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Here we provide details for the simulation results that were presented in the main text.  We begin with 
the optimal control problem with the linear model of dynamics and consider the issue of model 
uncertainty.  We analyze the robustness of the results (over-compensation, speed changes, segmentation) 
with respect to parameter values.  Next, we consider the effect of motor noise.  In the final section, we 
turn our attention to nonlinear models of reach dynamics and examine the robustness of some of the 
results in a more realistic model of the arm. 
 

1. Optimal control with model noise 
In a typical control problem, one attempts to achieve a behavioral goal based on the information that 

one has regarding the constraints of the task.  In optimal control, behavioral goals are represented as 
costs, and the constraints are represented as a model of the forward dynamics of the task, i.e., a model of 
how motor commands produce changes in the states of the system.  We wanted to allow the controller to 
have a degree of uncertainty about its forward model and assess how this uncertainty affected movement 
planning.   

In general, we can think of uncertainty as a measure of variance about the mean of a parameter.  If 
the system is linear, then model parameters multiply states of the system to predict future states, and 
therefore this parameter variability would produce signal-dependent state noise.  That is, a noise with a 
standard deviation that grows linearly with the size of the state vector.  To solve this kind of optimal 
control problem, we were guided by the approach taken by Todorov (2005) in solving a related problem, 
where the dynamics of the system were affected by signal dependent motor noise.  Our insight was to 
view model parameter uncertainty as a signal-dependent state noise, that is, a dual to the signal-dependent 
motor noise. 

Suppose that we have a linear system with  as its state vector (position, velocity, etc.) at time t , 

 as the motor command vector composed of elements , corrupted by the noise vector , 

tx

tu ( )i
tu tφ ε  as a 

scalar, Gaussian random variable with zero mean and variance 1, ~ (0,1)ε N , and A and B as matrices 

that describe dynamics of the system:   
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For example, the noise that affects  is mean zero with a standard deviation that grows with a slope 

 as a function of .  Following Todorov (2005), it is convenient to rewrite this noise as follows:  

(1)
tu

1c (1)
tu
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1 2

( )

0 0 0 0 0
0 0 0     0 0
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 = i
t i t t
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so that the variance of the motor noise grows as a function of the motor input: 

  [ ] ( )var var i T T T T
t i t t t i i t t i

i i
C C Cε⎡ ⎤= =

⎣ ⎦∑ ∑φ u u u u

This allows one to rewrite the system dynamics:  

  ( )
1

1

c
i

t t t t i
i

A B Cε+
=

= + +∑x x u

If we assume that the controller makes an observation ty  at time t, and has the goal of minimizing a 

cost:  
 Observation: t tH t= +y x ω  (0.1) 

 Cost per step:  (0.2) T T
t t t tQ +x x u utR

where , and the matrices  and ~ (0, )t N Ωωω tQ R  are symmetric positive definite matrices, then 

Todorov’s (2005) method provides a closed-form solution to this constrained optimization problem. 
In our scenario, we have the additional problem that we are uncertain about the parameter A.  We 

express this uncertainty as: 

  ( )
1

1
( )

c
i

t t t t t
i

A V B Cγ ε+
=

= + + +∑x x u i tu

where tγ  is a Gaussian scalar random variable with mean 0 and standard deviation 1, and V is a scaling 

parameter matrix which scales the variance of the model parameter uncertainty.  This effectively produces a 

system where the dynamics have both a signal dependent motor noise and a signal dependent sensory noise.   

In our simulations, we assume that the dynamics were of the following general form: 
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 Dynamics: ( ) ( )
1

1 1
ε γ+

= =

= + + + +∑ ∑
c k

i i
t t t t t i t t

i i

A B C Cx x u i tξ u x  (0.3) 

where ~ (0, )t N ξΩξ  is an additive vector of Gaussian noise, ( )i
tε  and ( )i

tγ  are independent scalar 

normal random variables, and  and iC iC  are constant matrices.  The initial state  had m

normal distribution with mean 1x̂  and covariance 1

1x ultivariate 

Σ . The objective of the optimal controller wa

find the optimal policy which minimized the expected cumulative cost 

s to 

tu  ( )1
( )T

t t t t tt
R

=
+∑ x x u uT T

policy for a pre-calculated Kalman gain  as:  

