
SENSITIVITY TO MOTOR
ERROR IN CHILDREN WITH

AUTISM

by

Mollie Marko

A dissertation submitted to Johns Hopkins University in conformity with the
requirements for the degree of Doctor of Philosophy

Baltimore, Maryland

June, 2014

© Mollie Marko 2014

All rights reserved



ii

Abstract

When making a movement, the brain receives sensory feedback about the

consequences of that action.  If sensory feedback differs from predicted, the brain

experiences an error, driving adaptation and improving subsequent movements. How

much the brain adapts to error is governed by its sensitivity.  Computationally, sensitivity

is a scaling factor, specifying the relative amount of adaptation that occurs, while

theoretically it is a quantification of the error’s value. In children with autism spectrum

disorder (ASD), the response to sensory feedback appears abnormal.  In particular, they

are hyperresponsive to proprioceptive feedback and hyporesponsive to visual feedback.

Here, we hypothesized that these sensory abnormalities would be manifested as an

increased sensitivity to proprioceptive error and a decreased sensitivity to visual error.

Further, we hypothesized that this pattern of error sensitivity would be related to

anatomical abnormalities in the cerebellum, known to be a neural substrate of motor

learning.

Typical models of adaptation assume sensitivity to error to be a constant; however

several studies contradict this, reporting a non-linear relationship between adaptation and

error.  Therefore, we first characterized sensitivity in healthy adults with a reach

adaptation task, in which we perturbed their movements both proprioceptively and

visually. By normalizing the trial-to-trial change in motor commands by the error size,

we isolated sensitivity to error. We found that, for both visual and proprioceptive errors,

sensitivity declined with increasing error size. Interestingly, the probability of a complex

spike in cerebellar Purkinje cells, previously believed to be a neural representation of an
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error, declined with increasing error as well.  We therefore posited that complex spikes

represent sensitivity to error during cerebellar adaptation.

We then repeated our paradigm on children with ASD. As hypothesized, we

found increased sensitivity to proprioceptive error and decreased sensitivity to visual

error, relative to healthy control children.  In these same subjects, we used anatomical

MRI to measure the volume of the senosorimotor region of the cerebellum.  We found

this region was significantly smaller in children with ASD, and that sensitivity was a

predictor of volume, identifying a potential neural substrate for the sensorimotor

abnormalities seen in ASD.
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Thesis committee: Drs. Amy Bastian and Stewart Mostofsky

Readers: Dr. Reza Shadmehr and Dr. Stewart Mostofsky



iv

Acknowledgements

Thank you to Dr. Reza Shadmehr, my committee and the Shadmehr lab.

Special thank you to Steven, my family, and Sarah.



v

Table of Contents

ABSTRACT...................................................................................................................... II

ACKNOWLEDGEMENTS ........................................................................................... IV

LIST OF TABLES ........................................................................................................ VII

LIST OF FIGURES .....................................................................................................VIII

INTRODUCTION............................................................................................................. 1

1.1 SENORIMOTOR CONTROL IN CHILDREN WITH AUTISM ............................................... 4
1.2 THE ANATOMY OF SENSITIVITY TO ERROR .................................................................. 7

SENSITIVITY TO MOTOR ERROR IN HEALTHY ADULTS ................................ 9

2.1 INTRODUCTION ........................................................................................................... 9
2.2 METHODS ................................................................................................................. 11

2.2.1 Experimental Setup........................................................................................... 11
2.2.2 Perturbations .................................................................................................... 12
2.2.3 Quantifying learning from error....................................................................... 14

2.3 RESULTS ................................................................................................................... 18
2.3.1 Adaptive response to error ............................................................................... 18
2.3.2 Sensitivity to error ............................................................................................ 22
2.3.3 Sensitivity to visual and proprioceptive errors................................................. 24
2.3.4 Analysis of previously published psychophysical results ................................. 28
2.3.5 Neural correlate of sensitivity to error ............................................................. 32

2.4 DISCUSSION .............................................................................................................. 34
2.4.1 Perception of error ........................................................................................... 35
2.4.2 Additional factors modulating sensitivity to error ........................................... 36
2.4.3 The effect of forward models on sensitivity to error......................................... 38
2.4.4 The impact of discrepancy on adaptation......................................................... 39
2.4.5 Complex spikes and error dependent learning................................................. 40
2.4.6 Implications for patients ................................................................................... 42

SENSITIVITY TO MOTOR ERROR IN CHILDREN WITH AUTISM
SPECTRUM DISORDER.............................................................................................. 44

3.1 INTRODUCTION ......................................................................................................... 44
3.2 METHODS ................................................................................................................. 47

3.2.1 Subjects ............................................................................................................. 47
3.2.2 Psychophysical task .......................................................................................... 48
3.2.3 Quantifying adaptation to error ....................................................................... 49



vi

3.3 RESULTS ................................................................................................................... 53
3.3.1 Feedback response during a perturbation........................................................ 53
3.3.2 Learning from proprioceptive error ................................................................. 54
3.3.3 Learning from visual error ............................................................................... 56
3.3.4 Relationship between sensory modalities ......................................................... 60

3.4 DISCUSSION .............................................................................................................. 62
3.4.1 Proprioceptive sensitivity in ASD..................................................................... 62
3.4.2 Visual sensitivity in ASD................................................................................... 64

CEREBELLAR ABNORMALITIES IN CHILDREN WITH AUTISM .................. 66

4.1 INTRODUCTION ......................................................................................................... 66
4.2 METHODS ................................................................................................................. 67
4.3 RESULTS ................................................................................................................... 69

4.3.1 Volume of the sensorimotor region .................................................................. 69
4.3.2 Behavioral relationship to cerebellar anatomy ................................................ 72

4.4 DISCUSSION .............................................................................................................. 74
4.4.1 Autism and the cerebellum ............................................................................... 74
4.4.2 The sensoriomotor cerebellum and motor learning ......................................... 75
4.4.3 The relevance of the functional connectivity atlas ........................................... 77

CONCLUSION ............................................................................................................... 78

REFERENCES................................................................................................................ 81



vii

List of Tables

Table 3.1:  Participant information ................................................................................... 48

Table 4.1:  GLM results for the sensorimotor cerebellum................................................ 73

Table 4.2:  GLM results for the hand and foot sensorimotor cerebellum......................... 73



viii

List of Figures

Figure 2.1:  Experimental setup for adults ........................................................................ 17

Figure 2.2:  Adaptation saturates as error size increases .................................................. 21

Figure 2.3:  Sensitivity to error declines as error size increases. ...................................... 27

Figure 2.4:  Re-analysis of previously published psychophysical results ........................ 31

Figure 2.5:  Analysis of data from Soetedjo et. al. (2008)................................................ 34

Figure 3.1:  Task and performance for children ............................................................... 52

Figure 3.2:  Response to motor error in children with ASD............................................. 59

Figure 3.3:  Relationship between sensitivity to error in children .................................... 61

Figure 4.1:  Volume differences of the sensorimotor cerebellum. ................................... 71



1

Chapter 1

Introduction

Autism Spectrum Disorder (ASD) is a developmental disorder characterized by

deficits in social and communication skills, and repetitive and stereotyped patterns of

interest and behavior. Theoretically, the social and communication skills that so greatly

impact the lives of those with ASD are dependent on the motor system, allowing

individuals to map the movements, expressions and body language of others onto

themselves, and mentally experience the intentions of others (Baron-Cohen et al.,

1985;Gidley Larson and Mostofsky, 2008;Gallese et al., 2004;Iacoboni, 2009). Though

motor control is not included in the diagnostic criteria of ASD, many studies have found

an array of motor abnormalities in individuals with autism (Jansiewicz et al.,

2006;Mostofsky et al., 2006;Dowell et al., 2009;Dziuk et al., 2007;Gowen and Hamilton,

2013). In particular, studies of motor learning suggest that children with ASD show an

over reliance on proprioceptive feedback during motor adaptation, the degree of which

relates to the degree of overall motor and social impairment (Haswell et al., 2009;Izawa

et al., 2012b). This suggests that, just as children with ASD are unable to properly learn

social and communication skills, they are unable to properly learn to make movements.

