected by the statistics of the previous experience with
that task. In effect, retention appears to be our implicit estimate
of how likely it is that the environment will remain unchanged.

Acquisition and decay of motor memory from a
theoretical perspective

A number of results in saccade and reach adaptation suggest
that when the brain performs a movement and observes the
consequences, it learns from the resulting errors with processes
that have multiple timescales (Criscimagna-Hemminger and
Shadmehr 2008; Ethier et al. 2008; Joiner and Smith 2008;
Kording et al. 2007; Smith et al. 2006). In a typical adaptation
experiment, on trial n the learner makes a prediction ŷ(n),
observes y(n), and then learns from the prediction error

e�n� � y�n� � ŷ�n� (1)

The learning appears to be supported by a fast adaptive
process that is highly sensitive to error but has poor retention
and a slow adaptive process that has poor sensitivity to error
but good retention (Smith et al. 2006). If we represent the
memory states of the fast and slow adaptive processes with xf

(n)

and xs
(n) correspondingly, we can assume that

ŷ�n� � xs
�n� � xf

�n� (2)

On each trial, these states change because of two factors:
errors observed on that trial and the inherent forgetting or
decay rates (af, as) of the memory states from the previous trial

x̂f
�n�1� � af x̂f

�n� � bf e
�n� 1 � bf � bs � 0

x̂s
�n�1� � as x̂s

�n� � bse
�n� 0 � af � as � 1 (3)

Let us compare two scenarios: in the rapid training scenario, the
environment associated with y(n) changes suddenly, whereas in
the gradual training scenario, the environment changes slowly.
The learning continues in both scenarios until performance
errors e(n) reach a small level. In general, at the end of gradual
training such a system would show greater change in the slow
state than in the fast state. As a result, the postadaptation decay
would be slower following the gradual training. We will
provide a test of this prediction in our experiments. However,
a more interesting question is whether these decay rates of the

Present address and address for reprint requests and other correspondence:
V. S. Huang, Motor Performance Laboratory, Columbia University College of
Physicians and Surgeons, 710 W. 168th St., Neurological Institute NI-13, Rm.
1312, New York, NY 10032 (E-mail: vh2181@columbia.edu).

J Neurophysiol 102: 931–940, 2009.
First published June 3, 2009; doi:10.1152/jn.00237.2009.

9310022-3077/09 $8.00 Copyright © 2009 The American Physiological Societywww.jn.org

 on S
eptem

ber 3, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


putative fast and slow processes are constant or are they
themselves affected by the statistics of the learning event.

To provide a rationale for why decay rates should not be
constant, let us assume that the learner aims to accurately
predict the state of the environment. One would need to show
that by changing the decay rates to match properties of the
environment, the learner performs better. To show that this is
true, let us recast the problem of learning in the probabilistic
framework of state estimation (Cheng and Sabes 2007; Kord-
ing et al. 2007). When the naïve learner is recruited for an
experiment, he/she has little or no idea of the dynamics of the
environment that he/she is about to learn. In the language of
state estimation, the learner does not have an accurate gener-
ative model of the environment. A generative model, in this
example, is one in which states of the environment are asso-
ciated with observations of the learner. Without such a gener-
ative model, he/she cannot perform optimal estimation. We
have earlier suggested that a reasonable generative model is
one that describes the learner’s own body (Kording et al.
2007), i.e., one that has multiple time scales

x�n�1� � Ax�n� � �x

y�n� � cTx�n� � �y (4)

In Eq. 4, x is a vector representing the many hidden states
that the learner assigns to the environment, and y is a scalar that
represents the learner’s observations. The matrix A describes
the time scales of the hidden states, and �x is the noise
associated with these states. Starting with a prior prediction
x̂(n�n�1), the learner makes a prediction ŷ(n) and then learns
from the prediction error

x̂�n�n� � x̂�n�n�1� � K�n��y�n� � ŷ�n�� (5)

In Eq. 5, K(n) is a trial-to-trial learning rate (Kalman gain),
which depends on the ratio of the uncertainty about the state
being estimated and the uncertainty in the measurements y(n).
Equation 5 has been extensively applied as a model of biolog-
ical learning (Baddeley et al. 2003; Burge et al. 2008; Cheng
and Sabes 2007; Kording et al. 2007). However, the problem
for the learner is to predict the state at step n � 1, written as
x̂(n�1�n). Given the generative model in Eq. 4, the best that the
learner can do is

x̂�n�1�n� � Ax̂�n�n� (6)

If we combine Eqs. 6 with 5, we have

x̂�n�1�n� � Ax̂�n�n�1� � AK�n��y�n� � ŷ�n�� (7)

Equation 7 implies that in error-clamp trials (where predic-
tion errors are eliminated, i.e., the term inside the parenthesis
is 0), the rate of change in the motor output is a proxy for
matrix A, which we assumed represents the time scales of the
generative model.