E Q .  
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The matrix is the time-varying feedback gain, and tL  e
tS , x

tS are the parameters required to calculate 

the optimal cost-to-go function at any time step t.  operator.  The state estimate is updated Tr
by using a modified Kalman filter which takes into account the multiplicative noise. For a given feedback 
gain matrix tL , the corresponding optimal Kalman filter is calculated in a forward pass through time:  

(

 is the trace 
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 (0.5) 

The matrices, tK , [ ]Σ =e T
t tE e e , t

ˆ ˆ ˆ[ ]Σ =x T
t tE x xt  and ˆ ˆ[ ]Σ =xe T

t tE x e  

ˆ

t are the optimal Kalman gain 

and the covariance matrices for the random variables = −t t tx  and ˆ txe x .  
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The details of the derivation are provided at the end o ent. f this docum  

 
2. D

uch of the data in the main manuscript was based on a model of control for a point mass in a force 
 inertia in Cartesian coordinates was 

ynamics of the linear system model of reach control 
M

field.  This section provides the details of that model.  The
4.0 0
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 (kg). The state was defined as ( ) [ ( ), ( ), ( ), ( ), ( ), ( ), , ]M = x x y y x yt p t p t p t p t f t f t T Tx , x y

where ( )xp t , y ( )p t  and ( ), ( )x yf t f t  and ,x y  are the hand position, forces produced by the arm, 
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T T

and targ i ong the x and es resp ly. We modeled the relationship between forces 

x y
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 al y ax ect
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constant. 
We tested the optimal control policies predicted by the model in a viscous curl force field. This kind 

velocity dependent and the forces produced on the hand are given by the relation 

e 
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where γ  is a mean zero variance 2σ Gaussian noise.  The discretized system dynamics can be 
transformed into the form of Eqn. (0.3) using the matrices: 
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[ ]8 20 XC =  

  
The sensory feedback matrix was formulated so that the controller was able to observe hand positions, 

velocities and the target positions over the course of the movement. Hence, 

.  

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
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The control (or motor) cost penalty matrix R was set to a constant value throughout the course of the 

movement. The parameter  determines the weight of the control cost.  We set 
rw 2 2r XR w I=  for 

0 Ht T T≤ < +  where T is the maximum movement completion time and HT  is the time for which the 

arm was supposed to hold position at the target after movement completion. 
The ‘state cost’ penalty matrix was formulated so that the state cost was zero before the movement 

completion time T and was increased in a step to a high value for the time period from  to T HT  . This 

formulation provided the controller with the maximum flexibility to search for the optimal policy since 
the controller was penalized only for not being at the target after the movement completion time T without 
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imposing any constraints on the trajectory followed by the controller to reach the target. 
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. 
For simplicity, the variance of the additive Gaussian noises was set to zero.  

 
ξ

ω

Ω =

Ω =

0
0

. 

 
The cost parameters and the time constraints used for the simulations in the manuscript were: 

8 0.45 0.0510 , 0.01, 0, 5, ,r v f p Hw w w w T T
t t

−= = = = = =
Δ Δ

.  Sensitivity of the simulations to these 

parameters are discussed below. 

  
3. Effect of bias of the forward model on the optimal control policy: sensitivity analysis  

This section describes how we simulated the effects of incomplete adaptation of the internal model on 
the average behavior of the controller for the point mass system.  This section also considers the 
robustness of the results by varying components of the cost function.  

The estimate of the force field parameter available to the controller through the internal model was 
ˆ α=D D . Scaling parameterα denotes accuracy of internal model corresponding to force field. The 

simulation results shown in Fig. S1 correspond to a clockwise viscous curl force field where 

0 13
13 0

⎡
= ⎢−⎣ ⎦

D ⎤
⎥ . The simulations were done for three different levels of accuracy of the internal model 

1,  0.8 and 0.6α = . We also explored the effects of various levels of the position cost parameter  on 

the simulation results.  We found that a completely adapted internal model 

pw

1α =  led to 

over-compensation.  However, as the adaptation level decreased ( )0.8 aα = nd 0.6 , the 

over-compensation at the early part of the movement became smaller as the under-compensation near the 
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target increased.   