Specifically understanding how children with ASD learn from motor error will offer

insight and a potential understanding of the difficulties these children face in learning the

higher-order skills that govern social interaction, communication, and cognition.
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In healthy individuals, learning from motor error to improve motor control is a

continuous, ongoing process. Such learning can be characterized with the framework of

a forward model, in which the brain maintains an internal mapping about the relationship

between movements and sensory feedback (Wolpert and Miall, 1996).  When making a

movement, the brain uses this internal model to generate a prediction about the sensory

consequences of that movement and compares it to the actual, experienced sensory

feedback.  If the predicted and actual sensory consequences of the movement differ, the

brain experiences an error. This error signal drives the brain to adapt its internal model

of the environment and generate more accurate motor commands for future movements.

How much the brain adapts to an error depends on two quantities – the size of the

error experienced, and the sensitivity to that error. Typical computational models of

adaptation assume that sensitivity to error is constant (Thoroughman and Shadmehr,

2000;Scheidt et al., 2001;Cheng and Sabes, 2006;Smith et al., 2006;van Beers, 2009),

implying that adaptation would scale linearly in response to increasing error size.

However, this is often not the case (Fine and Thoroughman, 2006;Wei and Kording,

2009).  In principle, sensitivity is a measure of how much the brain trusts and values that

sensory feedback. For instance, imagine reaching for an alarm clock mid-day, in bright

lighting.  Missing the clock would cause a person to adapt their subsequent reach and

improve accuracy. However, missing the clock when getting up early in the morning,

with no lights on, on would likely cause little to no adaptation, since the error was due to

a lack of visual information. This was shown experimentally, with a reach adaptation

task by Burge, et al. (2008).  When subjects were given clear visual feedback about their

movements, indicated by a sharply delineated cursor, they were able to adapt to a



3

perturbation faster than subjects who were given a blurry cursor. In a different

experiment by Smith and Shadmehr (2004), subjects were given errors in different

statistical environments.  If an error indicated the presence of future, similar errors,

subjects learned more from it than from the exact same error when it was a poor indicator

of future perturbations.  This demonstrates that sensitivity to error is not a simple

constant, and that factors beyond magnitude of error can modulate learning by altering

sensitivity to error.

In an effort to better examine the exact nature of sensitivity to error, we conducted

an experiment in which healthy adults were given a random perturbation to their

movements in two different sensory modalities, vision and proprioception.  We then

measured how much adaptation occurred in response to the given motor errors, and found

that sensitivity to error decreased with increasing error size for both modalities (Chapter

2).  Additionally, the pattern of decreasing sensitivity to error appeared to match the

pattern of neuronal activity in the Purkinje cells of the cerebellum.  This neuronal activity

is related to error based learning, and was previously believed to act as the brain’s error

signal (Kitazawa et al., 1998).  Our findings suggest that Purkinje cell firing is actually

representative of the sensitivity to error, and not the error signal itself. This work

provides the framework with which we can better examine motor learning in children

with ASD (Chapter 3) and relate our pattern of findings to the anatomy of the brain

(Chapter 4).
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1.1 Senorimotor Control in Children with

Autism

As with the broad spectrum of cognitive phenotypes in autism, the motor deficits

found in ASD are highly variable. Children with ASD repeatedly score worse in a

generalized motor battery that measures timed movements, stressed gaits and balance

(Jansiewicz et al., 2006;Dziuk et al., 2007;Dowell et al., 2009;MacNeil and Mostofsky,

2012). They also show a generalized impairment on a praxis exam, quantifying their

ability to accurately make and imitate gestures that are both social (e.g., waving) and or

involving tool use (e.g., brushing teeth) (Mostofsky et al., 2006;MacNeil and Mostofsky,

2012). Furthermore, children with ASD are not only impaired in their ability to perform

these skilled gestures but also in representational or postural knowledge of these

movements, as performed by others (Dowell et al., 2009). Though overall scores

consistently indicate motor impairment, there is no specific or signature motor deficit.

Rather, these studies demonstrate broad motor impairments that do not fit into any clear,

clinical classification.  Given the developmental nature of ASD, these deficits may begin

with error-based learning, rooted in an abnormal mechanism for motor adaptation, and an

inability to learn how to properly make movements.

The error signals that drive motor learning primarily come through two

modalities, vision and proprioception. As with studies of motor control, individuals with

ASD show a broad range of sensory processing abnormalities, so much so that “hyper- or

hyporeactivity to sensory input” has been added to the DSM-V as part of the diagnostic
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criteria for autism (American Psychiatric Association, 2013). For vision, this has been

demonstrated with several tasks.  For instance, individuals with ASD show worse

performance on a visual-temporal integration task (Nakano et al., 2010) and, according to

parent surveys, children with ASD tend to both avoid or seek out visual input (Leekam et

al., 2007).  With regard to the visual aspects of movement, hypo-reactivity to visual

feedback has been manifested as an impairment in recognizing biological motion (Cook

et al., 2009) and in the recognition and response to visual chains of action (Cattaneo et

al., 2007). Additionally, there has also been a tremendous amount of work demonstrating

impairments in imitation (Williams et al., 2004;Mostofsky et al., 2006;Vanvuchelen et

al., 2007;Stieglitz et al., 2008;MacNeil and Mostofsky, 2012).  Taken together, this

suggests that there is an inability to properly process and utilize visual information,

especially with regard to movement. In contrast, studies of the proprioceptive and haptic

response in ASD seem to suggest an overall hypersensitivity.  Individuals with ASD are

better at haptic-to-visual shape matching (Nakano et al., 2012), have a lower threshold for

high frequency vibrotactile stimuli detection (Blakemore et al., 2006), and show

diminished effects of perceptual disinhibition (Tannan et al., 2008). It is important to

note that these findings are not likely due to a peripheral deficit, as individuals with ASD

show normal visual (Tavassoli et al., 2011) and proprioceptive acuity (Fuentes et al.,

2011), indicating that sensory abnormalities in ASD are due to differences in central

processing of sensory feedback.

The best evidence of how sensory processing can impact motor learning comes

from a set of studies that measured generalization, or how much motor learning transfers

across different contexts, in children with ASD (Haswell et al., 2009;Izawa et al., 2012b).
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In these studies, children were required to learn to compensate for a perturbation against

their arm while make a reaching movement to a target.  They were then asked to make

movements to two additional targets – one which visually matched the learning target,

but required a different arm configuration to complete the movement, and one which

proprioceptively matched the learning target (required the same joint angles for

movement) but was visually different from the learning target.  Children compensated for

the perturbation when reaching to both the visual and proprioceptive targets, or

generalized their learning, even though they had never experienced a perturbation when

reaching to these targets.  Interestingly, children with ASD showed normal performance

at the learning target, but significantly greater generalization to the proprioceptive target,

suggesting a greater reliance on proprioceptive feedback during learning (Haswell et al.,