In a variable environment, a learner performs better if the
matrix A is not constant but matches the changes in the
environment. Consider a simple example. Suppose that there
are no correlations between the state of the environment (e.g.,
force perturbations) in the past with its state in the future, i.e.,
the environment is simply a random walk

x�n�1� � ax�n� � �x (8)

If � � 0 in Eq. 8, the learner should shift A toward the fastest
time scales, which implies that the learner should both ignore
his previous state estimate and stop learning from the new
observation (A 3 0 in Eq. 6 and 7). That is, the best way to
respond to the uncorrelated perturbations is to stop learning.
On the other hand, if the perturbations are highly correlated
from one trial to the next (� � 1 in Eq. 8), then A should be
changed toward the slowest time scales, allowing one to retain
as much of the past as possible.

Do people change the way they learn by matching their time
scales of learning to the environment? One way to test this
hypothesis is to consider training in a given environment as a
function of the prior experience in a different environment. If
the decay rates are adaptive, then the prior experience should
affect the future decay rates. Here we performed an experiment
to test this idea.

M E T H O D S

Shooting task

Subjects were asked to hold the handle of a robotic manipulandum.
All participants (n � 53) were right-hand-dominant and used their
right hand to perform the task. Protocols were approved by the Johns
Hopkins School of Medicine Institutional Review Board and partici-
pants gave their written consent. A horizontal screen covered the
hand, on which a projector painted the screen (Fig. 1A). Hand position
was displayed as a small white cursor (5 � 5 mm) and was available
at all times. A target (5 � 5 mm) was positioned at 10-cm away from
the center of the screen at either 121.5° (away from the right shoulder)
or 301.5° (toward the right shoulder) in a pseudorandom sequence.
Subjects were instructed to “strike through” the target rapidly to avoid
on-line corrections (Huang et al. 2008). As the ballistic movement
crossed the invisible 10-cm radius circle, a yellow dot appeared at
the crossing point to emphasize the displacement between the
strike crossing point and the target as a measure of reach error. If
the movement duration was too long (�0.23 s), a blue dot appeared
instead. Because the subjects were instructed to strike quickly through
the target, peak velocity was usually achieved near the crossing point.
The closer the hand cursor came to passing through the target, the
greater the number of reward points the participant received. Four
accuracy levels were established: 5.16, 4.49, 3.61, and 2.48°. For each
additional accuracy level achieved, the movement was award one
additional point in that trial for up to a maximum of 4 points.
Participants received point-based financial incentives.

Beyond the invisible circle a dampening force field acted as a
“pillow” to absorb the strike, after which subjects brought their hand
back to the target. Because the virtual pillow dampened the movement
only beyond the target position, it did not alter the kinematics of the
movement. Once the cursor was placed in the target, the center mark
reappeared and the robot brought the hand back to the center.

Subjects were divided into six groups. The training protocol is
illustrated in Fig. 1B. The training schedule included a baseline phase,
a learning phase, and a retention phase. In baseline trials, participants
reached without additional external perturbation forces (“null trials”).
In the learning phase, a velocity-dependent curl force field with speed
sensitivity of 8 N �s/m pushed the hand perpendicular to its direction
of motion (Shadmehr and Mussa-Ivaldi 1994). Thus to succeed,
participants had to produce a compensating force in the opposite
direction to the perturbation.

To measure changes in subjects’ motor output, we employed
error-clamp trials (Huang and Shadmehr 2007; Hwang et al. 2006;
Scheidt et al. 2000; Smith et al. 2006). The essential property of an
error-clamp trial is that while it allows one to assay the state of the
motor system by measuring the force exerted by the subject during
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that trial, it restricts movement errors to near zero. In error-clamp
trials, a stiff spring/damper force channel restricted the hand move-
ment to a straight trajectory toward the target (spring coefficient � 2.5
kN/m; damping coefficient � 25 N �s/m). In these randomly distrib-
uted trials (20% of the baseline and adaptation trials, 100% of the
retention trials), the force transducer housed in the handle recorded
information about the forces exerted by the subjects perpendicular to
the direction of motion.

Training schedules

Six groups performed the movements in five sequential blocks (Fig.
1B). Subjects rested for 2 min between the blocks. The session began
with a block of 120 baseline trials (block 1, 80% were null trials with
no perturbations, 20% were error-clamp trials). This block was then
followed by a block of learning and retention testing (block 2). For all
subjects, this block started with 10 baseline trials (8 null trials and 2
error-clamp trials) to ensure that changes in subjects’ response were
due to a change in the perturbation conditions and not due to a
transition from a break to practice. For groups 1, 4, and 5, the initial
baseline trials were followed by 20 (groups 1 and 4) or 50 (group 5)
learning trials that suddenly introduced the force perturbation (i.e., 18
force perturbation trials plus 2 error-clamp trials), and then ended with
60 retention trials (i.e., error-clamp trials). For groups 2 and 3, the 10
baseline trials were followed by 50 learning trials that gradually
introduced the perturbation, and then ended with 60 retention trials.
Block 3 was a washout block that consisted of 120 baseline trials (80%
null trials, 20% error-clamp trials). Block 4 was a re-learning block
repeated the learning/retention schedules by examining the various
permutations of the sudden/gradual schedule. The idea was to see if
the retention after re-learning was different because of the schedule of
perturbations in the initial learning.