As the position cost parameter  decreased, the trajectory did not complete the reaching to target 

position. However, the over-compensation was a characteristics of all tested values of .  

pw

pw

 
4. Effect of uncertainty of the internal model: sensitivity analysis  

In this simulation, the internal model was defined as ˆ α γ= + tD D D , where γ t  is a zero mean 

Gaussian random variable with variance 2σ . Figure S2A shows how the variance of this noise and 

position cost  interact. In the simulations, we had pw 0.8α = . The results plotted by blue, red and 

green lines denote different amounts of uncertainty σ =0.1, σ =0.2 and σ =0.3 respectively. When 

position costs were small ( ), the mass did not reach the target and peak 

velocity was small for all 

4 3 ,10− − 210 ,10 ,10pw −= 1−

σ . When this cost was larger ( ), the mass reached the 

target and there were clear differences in peak velocity between 

0 1 2,10 , 10310pw = 10 ,

σ =0, 0.2 and 0.3 such that higher noise 

caused higher peak velocity. In all cases, the peak velocity was higher with higher noise.  
Figure S2B shows the effect of noise for different level of  (control cost). When this weight was 

too large ( ), the mass did not reach the target.  When this weight was smaller 

( ), the mass reached the target and there were clear differences in 

peak velocity between 

rw

610 ,10rw −=

12 11 10,10 ,10 ,1− −

5−

−9 8 710 0 ,10 ,10rw − − −=

σ =0.1, 0.2 and 0.3 so that higher noise caused higher peak velocity.  In general, 

the prediction of increased peak speed with increased uncertainty was a robust result of the simulations. 
 

5. Effects of model uncertainty in the via point task: sensitivity analysis 

The task was to arrive at the target before certain maximum time  and stay there for a hold time of 

 while passing through the via-point (a location along a straight line between the starting position and 
the target) at a specific via-point time . These simulations were performed for an unbiased viscous 

curl force field, i.e. the components of the matrix D are all zero. Hence, any differences in the optimal 
control policy are purely due to different levels of uncertainties without being confounded with 
incomplete learning of the force field parameter D. The state for the via-point task was modified to 
include the location of the via-point. All other components of the state were the same. 

T

HT

VT
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( ) [ ( ), ( ), ( ), ( ), ( ), ( ), , , , ]= x x y y x y x y xt p t p t p t p t f t f t TV TV T Tx y  

where ,x yTV TV  are x and y co-ordinates of the via point location. The system dynamics matrices were 

modified to incorporate the via-point location in the state vector. We made small modifications to the 
matrices so that the via-point location remained constant over the course of the movement as shown 
below. All other components of these matrices remain the same as in the simple reaching task.  
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where  and  were the same as Eqn 0.7. dA 1dC
 
The sensory feedback matrix H was changed so that the observation  included the via-point 

location.  

y

1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

H
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⎢ ⎥
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⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
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.  

The control cost penalty matrix R was the same as in previous section. However, we had to modify 
the ‘state cost’ penalty matrix to penalize the controller for not being at the via-point at the via-point time. 

The variance of the additive Gaussian noises ( ),ξ ωΩ Ω  was set to zero similar to the simulations for the 

reaching task. 
The cost parameters and the time constraints used for the via-point simulations in the manuscript were 

8 1.0 0.4 0.210 , 0.01, 3, 1, , ,r v p pv v Hw w w w T T T
t t

−= = = = = = =
tΔ Δ Δ

.  To account for the unbiased 

variable force field, we assumed an internal model which had the model of force field with parameters, 

ˆ γ= tD D , where 
0 13
13 0

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

D , γ t  is a Gaussian random variable with mean 0 and variance σ . We 
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tested σ =0, 0.2, or 0.3.  