2009). A follow up study confirmed this result with larger group numbers, and found it

specific to ASD with the addition of a clinical control group (children with attention

deficit-hyperactivity disorder, ADHD) (Izawa et al., 2012b). This finding suggests that

the abnormalities in sensory processing found in autism may impact how they learn to

make movements. Unfortunately, generalization is not a specific measure of visual and

proprioceptive sensitivity.  Therefore, we examined this more directly (Chapter 3) using

our framework for sensitivity to error, as used in our study of adults (Chapter 2).  We

found that children with ASD do show an increased sensitivity to proprioceptive error

and a decreased sensitivity to visual error, as compared to TD controls, during motor

learning.
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1.2 The anatomy of sensitivity to error

Adaptation to motor error is believed to be dependent on the integrity of the

cerebellum.  For instance, when a perturbation is given to the arm during a reaching task,

patients with cerebellar damage are unable to learn to compensate for the perturbation,

and continue to make large errors (Smith and Shadmehr, 2005;Criscimagna-Hemminger

et al., 2010;Donchin et al., 2012).  If the cerebellum is temporarily disrupted using

transcranial magnetic stimulation (TMS), the temporal planning of the movement is

delayed, indicating that the cerebellum is specifically responsible for the feed forward

aspects of movement planning (Miall et al., 2007).  Interestingly, individuals with autism

show cerebellar abnormalities on the cellular (Ritvo et al., 1986;Bailey et al.,

1998;Whitney et al., 2008;Kemper and Bauman, 1998), gross (Murakami et al.,

1989;Hashimoto et al., 1995;Courchesne et al., 2001;Scott et al., 2009;Courchesne et al.,

2001;Sparks et al., 2002;Stanfield et al., 2008) and functional level (Mostofsky et al.,

2009;Allen and Courchesne, 2003), potentially underlying their deficits in motor

adaptation.

Within the cerebellum, there appears to be specific regions responsible for reach

adaptation.  This has been shown a number of ways: first, a patient study examined

performance on both a force field adaptation task, which involves adaptation to consistent

visual and proprioceptive errors, and visual rotation task, in which subjects experience

only visual errors, and related performance on these tasks to the integrity of the

cerebellum on a voxel by voxel basis (Donchin et al., 2012).  They found regions in

lobules IV-VI to be primarily related to each task.  Another study, using functional MRI
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to examine healthy subjects, gave participants random force field and rotation errors and

found similar regions to be related to sensory prediction errors (Schlerf et al., 2012).

These regions correspond to the known, proprioceptive maps in the anterior cerebellum,

which receive cortical input from the pons and spinocerebellar information directly from

the body (Manni and Petrosini, 2004). A recent study found that these regions are

functionally coupled to the somatosensory and motor cortices, further validating their

relationship to movement and its sensory feedback (Buckner et al., 2011). Alongside

their findings, Buckner and colleagues (2011) published an atlas, allowing us to examine

the specific regions of the cerebellum most critical for sensorimotor adaptation in our

own subjects.  Therefore, we hypothesize that in children with ASD, abnormalities in

motor adaptation will be reflected in abnormalities of the volume of the sensorimotor

region of the cerebellum.
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Chapter 2

Sensitivity to motor error in healthy

adults

2.1 Introduction

Theoretically, as the size of a motor error increases, the amount one learns from

that error should increases as well.  This idea has been formalized with many

computational models, which claim that the amount one learns from error is dependent on

error size and the sensitivity to that error.  In this sense, sensitivity is a scaling factor that

determines how error is transformed into adaptation.  Commonly, sensitivity to error is

assumed to be constant parameter, simply fit within the model (Cheng and Sabes,

2006;Scheidt et al., 2001;Smith et al., 2006;Thoroughman and Shadmehr, 2000;van

Beers, 2009). Such models would predict that adaptation scales linearly with error size;

however, many studies have shown that this is not the case.  Whether it is a

proprioceptive perturbation (Fine and Thoroughman, 2006) or visual perturbation (Wei

and Kording, 2009), adaptation saturates as error size increases. Additionally, the

amount one learns from a given error can be modulated by a number of factors, such as
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the confidence associated with the sensory error experienced (Burge et al., 2008), or the

belief that adaptation is beneficial to improving performance (Smith and Shadmehr,

2004). Consequently, it is clear that sensitivity to error is not a simple constant.

Sensitivity to error may be further broken down by considering the modality of

the error signal.  In other words, how much does the brain learn from a proprioceptive

error, or from a visual error? Typical reach adaptation experiments focus on two primary

paradigms – those that utilize a force perturbation, which delivers a perturbation to the

hand and cursor together, or a visual motor rotation, which perturbs the cursor only. In

both paradigms, vision and proprioception are providing feedback to the brain about the

position of the arm, but it is unclear how the brain combines these two streams of

information.  Behavioral research suggests independent mechanisms of learning for

proprioceptive based and visual based paradigms (Bock and Thomas, 2011;Pipereit et al.,

2006;Krakauer et al., 1999), while lesion studies find that separate regions of the

cerebellum are related to performance in force field and visual motor rotation tasks.

Here, we attempt to understand not only sensitivity to error, but also sensitivity to

specific modalities of error, and how they are combined to generate a single, adapted

movement.

With a better understanding of sensitivity to error, we can also look for its neural

correlate.  On the gross level, motor adaptation depends on the integrity of the cerebellum

(Donchin et al., 2012;Rabe et al., 2009;Smith and Shadmehr, 2005;Criscimagna-

Hemminger et al., 2010;Taylor et al., 2010).  The cortex of the cerebellum contains a

simple, repetitive circuit, which has been studied for a variety of error based learning

paradigms. In this circuit, climbing fibers deliver input from the inferior olive onto
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Purkinje cells via complex spikes (CSs).  These CSs are associated with error (Medina

and Lisberger, 2008;Kitazawa et al., 1998), and have typically been described as the

cerebellar error signal itself (Marr, 1969;Albus, 1971).  However, when adapting to a

constant perturbation, the probability of a CS begins low and increases with adaptation

and the subsequent reduction of error (Catz et al., 2005). Additionally, when errors are

random, the probability of a CS decreases with increasing error size (Soetedjo et al.,

2008).  Both of these findings are inconsistent with the notion that a CS is the error signal

itself. Instead, we suggest that CSs represent sensitivity to motor error, which we found

to decrease with increasing error size as well.

2.2 Methods

2.2.1 Experimental Setup

Ten subjects (age 25.8 ± 3.7 yr; 6 women, 4 men) participated in a reaching

experiment, in which they held the handle of a robotic manipulandum and made

movements towards a target.  Subjects sat with a screen over their lap, obscuring their

hand and the robot from view, and allowing them to make movements in the horizontal

plane (Fig. 2.1A).  Projected onto the screen were the target, cursor and information

about the task.  To start each reaching movement, subjects were instructed to move their

hand into a 6x6 mm square.  The robot provided a light force to help guide them to the

start box.  Once they were within 1 cm of the start box, a cursor appeared, indicating the

position of their hand. After stopping within the start box, a second 6x6 mm square (the
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target box) appeared 8 cm in front of the start box.  Subjects were instructed to make a

shooting, or a ballistic, movement through the target box.  After passing through the

target box, a pillow field slowed the hand and helped guide it back to the target box, at

which point they received feedback about their movement.  If subjects passed through the

target within 150-250 ms from movement onset, the target “exploded” and a point was

added onto their score.  If they reached through the target too quickly (in less than 150

ms) or too slowly (greater than 250 ms), the target box turned red or blue, respectively.

Subjects were instructed to get as many points as possible.  After stopping in the target

box, the cursor was shut off and the robot helped guide their hand back to the start box

for the next movement.

The experiment began with a warm up block of 40 movements, allowing subjects

to acquaint themselves with the robot and task requirements.  Subjects were then given

10 blocks of 80 movements each.  The entire experiment lasted about 90 minutes.  All

subjects were healthy, right hand dominant, and naive for the purpose of the experiment.