Our results indicated that retention after re-learning exhibited a
slower decay if the initial learning was gradual. To better examine this
effect, we recruited a new group of subjects (group 6) and trained
them with a gradual perturbation that was in the opposite direction as
in groups 1–5. The learning in block 2 was followed by washout, and
then in block 4, subjects trained in a suddenly increasing field in the
same direction as groups 1–5.

Adaptation index

We calculated an adaptation index (AI) (Hwang et al. 2006; Smith
et al. 2006). In error-clamp trials, we recorded the force trace exerted
by the subject. Had there been a perturbation, the ideal compensatory
force profile should be opposite of the perturbation trace. Thus the
adaptation index on each error-clamp trial was computed by a linear
regression of the measured lateral force trace onto the ideal force trace
(Hwang et al. 2006; Smith et al. 2006). This index was zero if these
forces were uncorrelated and one if they were identical. By pseudo-
randomly interspersing error-clamp trials, we obtained “snap shots” of
the subject’s motor adaptation throughout the experimental session.

Statistical analysis

On average, in every 10 baseline or adaptation trials there were two
error-clamp trials. Thus we grouped and analyzed the data in bins of
10 movements. Unless otherwise indicated, Student’s t-test and re-
peated-measure ANOVA were used in the statistical comparison of
the data groups. When Mauchly’s test of sphericity failed, we applied
the Greenhouse-Geisser correction in the ANOVA analyses for within-
subjects comparisons as needed. All analyses were performed using
Matlab (R2006, The MathWorks) or SPSS (R11.5, SPSS).
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FIG. 1. Experimental procedures. A: the shooting task. Subjects held the
handle of a robotic arm under an opaque screen and viewed a cursor corresponding
to their hand position above the screen. On presentation of a target at 10 cm, they
rapidly moved the handle through the target. If time to cross the target was 0.23 s
or less they were rewarded with points proportional to the accuracy. Beyond
the target there was a dampening force that absorbed the ballistic strike.
B: perturbation schedule. The robot produced a velocity-dependent perturba-
tion force field that transiently deflected the punch. Positive values indicate a
clockwise viscous force perturbation while negative values indicate a coun-
terclockwise perturbation. Blocks of 60 error-clamp trials are highlighted with
a pink background and a double horizontal line. Twenty percent of all other
trials were also error-clamp. This allowed us to measure motor output both
during learning and retention. The vertical lines indicate 2-min rests between
blocks.
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R E S U L T S

Gradual training produced slower forgetting

We randomly assigned 16 participants to two groups
(groups 1 and 2). In the first training block (block 2), a
velocity-dependent clockwise force perturbation was intro-
duced suddenly in group 1, whereas in group 2, the pertur-
bation was introduced gradually (Fig. 1B). Subjects adapted
to the perturbation by producing a compensatory force
perpendicular to their motion. We measured this compensa-
tory force in randomly interspersed error-clamp trials in
which the robot produced a “channel.” The forces produced
by subjects in error-clamp trials are shown in Fig. 2B. The
corresponding adaptation indices, calculated over bins of 10
trials, are shown in Fig. 2A. The numbers of force trials in
sudden and gradual schedules were determined in a prelim-
inary experiment to match the extent of adaptation. After 50
trials, the gradually increasing perturbation in group 2
resulted in an adaptation index [AI � 0.53 	 0.13 (SD)] that
was similar to 20 trials of suddenly introduced perturbation
in group 1 [AI � 0.58 	 0.09, between group t-test t(14) �
0.894, P � 0.39, 2-tailed]. The average peak lateral force
produced in the last five force trials was 4.61 	 1.48 N in
group 1 and 4.08 	 1.11 N in group 2. The average peak
lateral force produced by the two groups were similar
[2-sample t-test, t(14) � 0.81, P � 0.43]. After the learning
trials, subjects were presented with 60 error-clamp trials. In

these trials, errors (displacement with respect to a straight
line movement) were kept very small (absolute error �
0.498 	 0.43°). The error-clamp trials in block 2 allowed
us to test whether retention after a gradual introduction of
the perturbation was better than after a sudden introduc-
tion.