Figure S3A shows the effect of noise for different values of . The hand path was a straight line for 

all amplitudes of noise and all costs in all simulations of the via-point task (data not shown). However, 
with increased uncertainty (noise variance), the speed decreased at the time when hand passed the 

via-point. This characteristic was consistent for all .  As shown in Fig. S3B, the characteristics of the 

decreasing speed at the via point changed drastically by the change of weight of via point .  When 

 was very small ( ), there was effectively no strong cost associated with going 

through the via-point, and the speed profile did not show segmentation.  However, as the constraint for 
going through the via-point increased in importance, the speed profile became bimodal. Fig. S3C shows 

trajectories for different control costs . When  was large (

pw

rw

pw

rw

pvw

pvw 3 210 ,10 ,10pvw − −=

rw

1−

46 510 ,10 ,10− − −= ), the mass did not 

reach the target, indicating that optimal controller focused more on minimizing motor cost than the cost 
for reach. Thus, the change of speed at via point was not significant for these conditions.  Instead, when 

 was small ( ), there was a significant change of speed at the 

via-point, producing segmentation. We concluded that in the via point task, increased uncertainty 
consistently encouraged segmentation. 

rw 11 10 910 ,10 ,10 ,10 ,− − − 8 10rw −= 7−

 
6. Effect of motor noise 

Noise in the motor commands is an important component of the computational models of the motor 
system (Harris and Wolpert, 1998; Todorov and Jordan, 2002). We excluded motor command dependent 
noise in the simulations shown in the manuscript to highlight the effects of model parameter uncertainty 
on the optimal control policy. In this section we address the issue of the effect of different levels of motor 
command dependent noise on the model predictions. The parameter  lets us control the variance of the 
signal dependent motor noise in the system. 

c

 

⎡ ⎤Δ
⎢ ⎥=
⎢ ⎥Δ⎣ ⎦

0 0 0 0 0 0 0

0 0 0 0 0 0 0

T
t c

C
t c

 for the point-to-point reach task 

and 
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⎡ ⎤Δ
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⎢ ⎥Δ⎣ ⎦

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

T
t c

C
t c

 for the via-point task. 

Figure S4A shows the simulation results for different amounts of motor command noise (i.e. ). All 
other parameters were kept constant at the values used for the simulations shown in the manuscript. All 
simulations were repeated for three different levels of model parameter uncertainty (

c

σ =0, 0.2 and 0.3, 

corresponding to the blue, red, and green lines in this figure). The mass failed to reach the end point and 
the effects of model parameter uncertainty on the speed profile were unclear for high values of motor 

noise ( ). On the other hand, the characteristics of trajectory with respect to the model parameter 
uncertainty were consistent with the results shown in the manuscript for low values of motor noise 
(c ): an increase in model parameter uncertainty made over compensation decrease and peak 
velocity increase. Large amounts of motor noise caused slowness of movement, indicating the effect of 
motor noise is similar to effect of motor cost.  

> 0.08c

0.08<

Figure S4B shows the results for different levels of motor noise in the via-point task. The results show 
a segmented movement as long as the motor noise is low to moderate ( < 0.08c ). With very large motor 
noise, the segmentation disappears.  However, in all cases the increase uncertainty causes the speed 
profiles to become skewed with a sharper rise as the movement initiates.  

In the representative paper concerning motor noise (Todorov and Jordan, 2002), the scaling parameter 
was set as 0.04.  In experiments on arm muscles, the scaling parameter of signal dependent noise is 
thought to be around 0.05 (Hamilton et al., 2004) . Our simulations also found clear effects of model 
uncertainty when motor noise amplitude was around 0.06 or smaller.  

 
7.  Solving the optimal control problem with model uncertainty  

In this section, we drive the solution to the optimal control problem with model uncertainty.  
Consider a linear dynamical system with state t ∈x mR , control signal t ∈u pR , feedback t ∈y qR , in 

discrete time t: 

Dynamics   1
1 1

γ ε+
= =

= + + + +∑ ∑
c c

i i
t t t t t i t t i

i i

A B C Cx x u tξ x u

t

R

t

   (0.8) 

Feedback         (0.9) t tH= +y x ω

Cost per step       (0.10) T T
t t t t tQ +x x u u

The state estimate of the dynamic system available to the controller is assumed to be updated 
according to a linear recursive filter for analytical tractability. 