The protocol was approved by the Johns Hopkins Institutional Review Board, and all

subjects provided written informed consent.

2.2.2 Perturbations

Throughout each 80 trial experiment block, subjects were randomly exposed to

one of 11 different perturbations.  Each perturbation type was given to the subject twice,

once to the left and once to the right, in each block.  This balanced the experiment and

each block, such that the mean perturbation was zero (Fig. 2.1B).  The perturbations
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consisted of both a proprioceptive component and a visual component.  The

proprioceptive component of the perturbation was created by a velocity dependent force

field and applied by the robotic manipulandum.  The robot applied a force, f , to the

hand, perpendicular to the direction of movement:

0
0
b x

b y
   
       

f



(2.1)

where x and y are the hand velocities and b is the perturbation size.  There were three

possible perturbation sizes, generating a small proprioceptive error ( b = ±6.5 N.s/m), a

medium proprioceptive error ( b = ±13 N.s/m) or a large proprioceptive error ( b = ±19.5

N.s/m) to the left or right. Example hand trajectories for the three field sizes can be seen

in Fig. 2.1C.

The visual component of the perturbation was applied through the cursor. During

a perturbation trial, the lateral deviation of the hand, x (as compared to a straight line

between the start box and the target box) was scaled by a gain, g .  The resulting cursor

position was

0
0 1
g x

y
   
    
   

c (2.2)

The visual gain, ,g took on one of five values: 0, 0.5, 1.0, 1.5 or 2.0.  Therefore the visual

error displayed by the cursor was either smaller ( g = 0 or g = 0.5), the same ( g = 1), or

larger ( g = 1.5 or g = 2.0) than the proprioceptive error experienced by the hand.

Examples of the cursor trajectories for the five visual gains, as applied to a movement

through the small field ( b = 6.5) can be seen in Fig. 2.1D. These five gains were applied



14

once to the small and medium field, in each direction, in each block.  Additionally, the

large field was given once in each direction with gain of 0 only, for a total of 11 potential

perturbation types for a given direction. These perturbations generated a variety of errors

in both vision and proprioception for the subject, allowing us to measure learning and

sensitivity to various error sizes across both modalities.

2.2.3 Quantifying learning from error

To quantify how much the brain learns from error, we measured how much the

subjects adapted their movements in response to the errors experienced during the

perturbation trials.  This was achieved through the use of channel trials (Scheidt et al.,

2000), which were always given before (C1) and after (C2) any perturbation trial (P).

This created triplets of trials, (C1PC2), which we separated by 0, 1 or 2 null field trials.

During a channel trial, the hand moved “through a channel” generated by the robot,

forcing the subject to make a straight line movement to the target.  The channel walls had

a spring force (spring coefficient = 2.5 kN/m) and a damping force (damping coefficient

= 25 N.s/m), and prevented the subject from experiencing any errors during their

movement.  At the same time, a force transducer in the handle of the robotic

manipulandum measured the force produced by the subjects against the channel walls.

This force acted as a proxy for the subject’s belief about the current state of the

experiment, by measuring how much they attempted to compensate for any potential

perturbations.
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To understand how much learning occurred in response to a given perturbation,

we used a state-space model framework for error based adaptation (Donchin et al., 2003):

 
( ) ( 1)

( 1) ( ) ( ) ( ),

n n

n n n n
v p

f f

f f e e



 







 
(2.3)

Eq. (2.3) states that the force produce in trial n+1 is a function of the force that was

produced in trial n, adaptation ( ) to the visual ( ( )n
ve ) and proprioceptive error ( ( )n

pe ) that

were experienced on trial n, and a constant reflecting the decay of motor memories over

time,  .  Put in the framework of the current experiment and a C1PC2 triplet, the force

produced by the subject in trial C2 is a function of the force produced during trial P and

the learning that occurred in response to the errors experienced during trial P.  Since trial

n-1 is a channel trial (C1) with no error, ( )nf is purely a function of the decay of ( 1)nf  ,

with no additional adaptation. By rearranging Eq. (2.3), adaptation to the errors caused

by the perturbation, P, can be described as:

 ( ) ( ) ( 1) 2 ( 1),n n n n
v pe e f f    (2.4)

or change in force from C1 to C2.

To find the decay term,  , we measured the average ratio of force profiles in any

instance in which there were back to back channel trials.  This occurred when there were

two consecutive triplets, 121 times throughout the experiment.  We found that  = 0.84 ±

0.07 (mean ± SEM), which is of a similar value to the decay term found when adaptation

was fit with the two state model ( =0.85) (Joiner and Smith, 2008).
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Since the force produced during a channel trial is a time series, we needed a

principled way to choose a scalar value to represent each movement. We opted to use

principal component analysis, selecting the time from movement onset in which the first

principal component of the change in force had the highest value.  We found this to be

193 ± 16 ms (mean ± SD).  Given our sampling rate of 100 Hz, we used the time point

190 ms from movement onset to measure force and error in a channel or perturbation

trial, respectively.  This time point allows us to account for the most variability in our

data.  We further examined the data at various time points and distances from the start of

the movement, and found our results to be qualitatively consistent, thus ensuring our

results were robust.

When plotting our results, data was corrected for sign collapsed across the left and

right perturbation conditions. Although adaptation and error are oppositely signed, all

results are plotted in the first quadrant for ease of viewing.  Movements that resulted in

less than -2N of learning, i.e. movements that showed substantial adaptation in the same

direction as the error was experienced, were removed from the analysis.  Across all

subjects, this excluded 36 movements from 2,200.  Analysis and statistics were

completed used Matlab (Mathworks), Excel (Microsoft) or SPSS (IBM).
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Figure 2.1: Experimental setup for adults. A. Schematic of the experimental setup: subjects made
horizontal reaching movements while holding a robotic manipulandum below an opaque screen. B.
Perturbation schedule: subjects were presented with movement triplets in a random order separated by zero,
one, or two null field trials (the warm up block and the first experiment block are shown in the figure).
Triplets consisted of a channel trial (C1), one of the possible perturbations (P), and then a second channel
trial (C2).  The purple trace indicates the size of the visual perturbation and the green indicates the size of
the proprioceptive perturbation. Channels are noted by thick black points. C. An example of hand
trajectories through the small, medium, and large rightward force perturbations. D. An example of the
cursor trajectory in each of the five possible gains as applied to the small proprioceptive error. Thus, the
gain 1 trace in this figure corresponds to the small proprioceptive error trace in part C. E.  Proprioceptive
error resulting from the three different sized force fields, small, medium and large, for all applied visual
gains.  Error was measured as the lateral deviation of the hand at 190 ms.
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2.3 Results

2.3.1 Adaptive response to error

For our experiment, healthy adults participated in a reaching task in which we

perturbed their movements with a force field against the hand, and perturbed the cursor

trajectory by scaling the cursor error.  We anticipated that these errors would generate

adaptation, as described by Eq. (2.4).  The resulting proprioceptive errors, or the lateral

deviations of the hand at 190 ms after reach onset, are plotted in Fig. 2.1E. A repeated

measures ANOVA found no significant effect of gain on error size for the small

proprioceptive perturbation (F(4,45)=3.08, p=0.11) or the medium proprioceptive

perturbation (F(4,45)=3.00, p=0.11), indicating that proprioceptive error was constant

within a given perturbation size.  Thus, the perturbation conditions can be organized into

two groupings – those which produce a constant proprioceptive error but different visual

errors (e.g. within a given force field perturbation), and those which produce constant

visual error but differing proprioceptive errors (during the three 0g  conditions).