Despite having a similar amount of adaptation at the end
of training, the gradual training group showed markedly
slower decay than the sudden training group in their adap-
tation indices (Fig. 2A). The raw motor output traces also
confirmed this result (Fig. 2B). Repeated-measure ANOVA
on adaptation indices showed a significant main effect from
the training schedule [F(1,14) � 8.634, P 
 0.05] and a
significant within-subject interaction effect between training
schedule and movement bins [F(1,14) � 5.513, P 
 0.05].
We fitted a single-exponential function to estimate the time
constant for the decays. The sudden group’s adaptation
indices (1/� � 0.44 	 0.32 movement bin�1) declined
significantly faster than the gradual training group [1/� �
0.08 	 0.10 movement bin�1; 2-tailed t-test, t(14) � 2.95,
P 
 0.05]. In 60 error-clamp trials, participants in the
sudden training group lost 76% of their adaptation, while
participants in the gradual training group lost 42% by
comparison. In summary, adaptation in response to a sudden
perturbation produced motor memories that decayed faster
than adaptation in response to a gradual perturbation.
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FIG. 2. Learning in a gradually chang-
ing environment produces better retention.
Yellow boxes in the force perturbation leg-
ends indicate the range of trials shown.
A: adaptation index (linear correlation of
the measured force in error-clamp trials to
ideal force) in blocks 1 and 2 for groups 1
and 2. Adaptation indices were computed
for bins of 10 trials and plotted against the
average trial number of each bin. Gray
shades indicate SE across subjects. Reten-
tion refers to “error-clamp” trials in Fig.
1B. Asterisk, P 
 0.05 main effect of group
in a repeated measures, between subject
ANOVA. B: mean ideal force to compen-
sate for the perturbation (black), and the
actual force produced by the participants of
groups 1 and 2 in the 1st 10 (dashed line,
“early”) and the last 10 trials (solid line,
“late”) in the learning and retention phases
of block 2. Force profiles were measured in
error-clamp trials and were averaged across
subjects. The small triangle indicates aver-
age time of crossing the target. Gray shades
indicate SE. C: performance of the 2-state
model simulation in the rapid (group 1) and
gradual (group 2) protocols in initial learn-
ing (block 2). In each simulation, the black
line is the slow state and the gray line is the
fast state. The sums of the slow and fast
states are blue and red lines for groups 1
and 2, respectively. D: predicted retention
performance of the 2-state model simula-
tion after in gradual (group 1) and rapid
(group 2) re-learning (block 4) protocols
after a long washout period.
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Two-state model

We can explain the results of slower decay after gradual
learning by a simple two-state model of adaptation (Eqs. 1–3)
(Smith et al. 2006). This model posits that changes in perfor-
mance during motor learning are due to contributions from two
adaptive processes: a fast process that learns strongly from
error but has poor retention and a slow process that learns
weakly from error but has good retention. To simulate adaptive
behavior we gave as input to the model a perturbation (mag-
nitude 1) that either changed suddenly or gradually. An error-
clamp trial was simulated as a trial in which e(n) and the
parameters af � 0.85, as � 0.988, bf � 0.08, bs � 0.04, which
gave reasonable fits to the data. The simulation results of the
two-state model are shown in Fig. 2C. By end of training the
force output has risen by about the same amount in the sudden
and gradual conditions. However, in the sudden condition
during adaptation the fast system contributes more to the
change in performance than in the gradual condition. That is,
more of the “credit” is assigned to the fast system when the
perturbation is sudden than when it is gradual. As a result,
following adaptation the memory acquired in the sudden con-
dition decays more rapidly.

In the two-state model, we have assumed that the rates of
trial-to-trial learning from movement error (bf, bs) and the rates
of forgetting (af, as) are constant and do not change with the
statistics of training. Indeed, the two-state model predicts that
a gradual condition will always slow the decay of memory
states as compared with a sudden condition in naïve subjects or
subjects after sufficient washout (Fig. 2D). As we will see, this
prediction will prove to be false.

Prior experience affected future retention

Following the initial training, subjects in groups 1 and 2
were presented with a long series of washout trials (120 trials)
in which the forces were returned to zero (block 3, Fig. 1B).
We presented a period of washout that was much longer than
the period of training (period of washout was 6 times the
training period for group 1, 2.4 times for group 2) so that, in
theory, the fast and slow states would return to zero. Indeed, by
end of the washout period, motor output had returned to
baseline [1-sample t-test, t(7) � 1.69, P � 0.14]. Following
this period, group 1, which had previously been exposed to a
sudden perturbation block, was now presented with a gradual
block (re-learning, block 4, Fig. 1B). The change in motor
output in response to the gradual perturbation (re-learning,
group 1) was indistinguishable with respect to naïve subjects
[learning, group 2; Fig. 3A, F(1,14) � 0.799, P � 0.386].
However, in the ensuing retention trials, the motor output of
group 1 subjects decayed more quickly than the naïve subjects
in group 2 [Fig. 3A, repeated-measure ANOVA, significant
interaction effect between group and movement bin, F(5,70) �
3.062, P 
 0.05]. Therefore subjects who initially experienced
a suddenly changing environment appeared to respond to a
later, gradual change in that environment with a memory that
decayed more rapidly than naïve subjects.

Subjects in group 2 had initially been exposed to a gradually
changing environment. After the washout period, these sub-
jects were presented with a sudden perturbation (re-learning,
Fig. 1B). Performance during re-learning (Fig. 3B) was indis-

tinguishable from naïve [learning, group 1; F(1,14) � 0.222,
P � 0.645]. Yet group 2 subjects displayed better retention in
response to the sudden perturbation than naïve subjects [2-way
ANOVA, main effect on group number, F(1,14) � 5.97, P 
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0.05, no significant group and movement bin interaction effect,
F(5,70) � 1.479, P � 0.208]. The force profiles during
re-learning and retention for groups 1 and 2 are presented in
Fig. 3C. Despite the fact that re-learning in group 2 was in a
suddenly changed environment, motor output at the late trials
of retention were still higher than in group 1. This observation
is in direct conflict with the predictions made by the two-state
model of adaptation (Fig. 2D). Therefore subjects who initially
adapted to a gradually changing environment appeared to
respond to a later, rapid change in that environment with a
memory that displayed slower decay than naïve subjects.