( )1ˆ ˆ ˆt t t t t tA B K y H η+ = + + − +x x u x  

We define the estimation error as ˆ= −t te x xt . We can show through induction that the optimal 
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cost-to-go function or the cost expected to accumulate under the optimal control law after a time step t has 
the quadratic form. 

ˆ ˆ ˆ( , ) ( ) ( )T x T e T x T e
t t t t t t t t t t t t t t t t t t tv S S s S S= + − − + = +x x x x x x x x x x e e s+   (0.11) 

At the final time , the optimal cost-to-go function is simply the final state cost , and 

so is in the assumed form with , 

=t n T
n n nQx x

nv x
n nS Q= 0e

nS = , .  ns

Consider the optimal control policy denoted by ˆ( )t tπ=u x . Let ( )1 ˆ,t t tvπ+ x x  be the cost-to-go 

function corresponding to the optimal control law. Since this control law is optimal for all time points 

t+1,…,n, we have , so that the cost-to-go function 1t tv vπ
+ = 1+ tvπ  satisfies the Bellman equation: 

1 1, 1 ,ˆ ˆ ˆ ˆ( , ) ( ) ( ) [ ( ) | , ]T T
t t t t t t t t t t t t tv Q R E vπ π π + + += + +x x x x x x x x x x π    (0.12) 

Now, the stochastic dynamics of the variables of interest can be written as 

1
1 1

γ ε+
= =

= + + + +∑ ∑
c c

i i
t t t t t i t t i t

i i

A B C Cx x u ξ x u     (0.13) 

( )1 ( ) η γ ε+ = − + − − + +∑ i i
t t t t t t t t i t t i t

i
A K H K C Ce e ξ ω x u .    (0.14) 

Then the conditional means and co variances of these random variables of interest are  

( ) ( )( )
( ) ( )( )

1

1

1

1

ˆ ˆE[ | , , ] ( )
ˆE[ | , , ] ( )

ˆ ˆ ˆCov[ | , , ]

ˆ ˆ ˆCov[ | , , ]

t t t t t

t t t t t

TT T T
t t t i t t i i t t i

i

TT T T T
t t t i t t i i t t i t t

i

A B
A K H

C C C C

C C C C K K

ξ

ξ η ω

π π
π

π π π

π π π

+

+

+

+

= +
= −

= Ω + +

= Ω + + +Ω + Ω

∑

∑

x x x x x
e x x e

x x x x x x x

e x x x x x x

(0.15) 

Using the expected values and the covariances we just found and the relations from Eqn 0.11 and 0.12, 
we get an expression for the cost-to-go function 

 

( ) ( )

( ) ( ) ( )

1 1 1 1 1

1 1 1

ˆ( , ) ( )

ˆ ˆ( ) ( ) 2

π

π π

+ + + + +

+ + +

⎛ ⎞= + + + + + − −⎜ ⎟
⎝ ⎠

⎛ ⎞
+ + + + + +⎜ ⎟

⎝ ⎠

∑

∑

TT T x T x e T e
t t t t t t i t t i t t t t t t

i

T TT x T x e T x
t t t i t t i t t t

i

v Q A S A C S S C s A K H S A K H

Tr M R B S B C S S C B S A

x x x x e e

x x 1ˆπ +

t

tx x
 

       (0.16) 
Writing the expression in a compact form, we have 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1 1

1 1

1

ˆ( , )

ˆ ˆ

ˆ2

TT T x T e
t t t t t t t t t t t t

T T x
t t t t t t

T T x
t t t

v Q A S A C A K H S A K H

s Tr M R B S B C

B S A

π

π π

π

+ +

+ +

+

= + + + − −

+ + + + +

+

x x x x e e

x x

x x

t

 (0.17) 

Where 

( )

1 1

1 1

1 1

( )

( )

ξ ξ η ω

+ +

+ +

+ +

= +

= +

= Ω + Ω +Ω + Ω

∑

∑

T x e
t i t t i

i
T x e

t i t t i
i

x e T
t t t t t

C C S S C

C C S S C

M S S K K

 