Data from a typical subject are plotted in Figs. 2.2A-D. Hand (solid lines) and

cursor trajectories (dashed lines) are plotted in Fig. 2.2A for the five visual gain

conditions for the medium force field ( b = 13).  As demonstrated in Fig. 2.1E, the

proprioceptive error experienced by the hand is the same across the different visual gain

conditions, while the cursor error increases with increasing visual gain.  Noted on the

cursor trajectories with circles is the point 190 ms from reach onset.  This occurs

approximately midway through the reach for all conditions.  In Fig 2.2B, we have plotted
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the change in force from C1 to C2, or the adaptation that occurs in response to the

perturbation trial, P, for the entire time course of the movement.  We found that as the

visual gain increased, the trial-to-trial adaptation initially increased as well, but saturated

for large visual gains.  Using the force at 190 ms from reach onset as our proxy for each

movement, we see a consistent pattern of results (Fig. 2.2C, points represent increasing

visual gain): that adaptation saturates when plotted against increasing visual error. This

validates our use of the force and error at 190 ms to represent the time series of the

movement.

When we repeated this analysis for learning in response to proprioceptive error

alone, which occurred during the three g = 0 conditions, we found a similar pattern.  The

results for our example subject are plotted in Fig. 2.2D, where points represents the small,

medium and large force field sizes (increasing b ), respectively. Similar to visual error,

we found that as proprioceptive error increased, adaptation to showed saturation and a

sub-linear response to increasing error size.

The group data are summarized in Fig. 2.2E-F.  In Fig. 2.2E we plot the adaptive

response (Eq. 2.4) for all conditions against the visual error experienced as a result of the

given perturbation.  The separate lines represent the different force field sizes and each

point along the line represents a different visual gain, increasing from left to right. If

sensitivity to error was constant, we would anticipate that as error size increased,

adaptation would increase linearly as well.  Instead, we see that as visual error increases,

adaptation increases initially but then saturates, suggesting that the adaptive response to

error is non-linear. To test our observation, we fit a simple linear model and a simple

logistic model to the data for the small and medium force fields.  We found that the
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logistic model yielded a better fit (according to the Akaike information criterion (AIC),

for which a lower value indicates a better fit) for both the small (logistic AIC = -37.18,

linear AIC = -20.67) and the medium (logistic AIC = -37.4, linear AIC = -17.9) force

fields. Thus, as Fig. 2.2E suggests, the relationship between adaptation and visual error

size is non-linear.

Figure 2.2F plots adaptation in the three g = 0 conditions, i.e. when visual error is

clamped to zero and proprioceptive error is varied with the three different force field

sizes. Each point represents a different force field size ( b ) increasing from left to right.

Similar to our findings regarding the relationship between adaptation and visual error,

adaptation appears to saturate with increasing proprioceptive error.  To test this, we again

found the AIC for a linear model (linear AIC = -18.4) and a logistic model (logistic AIC -

19.1), and found that the logistic model better characterized the data.  This indicates that

adaptation to proprioceptive error is non-linear as well, and therefore proprioceptive

sensitivity is not constant.
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Figure 2.2: Adaptation saturates as error size increases. Error bars are SEM. A. Hand trajectory (solid
lines) and cursor trajectory (dashed lines) for a medium size force perturbation for a representative subject.
Circles indicate position at 190ms from start of movement. B. Change in force from the trial preceding the
perturbation (part A) to the trial after the perturbation trial, or the adaptation in response to the perturbation
trial, for the representative subject. Adaptation is small when the visual error is small (gain of 0), increases
when visual error increases, but then saturates for large visual errors.  Dashed line indicates 190ms into the
movement. C. Change in force (measured at 190ms) for the same representative subject across all five
visual gains (0-2, sequentially from left to right) for the medium force perturbation. D. Change in force
(measured at 190ms) for the three force perturbation sizes (small, medium and large, left to right) at zero
visual gain for the representative subject. E. Group data: change in force as a function of visual error size.
Lines represent a single force perturbation size, and each point represents a visual gain. F. Change in force
as a function of proprioceptive error size (g=0) for the group.
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2.3.2 Sensitivity to error

In Figs. 2.2E-F we found that the adaptive response to a perturbation scales with

increasing error size for the smallest error sizes only.  As error size gets large, adaptation

saturates and becomes non-linear.  While we find this to be true for both visual and

proprioceptive errors, we cannot ignore the possibility that the discrepancy between

visual and proprioceptive errors may be modulating learning, not simply error size.  It is

possible that when vision and proprioception report differing error sizes, the likelihood

that the error signals are reliable is reduced (Wei and Kording, 2009).  This potential

reduced confidence may decrease learning.  To examine this, we considered a model of

adaptation in which adaptation is a function of both visual ( ve ) and proprioceptive errors

( pe ), and their respective error sensitivities ( v and p ) (Thoroughman and Shadmehr,

2000;Cheng and Sabes, 2006;Smith et al., 2006):

 ,v p v v p pe e e e    (2.5)

A simple way to model the potential effect of discrepancy between ve and pe is to

include a term, vp , which is a function of that discrepancy and has a modulatory effect

on the overall amount of adaptation that occurs:

     ,v p v v p p vp v pe e e e e e      (2.6)

In Eq. (2.6), vp is a function of the absolute difference in magnitude between the visual

and proprioceptive errors experienced by the subject. When there is no discrepancy, or

0v pe e  , 1vp  .  For large discrepancies, vp approaches zero.  This means that
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when there is no discrepancy between vision and proprioception, Eq. (2.6) is equivalent

to Eq. (2.5).  As discrepancy increases, vp decreases, decreasing the amount of

adaptation that occurs in response to the errors experienced. This function is similar to a

function of the likelihood that visual and proprioceptive feedback were the result of the

same event (Wei and Kording, 2009).

To dissociate the potential effect of discrepancy, or vp , from error size on the

non-linearity observed during adaptation, we examined the sensitivity to error in

conditions for which there was no discrepancy.  This occurred during the g = 1

conditions, for which the cursor and hand always match.  Therefore, Eq. (2.6) can be

reduced to:

   
 

,

,

v p v p v

v p

e e e

e e e

  

 

 


(2.7)

since p ve e e  , and therefore vp = 1. Thus, the overall sensitivity to error,  , can be

found as

 

( 1) 2 ( 1)
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e e
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f f
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(2.8)

If non-linearity in adaptation is due to discrepancy, and not to error size, then sensitivity

to error should be constant when discrepancy is zero.  To find the sensitivity to error,  ,

we binned all trials from the g = 1 condition, taking advantage of the natural variability
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of error size in response to a force field, and allowing us to find sensitivity at a variety of

error sizes.  Bin size was 0.25 cm and bins with fewer than 20 total movements were

excluded.  The results are plotted in Fig. 2.3A.  We found that sensitivity to error is not

constant, and declines as error size increases (repeated measures ANOVA, main effect of

error magnitude, F(2,46)=8.95, p=0.001). Thus, we find that even when vision and

proprioception agree, the brain is more sensitive to small errors than to large errors.

2.3.3 Sensitivity to visual and proprioceptive errors

Our results in Fig. 2.3A indicate that sensitivity to error is a nonlinear function of

error, even when v pe e . With no evidence of the modulatory effect of discrepancy, and

no evidence that adaptation between visual and proprioceptive errors interferes (Krakauer

et al., 1999), we hypothesized that adaptation,  , is simply the result of the independent

sum of adaptation from visual error and proprioceptive error, as described in Eq. (2.5).

However, we believe the non-linearity is a result of error size modulating sensitivity. We

can describe this hypothesis mathematically as:

     
   

,v p v v v p p p

v v p p

e e e e e e

e e

  

 

 

 
(2.9)

If Eq. (2.9) is true, it presents an interesting possible result – that sensitivity to a given

visual error would be constant regardless of the corresponding proprioceptive error

experienced.  We can exploit the properties of Eq. (2.9) and our data to see if this is true.