If retention after a given period of learning depends on the
prior experience in that environment, then we should be able to
increase or decrease retention by manipulating that prior ex-
perience. To test this idea, we recruited two new groups of
subjects. Group 3 subjects initially trained in a gradually changing
environment and then after wash-out, re-learned in that same
environment. Performance during re-learning (Fig. 4A) was not
different from re-learning in group 1 [F(1,13) � 0.681, P �
0.424]. Yet, retention after re-learning in group 3 was better
than retention after re-learning in group 1 [block 4, 2-way
repeated-measure ANOVA with Greenhouse-Geisser correc-
tion showed that there was a significant interaction effect
between the prior training schedule and movement bin,
F(2.7,38.2) � 3.98, P 
 0.05, and main effect of prior training

F(1,14) � 4.56, P � 0.05]. Indeed, group 1’s motor output
decayed significantly faster (1/� � 0.028 	 0.007 movement
bin�1) than group 3 [1/� � 0.007 	 0.003 movement bin�1;
2-sample t-test, t(14) � 2.68, P 
 0.05]. Therefore prior
experience with a sudden perturbation appeared to increase
decay rates of memories that were acquired later in response to
a gradual perturbation.

We next tested whether a prior experience could similarly
affect decay rates of memories that were acquired later in
response to a sudden perturbation. One group initially experi-
enced a gradually changing environment (group 2), and an-
other group initially experienced a rapidly changing environ-
ment (group 4). After washout, they re-learned the same rapid
perturbation. Performance during re-learning (Fig. 4B) was
indistinguishable [F(1,17) � 0.517, P � 0.482]. Yet retention
after re-learning was worse in the group that had previously
observed a sudden perturbation [repeated-measure ANOVA,
significant main group effect F(1,17) � 5.56, P 
 0.05].
Indeed, the effect of the prior exposure to a sudden perturba-
tion was remarkably strong: retention in group 1 after a gradual
re-learning of perturbation was not significantly different from
retention after a sudden perturbation in group 4 [Fig. 4C,
F(1,17) � 0.08, P � 0.36].

In summary, despite a long period of washout between
initial experience and re-learning, the initial experience had a
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strong influence on the decay rates of motor output following
re-learning. If the initial experience was with a rapidly chang-
ing perturbation, it increased decay rates after re-learning. If
the initial experience was with a gradually changing perturba-
tion, it reduced decay rates after re-learning.

Control 1: number of trials

A great majority of adaptation experiments impose a sudden
perturbation followed by a long period of trials that kept the
perturbation constant. How is retention affected as compared
with when a gradual perturbation is imposed over the same
number of trials? That is, is the decay rate different when there
are equal numbers of trials between the sudden and gradual
protocols?

To answer this question, group 5 trained with a protocol that
introduced the perturbation suddenly and maintained it for 50
trials. The main prediction from the two-state model is that in
comparison to the gradual perturbation, the additional trials
increase adaptation levels during training and result in superior
performance during the following retention trials (Fig. 4D). As
predicted, we observed that in group 5 the adaptation index
during training (Fig. 4E) was significantly higher than in the
gradual training groups [i.e., groups 2 and 3; F(1,22) �
52.184, P 
 0.01]. However, contrary to predictions made by
the two-state model, repeated-measure ANOVA showed a
significant interaction effect between the protocols and move-
ment bins [F(1,22) � 4.805, P � 0.039], suggesting that the
motor output for group 5 decayed faster than for groups 2 and
3 (Fig. 4E).

We wondered whether the rapid perturbation in group 5
would bias the retention rates after re-learning. After the initial
learning and washout, subjects in group 5 re-learned the field
in a gradual protocol (Fig. 1B). The retention profile after
re-learning (block 4) was not significantly different from the
first retention profile within group 5 [block 2; F(1,14) � 0.527,
P � 0.48], which is consistent with the results from other
groups. We also compared the adaptation indices in the pos-
trelearning retention trials with group 3 and found a trend
toward a faster decay in group 5 though the differences were
not significant [no significant group and movement bin inter-
action effect, F(5,70) � 1.078, P � 0.38, no main group effect,
F(1,14) � 0.187, P � 0.672].

Control 2: the influence of the prior rate of change versus
the direction of change

The data from groups 1–5 suggest that the exceedingly long
washout block following initial learning did not really make
the subjects naïve again: the prior experience affects the decay
rates following re-learning. In other words, a group’s retention
behavior after relearning can be predicted by the retention
behavior after initial learning. There are two competing sce-
narios that could explain this result. In the first scenario,
despite the 120 washout trials, the slow state did not return to
baseline. Rather in all groups that learned gradually in block 2,
there was some residual slow state that lingered and aided
re-learning and retention in block 4. This could explain the
retention data in Figs. 3B and 4, A and B. However, this
scenario could not explain the retention data in Figs. 3A and
4C. In a second scenario, the states return to zero but their

decay rates maintain a memory of the rate of the change in the
environment. The prior experience with the environment al-
lows the learner to identify the environment as one with
gradual changes. The learner reduces the decay rates, which
encourages retention even if the environment now suddenly
changes. That is, adaptation involves a system identification
process that determines the structure, or pattern of the envi-
ronment changes. In principle, this scenario can account for all
the data in Figs. 3 and 4. Indeed, this scenario makes the rather
unusual prediction that the factor that influences retention is the
rate of change in the environment, not its specific contents. For
example, it is irrelevant that in group 2, the initial learning was
with a perturbation that was in the same clockwise direction as
in re-learning (because the states washout completely in the
subsequent washout phase). Rather, the crucial factor in the
prior training of group 2 is the gradualness of change in
perturbation during initial learning.