    (0.18) 
The cost-to-go function, however, is a function of the true state , which is not available to the 

controller. The only thing available to the controller is the state estimate . So, we take the expected 

value of the cost-to-go function over the true state and minimize it with respect to the control policy 

tx

ˆtx

π . 
Since , we have =ˆ ˆ[ | ]t tE x x xt

1 1ˆ ˆ ˆ ˆ ˆ[ ( , ) | ] ( ) ( ) ( ) 2 ( )T T x T T x
t t t t t t t t t tE v const R B S B C B S Aπ π π π+ += + + + +x x x x x x x t ,(0.19) 

Thus optimal control law at time point t is 

1
1 1ˆ ˆ( ) ; ( ) .π −
+ += = − = + +T x T x

t t t t t t t tL L R B S B C B Su x x A

t

 

   (0.20) 
Substituting ˆt tL−u x  in Eqn 0.16 

 

( )( ) ( )

( ) ( )( )
1 1

1 1

ˆ( , ) T T x
t t t t t t t t t t

TT T x e
t t t t t t t

v Q A S A BL C Tr M

A S BL A K H S A K H

π
+ +

+ +

= + − + + +

+ + − −

x x x x

e e

s
  (0.21) 

Comparing this equation with Eqn 0.11, we can summarize the optimal control law with the following 
equations: 

( )
( )
( ) ( )

( )

1

1 1

1

1 1

1

ˆ

.

;

; 0

; 0.

t t t

T x T x
t t t t

x T x x
t t t t t n n

Te T x e e
t t t t t t n

t t t n

L

L R B S B C B S A

S Q A S A BL C S Q

S A S BL A K H S A K H S

s Tr M s s

−

+ +

+

+ +

+

= −

= + +

= + − + =

= + − −

= + =

u x

=

   (0.22) 
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Thus, we showed that the cost-to-go function remains in the assumed quadratic form shown in Eqn 
0.11 for any time step t given that it is true for the time step t+1, completing the induction proof. 

The next step is to calculate the optimal Kalman gains for the control policy we just calculated. 
According to the assumption in the previous section of the Kalman gains not being functions of  and 

, we need to minimize the unconditional expectation of the cost-to-go function  with respect to 
 to calculate the optimal Kalman gains. 

tx
ˆtx

tK
+1tv

The terms in  that depend on  are + + +1 1 1ˆ ˆ[ ( , ) | , ,t t t t t tE v Lx x x x ] tK

( ) ( ) ( )1 1
TT e e

t t t t t t te A K H S A K H e Tr S K Kω
+ +− − + Ω T

t

]t ]t

   (0.23) 

Defining the unconditional covariances ,  and , the 
unconditional expectation of the -dependent expression above becomes 

[ ]e T
t tEΣ = e et [ T

t tEΣ =x x x [ T
t tEΣ =xe x e

tK

( ) ( )( )( )1( ) Te
t t t t t ta K Tr A K H A K H K K Sω

+= − Σ − + Ω T e
t   (0.24) 

Optimal must satisfytK
∂

=
∂
( )

0t

t

a K
K

.  

 

( ) ( )( ω
+

∂
= Σ + Ω − Σ

∂ 12t e e T e
t t t t

t

a K
S K H H A H

K
)T

)

    (0.25) 

Setting the derivative to zero and solving for . tK
ω −= Σ Σ + Ω 1(e T e T

t t tK A H H H       (0.26) 
We found an expression to calculate the optimal Kalman gains. But, we still need to find the 

unconditional covariances ,  and Σet Σ
x̂
t Σx̂et

e

. Since the variables ,  and  are deterministically 
related, we can calculate the covariance of the third variable given that we know the covariance for two 

variables. Given the covariance of  and , the covariance of  is given by 

x

x

x̂ e

x̂

( ) ( )+ ⎡ ⎤Σ = + + = Σ + Σ + Σ + Σ⎣ ⎦
ˆ ˆ ˆ

1 ˆ ˆ T T
t tEx ee x e x t t t

x xe xe  

Now, using the expressions for  and +1ˆtx +1te , we can calculate the expressions for the 

unconditional covariances shown below 
 

( )( )