Given that proprioceptive error is fixed for a given force field size (Fig. 2.1E), we assume



25

that the proprioceptive component of adaptation ,  p pe , is the same for all visual gains

within a given field size.  Therefore, we can measure  p pe in the g = 0 condition, for

which  v ve = 0 and    0, p p pe e  , and subtract this from the measured adaptation

during all other conditions in which visual and proprioceptive errors are present

concurrently.  This allows us to isolate sensitivity to visual error:

   , 0,v p p
v

v

e e e
e

 



 (2.10)

For each subject, we subtracted the proprioceptive component of adaptation for two

different magnitudes of proprioceptive error (small and medium).  The resulting

sensitivity to visual error is plotted in Fig. 2.3B. The first thing we noticed was that, as

with our finding in Fig. 2.3A, sensitivity to visual error decreased with increasing error

size.  Additionally, we saw that there was substantial overlap between the curves for

sensitivity to visual error experienced with the small proprioceptive error (green line) and

medium proprioceptive error (purple line), indicating our assumptions in Eq. (2.9) were

correct.  To compare the two curves, we fit exponential decay functions to the small and

medium visual sensitivity curves for each subject, such that exp( )v ve   .  We found

that the regression coefficients  ( 1.39 0.42small   and 1.05 0.39medium   , mean ±

SEM) and  ( -0.68 0.34small   and 0.27 0.21medium    , mean ± SEM) were not

significantly different (paired t-test, : t(9)= 0.58, p=0.58,  : t(9)= -0.84, p=0.42),

despite the medium proprioceptive error being significantly larger than the small

proprioceptive error (one tailed paired t-test, t(39)=26.9, p<0.0001). In other words,
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sensitivity to a given visual error is constant regardless of proprioceptive error. This

substantiates our assumption that adaptation is the independent sum of visual and

proprioceptive components of learning.

Given our findings that discrepancy does not modulate sensitivity to error, and

that sensitivity to error is not a constant even without discrepancy, we can now more

closely examine the relationship between sensitivity to error and error size.  As with

sensitivity to consistent visual and proprioceptive error,  , we found that sensitivity to

visual error declined with increasing error size (comparison of the first and last points in

Fig. 2.3B: t(9)=2.59, p=0.01). Thus, the brain appears to be more responsive to small

visual errors than to large visual errors.

Finally, we considered sensitivity to proprioceptive error.  We focused on the

three g = 0 conditions, in which visual error was clamped to zero but proprioceptive error

increased with increasing force field size.  Using Eq. (2.9) and the fact that 0ve  , we

found sensitivity to proprioceptive error as:

 0, p
p

p

e
e


  (2.11)

The results of this analysis are plotted in Fig. 2.3C.  We found that, as with visual error,

sensitivity to proprioceptive error decreased with increasing proprioceptive error size

(one tailed paired t-test between the first and last points: t(9)=-2.03, p=0.036).  Therefore

for both vision and proprioception, the brain learns relatively more from small errors than

large errors.
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Figure 2.3: Sensitivity to error declines as error size increases. A. Sensitivity to error when visual and
proprioceptive modalities are matched.  Movements from all subjects were binned and bins with fewer than
20 movements were excluded.  Bin size was 0.25 cm.  Error bars represent SEM for each bin. B.
Sensitivity to visual error. Sensitivity declines with increasing visual error, independent of proprioceptive
error, as evidenced by the fact that the two curves coincide.  Error bars are between subject SEM. C.
Sensitivity to proprioceptive error also declines with increasing error size.  Error bars are between subject
SEM.
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2.3.4 Analysis of previously published psychophysical

results

In our results, we have found that sensitivity to error declines with increasing

error size, regardless of the presence of discrepancy between modalities of error.  To

determine if our findings were a generalized occurrence, we reanalyzed data from

previous publications and found that sensitivity to error declines with error size for

multiple paradigms.  We began with two, single trial adaptation tasks that were similar to

ours.  The first examined adaptation in response to a visual error alone (Wei and Kording,

2009) and the second measured adaptation in response to consistent visual and

proprioceptive error (Fine and Thoroughman, 2006).  As with our analysis, error

experienced on trial n was measured as the lateral deviation of the cursor relative to a

straight line between the start and target.  Adaptation, which we will term x , was

quantified as the perpendicular change in reach direction from the trial before the

perturbation, 1n , to the trial after the perturbation, 1n , i.e., ( 1) ( 1)n nx x x    . This

is analogous to our measurement of change in force to quantify adaptation. Likewise,

adaptation is a product of the error experienced on trial n and the sensitivity to that error,

 (Eq. 2.7):

( )

( )

n

n

x x
x

x





 



(2.12)

Sensitivity can be found as before, by normalizing adaptation by error size. The results

of our analysis are plotted in Figure 2.4A and 2.4B.  In Wei and Kording (2009), subjects
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made horizontal reaching movements without cursor feedback. At the end of their reach,

they were briefly given endpoint feedback with the appearance of a cursor.  The cursor

position was shifted perpendicular to the reach direction by various amounts, as indicated

by the x-axis in Fig. 2.4A, while the hand displacement was approximately zero

throughout the experiment. Thus, subjects experienced visual errors only. This paradigm

was carried out twice, once for 15 cm reaches and once for 5 cm reaches.  As shown in

Fig. 2.4A, for both reach amplitudes, sensitivity to error declines with increasing error

size.  This supports our findings in Fig. 2.3B, in which we find that visual sensitivity

decreases with increasing error size as well.  Importantly, this analysis quantifies

sensitivity to visual error, without the presence of proprioceptive error, a condition that

was not included in our experiment. Thus, our findings regarding sensitivity to visual

error are robust to the presence or absence of proprioceptive error.

In Fine and Thoroughman (2006), errors were generated with a force pulse to the

hand, and while veridical feedback was provided with a cursor.  Therefore, visual and

proprioceptive feedback was consistent and there was no discrepancy between

modalities. This is similar to our g = 1 condition.  Our analysis of their results, shown in

Fig. 2.4B, again finds that sensitivity to error declines with increasing error size.  This

offers further support to our findings in Fig. 2.3A, and to the hypothesis this pattern of

sensitivity exists independent of discrepancy between modalities.

Finally, we considered a different type of paradigm, in which the goal was to

estimate a loss function. A loss function is a computational construct that specifies costs

associated with prediction errors.  In other words, it quantifies how much worse is it to

have a large prediction error vs. a small prediction error. Loss functions are often chosen
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to be quadratic functions of error, such that the loss,  , is  2ˆy y   .  In a study by

Kording and Wolpert (2004), subjects participated in a pea shooting task in which they

were given various distributions of error sizes.  How the subject adjusted their

movements to maximize their success, or the probability of landing a pea in the target

area, allowed the authors to estimate the actual loss function assumed by the subject.

They found that loss was not quadratic, and instead could be approximated as

1.72ˆy y   .

To find sensitivity to error using a loss function, imagine that the subject’s

prediction on trial n is a function of some parameter, ( )nw , such that the prediction, ŷ is

 ( ) ( )ˆ n ny g w .  To minimize loss after experiencing an error, y , subjects change w in

the direction opposite to the gradient with respect to the parameters, or along the gradient

of steepest descent:

( 1) ( )

( ) ˆ
ˆ

n n

n

d
d
d dy
dy d





 
 


 

w w
w

w
w

(2.13)

In this framework, adaptation can be thought of as the change in w , or

( 1) ( )n n  w w w . As before, we can find sensitivity to prediction error as the ratio of

adaptation to error:

  ˆ 1
ˆ

1
ˆ

d dyy
dy d y

d
dy y

  
 




w






(2.14)
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If the loss function is in fact quadratic, then 2
ˆ

d y
dy

   .  When substituted into Eq.