To directly test this idea, we recruited a new group of
subjects (group 6) and in block 2 presented them with a gradual
perturbation that was in the opposite (counter-clockwise) di-
rection as all previous groups (Fig. 1B). Then to washout the
learning, we followed this with 180 null trials. That is, the
washout period was 3.6 times the learning period. Subse-
quently, the subjects were presented with a sudden perturbation
opposite to the one that they had learned in block 2 (i.e., same
perturbation in groups 1–5). The idea was that if the gradual-
ness of the perturbation is the cause of better retention, then the
subjects in group 6 should show better retention of the sudden
field than block 2 of groups 1 and 4 or block 4 of group 4
despite the fact that their original learning was in the opposite
field. Performance during the re-learning period of block 4
(Fig. 5A) was indistinguishable among groups 2, 4, and 6.
However, retention was significantly better in group 6 than
group 4 [Fig. 5A, main group effect, F(1,9) � 5.339, P �
0.032]. Indeed, retention of subjects in block 4 of group 6 was
no different from block 4 of group 2 [no main group effect,
F(1,16) � 0.222, P � 0.644], further demonstrating that the
important common factor was the long prior exposure to a
slowly changing environment. Retention in block 4 of group 6
was better than the naïve subjects in block 2 of group 1 [main
group effect, F(1,16) � 6.101, P � 0.025] and group 4
[F(1,19) � 10.751, P � 0.004; Fig. 5B].

Figure 6 summarizes the data with a bar plot that represents
the average adaptation indices during the retention blocks. The
decay rate of a recently acquired motor memory in a given
environment was slowest if the prior experience in that envi-
ronment did not include sudden changes.

D I S C U S S I O N

Our nervous system alters our motor output to maintain
performance in a changing environment and with our changing
body. Previous literature has suggested that we effectively
learn by predicting the current state of the environment from
our immediate past observations. Our results provide evidence
that we also identify the statistics of change in environment
from our past observations, and this in turn affects retention
rates of the resulting memory.

Here we considered a task in which the state of the envi-
ronment was a force that perturbed movements. The force
sometimes stayed constant from trial to trial, sometimes
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changed suddenly, and sometimes changed gradually over
many trials. To succeed, subjects needed to estimate this force
and produce motor commands that countered it. We made three
observations. 1) In naïve subjects in response to a sudden
change in the force, the motor output changed rapidly but then
also declined rapidly when performance errors were eliminated
(i.e., error-clamp trials). In another group of naïve subjects, in
response to a gradual change in the force, the motor output
increased gradually but then also declined gradually. 2) After a
long period of washout in which the force was returned to
baseline, the prior training did not affect the rates of re-learning
when the force once again changed. However, the prior train-
ing affected the decay rate after re-learning. Prior experience
with a rapidly changing force encouraged faster forgetting even
when re-learning involved a gradually changing force. Prior
experience with a gradually changing force encouraged greater
retention, even when re-learning included a rapidly changing
force. 3) The critical factor in the prior experience was the rate
of change in the environment not its direction of change.
Therefore we found that we could readily alter the forgetting
rate of an experience through manipulation of the prior expe-
riences.

From a theoretical perspective, the new idea that emerges
from our work is that learning is not merely a process of state
estimation in which the brain uses a default generative model
to optimally estimate the environment (Kording et al. 2007).
Rather learning is a process of system identification in which
we acquire a generative model that represents the environment,
and we use that model to perform state estimation. What is
surprising is that the process of system identification is evident
even for short-term learning experiments that involve hundreds
of trials, suggesting that it is highly flexible and responsive.

The results of our experiments demonstrate that time con-
stants of the processes that support motor memory formation
(i.e., matrix A in Eq. 7) cannot be constant but are themselves
affected by the statistics of the learning experience. After
experience with a slowly changing environment, the time
constants shift toward slower time scales, whereas after expe-
rience with a rapidly changing environment, the time constants
shift toward faster time scales. As a result, more of the prior
experience is retained for slowly changing environments and
more of it is forgotten for rapidly changing environments.

Our results shed some light on some puzzling observations
in motor learning. One such observation has been that the
adaptive response to a given error is consistently smaller in a
randomly changing environment than in a nearly constant
environment (Cheng and Sabes 2007; Donchin et al. 2003;
Smeets et al. 2006; Smith 2004). One way to explain this is to
posit that large errors carry less relevance than smaller errors,
resulting in a smaller rate of learning (Wei and Kording 2009).
However, our work suggests that a random environment en-
courages formation of a generative model that displays greater
forgetting between trials, which would give the appearance of
an adaptive system that learns less from errors.