ξ η ω
+Σ = − Σ − + Ω + Ω + Ω

+ Σ + Σ + Σ + Σ + Σ∑
1

ˆ ˆ ˆ ˆ

( ) ( )e T
t t t t t

T T T T
i t t t t i i t t t i

i

A K H A K H K K

C C C L

e

e x xe xe x

T
t

L C
    

 

( )ω

η

+Σ = − Σ − + Σ + Ω

+ − Σ + Σ − + Ω

ˆ ˆ
1

ˆ ˆ

( ) ( )

( ) ( )

T T
t t t t t t

T T T
t t t t t t

A BL A BL K H H K

A BL H K K H A BL

x x e

xe xe

T
t
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ω η

+Σ = − Σ − + Σ − − Ω − Ωˆ ˆ
1 ( ) ( ) ( )e e T T

t t t t t t t t tA BL A K H K H A K H K Kx x e T  (0.27) 
 
Substituting the expression for  from Eqn 0.26 in the above expressions for covariances, we can 

simplify them further to get the following system of equations which lets us calculate the optimal Kalman 
gains in a forward pass through time 

tK

( )( )
( ) ( ) ( ) ( )

1

ˆ ˆ ˆ
1 1 1

ˆ ˆ ˆ ˆ ˆxe xe
1 t t 1

t

ˆ ˆ ˆ( ) ( )

( )

2 ( ) ;

ˆ ˆ;

t t t t t t t

e T e T
t t t

e e x xe T T T e T e
t i t t t i i t t t i t t

i

T T
1 1

x x e T T T
t t t t t t t t t t

A BL K H

K A H H H

C C C L L C A K H A

A BL A BL K H A A BL H K K H A BL

ω

ξ η

η

η+

+

+

= − + − +

= Σ Σ +Ω

Σ = Ω +Ω + Σ +Σ + Σ + Σ + − Σ Σ = Σ

Σ = − Σ − + Σ + − Σ + Σ − +Ω Σ =

Σ

∑ x

x x y x

x x

( ) ( )ˆ ˆxe xe
+1 t

T
t tA BL A K H η= − Σ − −Ω

x T

         (0.28) 

8. Optimal control of non-linear dynamics of reaching 
The solution of optimal feedback controller was derived analytically for Linear Quadratic Gaussian 

(LQG) system with ‘motor’ and/or ‘state’ signal dependent noise, which guarantees global optimality. An 
important prediction of this model was the curved trajectories, i.e. the over-compensation. To what extent 
are these results affected if the system was a more realistic model of the arm?  Here we will show that 
over-compensation is a fundamental property of the system.  

The dynamic equation of two link arm is  
2

1 2 2 11 12 11
2 2 2

21 221 2

2
( ) ( sin )u e

b b
M a

b b

θ θ θ θ
θ θ τ τ θ

θ θ
−

⎡ ⎤ ⎡+ ⎡ ⎤
⎢ ⎥ ⎢= − − − ⎢ ⎥
⎢ ⎥ ⎢− ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎥⎦

 

where 1 2[ , ]θ θ  are shoulder and elbow joint angle,
1 2 2 3 2 2

3 2 2 3

2 cos cos

cos

a a a a
M

a a a

θ θ

θ

+ +⎡ ⎤
= ⎢ ⎥+⎢ ⎥⎣ ⎦

il

2
*b

, 

,  are the link masses (1.4kg, 1kg),  are the link lengths 

(30cm, 33cm),  are the distances from the joint center to the center of the mass (11cm, 16cm), and  

are the moment of inertia ( , ).  is a parameter of passive joint viscosity and 

we used [Nms/rad]. 