(2.14),  y  reduces to a constant, which would imply that adaptation is linearly related

to error size.  However, using the loss function as determined by Kording and Wolpert

(2004), 1.72ˆy y   , we find that   -0.28y y   , and sensitivity declines with

increasing error size.  Both calculations for sensitivity to error are shown in Fig. 2.4C.

Using the sub-quadradic loss function, we again find that sensitivity to error declines with

increasing error size, a finding that is consistent across multiple modalities and now,

multiple paradigms.

Figure 2.4:  Re-analysis of previously published psychophysical results. A. From Wei and Kording
(2009). Adaptation to a visual shift perturbation of increasing size was measured without the presence of
proprioceptive error.  Sensitivity was calculated as adaptation normalized by the visual perturbation for
each reach distance, 15 cm and 5 cm. B. From Fine and Thoroughman (2006).  Adaptation to force pulses,
generating consistent visual and proprioceptive errors. Sensitivity was calculated as this adaptation
normalized by error size. C. Sensitivity to error as described by the loss function measured in Kording and
Wolpert (2004).  Subjects adjusted their hand position in a pea shooting task depending on the distribution
of errors.  From this, a loss function was estimated and found to be a sub-quadratic function of error.  We
calculated the sensitivity for two potential loss functions.
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2.3.5 Neural correlate of sensitivity to error

Error dependent adaptation in reaching is known to depend on the cerebellum

(Smith and Shadmehr, 2005;Rabe et al., 2009;Criscimagna-Hemminger et al.,

2010;Donchin et al., 2012;Schlerf et al., 2012). The errors that drive adaptation are

typically believed to be signaled to the cerebellum by climbing fiber input to the Purkinje

cells, which cause complex spikes (CSs) (Marr, 1969;Albus, 1971;Ito, 1972). These CSs

are believed to represent an error, or a difference between the predicted sensory feedback

and an experienced sensory feedback (Kawato, 2003). If this hypothesis were true, the

occurrence of a CS might show a linear relationship to error.  While CSs are definitively

related to the presence of an error (Medina and Lisberger, 2008), there is considerable

evidence that they do not represent the error signal itself (Ojakangas and Ebner,

1992;Catz et al., 2005;Soetedjo and Fuchs, 2006).  In light of our results, we suggest that

CSs are actually representative of sensitivity to error.

Soetedjo et al. (2008) used a saccade paradigm to examine the relationship

between error size and the occurrence of a CS.  For this task, moneys made 15 degree

saccades, during which the target was jumped forward or backwards by a random

amount, leading to a visual prediction error at the end of the eye movement.  This led to

CSs in the Purkinje cells of the oculomotor cerebellum.  The authors found two groups of

Purkinje cells, those who showed CSs early and with low variability in their timing

(early-compact), and those with late responding CSs and high variability (late-broad).

When the relationship between the probability of a CS and error size was considered, the

early-compact group showed its highest probability for small errors while the late-broad

group showed a relatively flat distribution across error sizes.  However, the authors
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described this distinction as “somewhat arbitrary.”  In Fig. 2.5, we collapse these both

groups by taking the weighted average of the two populations.  The results indicate that

the probability of a CS declines with increasing error size.

In the analysis of our psychophysical results, we have found that the amount that

one adapts to an error is driven by two factors – the magnitude of the sensory prediction

error and the sensitivity to that error.  In principle, sensitivity to error reflects the

confidence associated with that error.  In other words, it is a quantification of how much

the brain believes it should learn from a given error.  In our results, we found that this

value was not a constant, as it is often assumed to be (Cheng and Sabes, 2006;Scheidt et

al., 2001;Smith et al., 2006;Thoroughman and Shadmehr, 2000;van Beers, 2009).

Instead, sensitivity to error declined with increasing error size. Presumably, CSs could

represent either quantity and still be found to be related to error during motor adaptation.

However, the relationship between the probability of CSs and error size suggest that they

are the neurological signal for error sensitivity, rather than the error itself.
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Figure 2.5: Analysis of data from Soetedjo et. al. (2008).  Average probabily of a complex spike from
n=18 Purkinje cells in the cerebellum in response to visual errors of various sizes. The probability of a
complex spike peaks for small errors, and then declines as error size increases.  This corresponds to
sensitivity to error, and not error itself.

2.4 Discussion

When making a movement, the brain makes a prediction about the anticipated

sensory consequences.  When the actual sensory consequences differ from predicted, an

error signal is generated and the brain updates subsequent motor commands for improved

performance.  Essential to this process is the sensitivity to error, or rather, the amount that

the brain learns from a given error.  Typical models of motor adaptation assume that

sensitivity to error is constant with respect to error size (Cheng and Sabes, 2006;Scheidt

et al., 2001;Smith et al., 2006;Thoroughman and Shadmehr, 2000;van Beers, 2009).

Here, we attempted to quantify the value of sensitivity to error, and found that sensitivity

to error is not constant, and instead declines with increasing error size.  We found this to

be true for both visual and proprioceptive errors, and to occur even when there was no

discrepancy between modalities of error.
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2.4.1 Perception of error

One potential alternative explanation for the pattern of sensitivity error that we

find may relate to the perception of errors.  If the brain is less able to perceive large

errors, it would be expected that the brain would learn less from them.  For our study, we

assumed that sensing of error was unbiased, and that the brain received accurate sensory

feedback regarding the movement error.  One potential way to assess this possibility is to

look at within trial feedback correction.  If the brain can correct for both large and small

errors alike, then perhaps we can assume that perception of error is unbiased.  Our study

utilized ballistic movements (150-250 ms reach duration), specifically trying to minimize

the opportunity for online feedback correction, in the hopes that we could isolate trial-to-

trial adaptation.  However, other publications can offer insight to this issue.

Scheidt et al. (2005) examined force field adaptation for point-to-point reaching

movements through a force field that was similar to our medium strength perturbation

condition.  The perturbation was turned on abruptly and maintained.  Importantly, the

authors also removed visual feedback.  At the start of adaptation, when errors were

largest, subjects successfully corrected for their proprioceptive errors and accurately

returned the perturbed hand to the target (column 2 of their Fig. 2B, and row 5 of their

Fig. 4).  As training continued, errors were reduced and subjects continued to

successfully correct for the perturbation by returning their hands to the target, but without

any change in accuracy (column 3 of Fig. 2B, and row 5 of Fig. 4).  This suggests that the

brain can accurately perceive and therefore, correct for, both large and small errors in

proprioception.  A second example, allowing us to examine this in visual errors, comes

from the work of Veerman et al. (2008).  For this study, the authors generated a visual
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error by jumping the position of the target during the reach.  They found that doubling the

imposed visual error caused the online motor response to double as well.  Therefore, it

appears that the brain can accurately detect and correct for a range of visual error sizes, in

addition to proprioceptive error sizes.  This tells us that our findings about sensitivity to

error are likely not due to a bias in the perception of error size.

2.4.2 Additional factors modulating sensitivity to error

Though we believe that there is no bias in the perception of large and small errors

within a given experiment, there may be biases that occur between different experiments.

For example, consider the two lines in Fig. 2.4A, which display the sensitivity to

endpoint visual error for two tasks that were identical with the exception of reach

amplitude. For a given perturbation, the sensitivity to error for the 5 cm reach is smaller

than the sensitivity to error for a 15 cm reach, though the absolute error size (lateral

deviation of the cursor) was identical.  What could cause these differences?  The authors

note that the end point reach variability was significantly smaller for the 5 cm reach than

for the 15 cm reach (Wei and Kording, 2009).  If we consider the visual errors (the x-axis

of Fig. 2.4A) in terms of z scores for their respective experiment, then the z-scores for the

5 cm reach are larger than for the 15 cm reach, potentially causing the smaller sensitivity.