In another example, it has been shown that the sensitivity to
error is highest when the forces in the environment are highly
correlated from trial to trial and lowest when the correlation is
near zero (Smith and Shadmehr 2004). An environment with
low trial-to-trial correlation is equivalent to one in which A in
Eq. 6 is near zero, causing greater forgetting between trials,
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which would be equivalent to an adaptive system that appears
to learn less from error.

A potential confound in our study was that to match perfor-
mance levels at the end of learning period in groups 1 and 2,
it was necessary to include more trials in the gradual protocol
than the short and sudden protocol. That is, by the end of the
initial learning period, the gradual protocol was longer in time
than the sudden protocol. However, by the end of the re-
learning phase, both groups 1 and 2 had been exposed to the
same total exposure time and number of trials, yet they showed
markedly different levels of motor ouputs. In group 5, the
perturbation was introduced suddenly and maintained for 50
trials (equal number of trials as in the gradual group). How-
ever, we still observed a faster drop in motor output in group
5 than in groups that learned with the gradual protocol.

A second potential confound was that perhaps the extensive
washout trials after the initial learning period were not long
enough to return the slowest states to baseline (our washout
trials were �3.6 times the length of the initial training). For
example, this idea explains that in group 2, decay after re-
learning was slow because the slow state did not washout. A
strong test of this idea was in group 6 in which the initial
training was in a gradually changing environment, but the
direction of change during learning was opposite re-learning.
We found that decay rates after re-learning were almost iden-
tical in groups 2 and 6 despite the fact that the initial learning
was in opposite directions in the two groups. This result is
consistent with the idea that the washout period returned the
states to baseline, but altered the decay parameters of the
adaptive process (i.e., af and as in Eq. 3].

A third potential confound was that the block of error-clamp
trials itself introduced prediction errors in proprioception space
(i.e., a spring force vs. a viscous force). These errors could in
turn form the basis of learning contexts. For example, people
could adapt differently to environments with different imped-
ances (Burdet et al. 2001). In group 6, we removed the first
block of error-clamp trials and still observed the same effects
of gradual training observed in other groups. This indicates that
a large contact force experienced in error-clamp trials did not
significantly affect the rate of adaptation and de-adaptation in
subsequent learning.

Our work here focused on decay properties of motor mem-
ories as a function of trial, rather than time. Our previous work
demonstrated that these decay rates are distinct (Criscimagna-
Hemminger and Shadmehr 2008) with passage of time having
much smaller effects than trial. By focusing on the trial-
dependent decay, we attempted to test the hypothesis that the
decay rates of the putative fast and slow processes that appear
to support motor learning were themselves plastic. Our results
suggest that these decay rates are influenced by the second-
order statistics of the learning experience.

In the current study, we have compared behavioral results
against predictions of the two-state model. In another single-
state model proposed by Emken et al., the forgetting factor is
implemented to minimize effort (Emken et al. 2007). It is
possible that a sudden change in the dynamics of the environ-
ment increases the instantaneous demand for effort with the
consequence that trial-to-trial forgetting will be faster. Thus
many sudden changes in the perturbation forces increase this
demand further. Indeed Emken et al. show that the trial-to-trial
forgetting is slower (0.76 	 0.21) in an experiment with blocks

of constant forces than in an experiment with blocks of differ-
ent forces (0.64 	 0.17). In this perspective, the Emken model,
like the two-rate model, may functionally be sufficient to
explain retention of a naïve learner after sudden or gradual
training. However, the Emken model, like other one- or two-
state models, assumes constant model parameters. Because of
this property, it cannot account for the re-learning retention
results in the current study. Taken together, we think the effect
on the retention being reported in the current study speaks of a
global phenomenon that can only be observed when one
studies data beyond a single block of adaptation, much like
with the savings studies.

It should be noted that in addition to the gradualness of
perturbation exposure, the number of trials that have the same
perturbation amount is likely to also have an influence in how
learners construct the generative model of the environment. A
sudden perturbation that lasts a few trials (e.g., group 4) may
be different from a sudden perturbation that is followed by
many “constant” trials (e.g., group 5) because trial-to-trial
correlation of the perturbation state is much higher in the latter
case. The fact that retention in group 3 (gradual learning and
relearning) was only nonsignificantly higher than in group 5 in
block 4 seems to suggest this. Nevertheless, the fact that
retention was the same after learning and re-learning within
any group we tested strongly supports the generative model
hypothesis.

A main issue raised by recent models of motor learning is
that when we observe a prediction error, we face a credit
assignment problem (Kording et al. 2007; Smith et al. 2006). Is
the change in the environment that caused this error likely to be
sustained or is it transitory? Our results here suggest that the
credit assignment policy may be based on a generative model
that we acquire from the statistics of the performance errors.
This generative model of the environment acts as a prior with
which we estimate the state of the environment. In effect,
forgetting rates are a reflection of our implicit estimate of the
timescale of change in the environment.

A C K N O W L E D G M E N T S

The authors would like to acknowledge J. W. Krakauer for discussion in the
experiments and in preparing the manuscript.