2
2 1 2 2 1 2 3, ,a I m l a m l s a I= =

is
20.025kgm

12

22

0.6 0.2

0.2 0.6

b b

b b

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

1 1 2I= + +

11

21

2 i
m

0.045
iI

kgm

eτ  is a torque due to the external force exerted at the 
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hand produced by the velocity dependent force field: 
0 13

, 
13 0D D D

⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

f v , where are the 

hand force and velocity of the hand. The virtual torque produced by the force field is 

,Df v

( )T ( )d J DJτ θ θ= , 

where 
1 1 2 1 2

1 1 2 1 2 2

sin( ) sin( ) si
( )

cos( ) cos( ) cos(

l l
J

l l

2 n(l

l

1 2

1 2

)

)

θ θ θ
θ

θ θ θ

− − +
=

+ +

Jd

θ θ

θ θ

+⎡ ⎤
⎢ ⎥

+⎢ ⎥⎣ ⎦

−
 is the Jacobian matrix of kinematics 

d θ=x .    
The cost was 2 2

1 2( )J
uw τ τ+ (0 )≤ <t T

* 2 * 2
1 1 2 2 1 2( ) ( ) ( )J J J

p p vw w w

 , and 

θ θ θ θ θ θ− + − + + ( )≤ < + HT t T T *θ, where is target position in joint 

coordinate system, reach duration  was 490 msec and simulation time T + HT T

80.1

 was 500 msec. The 

weights of costs function were =10, =1 and =  respectively.  The task was reaching out 

to one of eight targets. The start position was at [0 ,0.45m] in the Cartesian coordinate system (where 0,0 
is at the shoulder joint). The target was at 10 cm. The mathematics that we used to solve this problem is 
the same as that developed by (LI and Todorov, 2006), in which the nonlinear equations of forward 
dynamics are locally linearized and then solved as a linear optimal feedback control problem.  

J
pw

J
vw

J
uw

Figure S5 shows hand paths of optimal trajectory for Null and Force Field conditions (the field was a 
clockwise curl field). The trajectories were straight when no force was exerted at hand.  As we expected, 
the trajectory curved so that trajectory could over-compensate the applied force, when the force field were 
exerted at hand. These predictions are very similar to the predictions of point-mass system regarding 
curvature of the over-compensation. However, the maximum of over-compensation of the simulation of 
two link arm was about 1cm which was slightly larger than that of observed data (<0.5cm). Thoroughman 
et al. (2007) had made a similar observation when performing these simulations under minimization of 
torque change or endpoint variance constraints.  There are two possible reasons why amplitude of 
over-compensation was larger than measured data. First, it is very likely that subjects did not build perfect 
internal models. As we saw in the simulation of point mass system, the inaccuracy suppressed 
over-compensation. Independent measures suggest that during force field learning, adaptation is no better 
than 80% of maximum required force (Smith et al. 2006).  Finally, it is possible that subjects had some 
extent of uncertainty for the force field environment due to noise inherently in the portion of state 
prediction in the brain. Increased uncertainty also tends to reduce the over-compensation. 
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Figure S1. The effect of model bias and endpoint position costs on reach trajectory. Upper row: hand path. Bottom 
row: speed profile. Each column represents trajectory for a different value of weight of position cost .  Once 

endpoint costs are large enough so that the mass reaches the target, the effect of model bias is to reduce the 

over-compensation.  There is no effect of model bias on reach speed. 

pw
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Figure S2.  The effects of model uncertainty and costs on the reach to target task.  A.  Effects of endpoint costs 

 and model uncertainty.  Upper row: hand path. Bottom row: speed profile. Model bias pw α  is 0.8 for all 

simulations.  B.  Effects of motor cost  and model uncertainty. rw
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Figure S3.  The effects of model uncertainty and costs on the via-point task.  A.  Speed profiles for different 
values of weight of position cost .  B. Speed profiles for different values of weight of via-point cost .  C. 

Speed profiles for different values of weight of motor cost .  
pw pvw

rw
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Figure S4.  Effects of including signal dependent motor noise c for the reach to target and reach through the 

via-point simulations.  Each line represents result of different amounts of model uncertainty.  A. Reach to target 

simulations.  B. Reach through a via-point simulations. 
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Figure S5. Hand paths of simulation of optimal control for a nonlinear model of arm dynamics. Left: Environment 

has zero forces (Null). Right: Environment has a clockwise curl force field. The small circles are target positions. 

 
 
 

 21