G R A N T S

The work was supported by National Institute of Neurological Disorders
and Stroke Grants NS-037422 and NS-057814.

R E F E R E N C E S

Baddeley RJ, Ingram HA, Miall RC. System identification applied to a
visuomotor task: near-optimal human performance in a noisy changing task.
J Neurosci 23: 3066–3075, 2003.

Burdet E, Osu R, Franklin DW, Milner TE, Kawato M. The central nervous
system stabilizes unstable dynamics by learning optimal impedance. Nature
414: 446–449, 2001.

Burge J, Ernst MO, Banks MS. The statistical determinants of adaptation
rate in human reaching. J Vis 8: 20 21–19, 2008.

Cheng S, Sabes PN. Calibration of visually guided reaching is driven by
error-corrective learning and internal dynamics. J Neurophysiol 97: 3057–
3069, 2007.

Criscimagna-Hemminger SE, Shadmehr R. Consoidation patterns of human
motor memory. J Neurosci 28: 9610–9618, 2008.

Donchin O, Francis JT, Shadmehr R. Quantifying generalization from
trial-by-trial behavior of adaptive systems that learn with basis functions:
theory and experiments in human motor control. J Neurosci 23: 9032–9045,
2003.

939STATISTICS OF THE LEARNING EVENT AFFECT DECAY OF MOTOR MEMORY

J Neurophysiol • VOL 102 • AUGUST 2009 • www.jn.org

 on S
eptem

ber 3, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org


Emken JL, Benitez R, Sideris A, Bobrow JE, Reinkensmeyer DJ. Motor
adaptation as a greedy optimization of error and effort. J Neurophysiol 97:
3997–4006, 2007.

Ethier V, Zee DS, Shadmehr R. Spontaneous recovery of motor memory
during saccade adaptation. J Neurophysiol 99: 2577–2583, 2008.

Hatada Y, Miall RC, Rossetti Y. Two waves of a long-lasting aftereffect of
prism adaptation measured over 7 days. Exp Brain Res 169: 417–426, 2006.

Huang VS, Shadmehr R. Evolution of motor memory during the seconds
after observation of motor error. J Neurophysiol 97: 3976–3985, 2007.

Huang VS, Shadmehr R, Diedrichsen J. Active learning: learning a motor
skill without a coach. J Neurophysiol 100: 879–887, 2008.

Hwang EJ, Smith MA, Shadmehr R. Adaptation and generalization in
acceleration-dependent force fields. Exp Brain Res 169: 496–506, 2006.

Joiner WM, Smith MA. Long-term retention explained by a model of
short-term learning in the adaptive control of reaching. J Neurophysiol 100:
2948–2955, 2008.

Kagerer FA, Contreras-Vidal JL, Stelmach GE. Adaptation to gradual as
compared with sudden visuo-motor distortions. Exp Brain Res 115: 557–
561, 1997.

Klassen J, Tong C, Flanagan JR. Learning and recall of incremental
kinematic and dynamic sensorimotor transformations. Exp Brain Res 164:
250–259, 2005.

Kluzik J, Diedrichsen J, Shadmehr R, Bastian AJ. Reach adaptation: what
determines whether we learn an internal model of the tool or adapt the model
of our arm? J Neurophysiol 100: 1455–1464, 2008.

Kording KP, Tenenbaum JB, Shadmehr R. The dynamics of memory as a
consequence of optimal adaptation to a changing body. Nat Neurosci 10:
779–786, 2007.

Michel C, Pisella L, Prablanc C, Rode G, Rossetti Y. Enhancing visuomotor
adaptation by reducing error signals: single-step (aware) versus multiple-
step (unaware) exposure to wedge prisms. J Cogn Neurosci 19: 341–350,
2007.

Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a
split-belt treadmill can improve walking symmetry post-stroke. Brain 130:
1861–1872, 2007.

Scheidt RA, Reinkensmeyer DJ, Conditt MA, Rymer WZ, Mussa-Ivaldi
FA. Persistence of motor adaptation during constrained, multi-joint, arm
movements. J Neurophysiol 84: 853–862, 2000.

Shadmehr R, Mussa-Ivaldi FA. Adaptive representation of dynamics during
learning of a motor task. J Neurosci 14: 3208–3224, 1994.

Smeets JB, van den Dobbelsteen JJ, de Grave DD, van Beers RJ, Brenner
E. Sensory integration does not lead to sensory calibration. Proc Natl Acad
Sci USA 103: 18781–18786, 2006.

Smith MA, Ghazizadeh A, Shadmehr R. Interacting adaptive processes with
different time scales underlie short-term motor learning. PLoS Biol 4: e179,
2006.

Smith MA, Shadmehr R. Modulation of the rate of error-dependent learning
by the statistical properties of the task. Adv Comput Mot Control vol. 3, San
Diego, 2004.

Wei K, Kording K. Relevance of error: what drives motor adaptation?
J Neurophysiol 101: 655–664, 2009.

940 V. S. HUANG AND R. SHADMEHR

J Neurophysiol • VOL 102 • AUGUST 2009 • www.jn.org

 on S
eptem

ber 3, 2009 
jn.physiology.org

D
ow

nloaded from
 

http://jn.physiology.org