Alternatively, we can consider the visual errors with respect to reach amplitude by taking

the angular error, and not simply the lateral deviation.  Then, for example, the angular

error of the 4 cm perturbation on a 5 cm reach is larger than the same perturbation

applied to a 15 cm reach, potentially explaining the smaller sensitivity to error during 5

cm reaches.  These are only two examples of how task parameters as simple as reach
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amplitude can alter the brain’s perception of an error size.  It is likely that an error signals

are complex, and dependent on many parameters, many of which can alter ones

sensitivity to error.

Additionally, the structure of a task can alter error sensitivity. Previous work has

shown that learning increases when perturbations have a positive trial-to-trial

autocorrelation, and decreases when perturbations have a negative trial-to-trial

autocorrelation (Smith and Shadmehr, 2004).  In other words, if a given error indicates

the presence of similar errors in the future, the brain will learn relatively more from that

error.  If that same error poorly predicts future errors, the brain will learn relatively less

from it.  Thus, sensitivity to the same error can be altered, depending on the history of

errors experienced.

Finally, consider the variance in our measure of sensitivity to error.  We find

larger variance for small errors as compared to large errors (Fig 2.3). This is a result of

the nature of our sensitivity calculation.  Sensitivity, in simplest terms, is the ratio of trial-

to-trial change in force and error, both of which are random variables.  When taking the

ratio of any two Gaussian random variables, with an arbitrary but constant standard

deviation, as the mean of the random variable in the denominator becomes smaller (for

our purposes, as the error becomes smaller), the variance of the ratio becomes larger

(Hinkley, 1969).  Therefore, our increased variance surrounding our calculation of

sensitivity to small errors relative to large errors is a reflection of our analysis, which

requires us to take the ratio of two random variables.
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2.4.3 The effect of forward models on sensitivity to error

Studies of generalization have found that when people adapt to an imposed

perturbation, they learn the greatest amount along the path which their hand actually

traveled (where they experienced the error due to the perturbation), and relatively less

where they intended to move (along the path to the target) (Izawa and Shadmehr,

2011;Izawa et al., 2012a;Gonzalez Castro et al., 2011).  This has been attributed to

learning with a forward model, which suggests that the brain learns a mapping between

motor commands and sensory feedback.  To understand this, imagine a person is making

a reach to a target at zero degrees.  When a force field is turned on, the hand is perturbed

approximately 30 degrees from the target, and the subject uses the experienced error to

update their motor-sensory map.  In the context of a forward model, what that subject has

learned is that the motor command that was generated to reach zero degrees (the intended

state) actually generates a movement to 30 degrees (the experienced state).  Selecting a

motor command that will bring the hand to the target requires generalization of the

learned, and experienced, motor-sensory mapping to a desired, and previously

unexperienced, sensory state.  If forward model generalization declines with distance,

then this model would imply that sensitivity to error would decline with increasing error

size as well.

Though intriguing, the forward model framework for decreasing sensitivity to

error with increasing error size is not likely the only explanation for our current findings.

Izawa and Shadmehr (2011) measured adaptation to a gradually introduced visual

rotation in two groups – one which had full cursor feedback throughout the reach, and

another which had only endpoint visual feedback.  When measuring generalization, the
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group which had full cursor feedback showed a shift in the peak of generalization, away

from the target and towards the direction of the experienced errors, supporting the

forward model hypothesis.  However, the group that had only endpoint visual feedback

showed a peak at the target direction, suggesting that this effect requires full, online

sensory feedback.  In our analysis of previous published results, we include a study in

which only endpoint visual feedback was provided (Fig. 2.4A).  Despite the lack of

online visual feedback, subjects still demonstrated decreased sensitivity to error with

increasing error size.  This demonstrates that our findings are consistent even in instances

where this effect is not present, and that forward model generalization likely cannot fully

explain the given results.

2.4.4 The impact of discrepancy on adaptation

A key feature of our paradigm was to vary visual and proprioceptive errors

independently of each other.  While this allowed us to find sensitivity to visual and

proprioceptive error alone, it also introduced a question the effect of discrepancy between

visual and proprioceptive error signals on adaptation.  The causal inference model would

suggest that sensitivity declines as discrepancy increases (Wei and Kording, 2009),

implying that the brain maps both sensory errors onto a common metric for comparison.

However, a study of cerebellar patients found separate regions of the cerebellum to be

responsible for visual rotation (visual error only) adaptation and force field (consistent

visual and proprioceptive error) adaptation, and found that performance in the two tasks

were not correlated (Donchin et al., 2012). This indicates that there is no common neural
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substrate for which errors will be compared. Behaviorally, learning and consolidation of

rotations and force perturbations do not interfere with each other, further suggesting

separate mechanisms of adaptation (Krakauer et al., 1999). Additionally, degradation of

proprioceptive information does not encourage adaptation in a visual rotation experiment,

indicating that adaptation occurs in response to visual error is independent of the

proprioceptive feedback (Bock and Thomas, 2011;Pipereit et al., 2006). Without any

behavioral or anatomic link between visual and proprioceptive errors, it seems unlikely

that the brain could quantify discrepancy and utilize it for adaptation. Finally, saturation

of adaptation occurs even without the presence of discrepancy (Fine and Thoroughman,

2006). However, it is worth noting that though we found no significant effect of

discrepancy on sensitivity to error, our findings were negative and we only explored a

small range of discrepancies.  We cannot exclude the effect that large discrepancies may

have on adaptation.

2.4.5 Complex spikes and error dependent learning

Models of cerebellar learning suggest that complex spikes of the Purkinje act as

the brain’s error signal (Kawato, 2003).  For this to be true, one would anticipate that the

occurrence of a CS would scale with error size, such that the probability of a CS is large

when errors are large, and small when errors are small  However, there are several

examples in which this theory has failed.  For instance, consider the saccade adaptation

task by Catz et al. (2005).  At the onset of adaptation, when the perturbation is first

introduced and errors are largest, the probability of a CS is at its lowest.  As training
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continued, errors were reduced but the probability of a CS increased.  In another study by

Soetedjo and Fuchs (2006), error was reduced with no corresponding changes in the

probability of a CS.  In a study of reach adaptation by Ojakangas and Ebner (1992), the

probability of a CS initially increased at the beginning of training but did not change as

errors were reduced and adaptation progressed.  In fact, to our knowledge, only one study

(Gilbert and Thach, 1977) found a reduction in the probability of CSs during adaptation.

Therefore, while it appears that CSs are related to motor adaptation, it seems unlikely that

a CS encodes a prediction error.

What then, do complex spikes encode? When we analyzed the findings of

Sotetedjo et al. (2008) (Fig. 2.5), we found an inverse relationship between the

probability of a CS and error size, similar to the relationship between sensitivity to error

and error size.  Therefore, we propose a new idea – that CSs do not encode error, but

rather sensitivity to error, modulating the amount one learns from an error signal.

Our proposed model can potentially account for an interesting finding in

neurophysiology experiments. Consider a rightward horizontal saccade in which the

target is stepped back (gain-down) and a leftward horizontal saccade in which the target

is stepped-forward (gain-up).  In both instances, the perturbation would generate the same

error vector, despite the fact that the initial saccades were in opposite directions.

Although the errors are the same in magnitude and direction, monkeys tend to adapt less

to a gain-up error as compared to a gain-down error (Robinson et al., 2003).  If CSs

encode error, then for both conditions, the probability of a CS should be the same,

reflecting the consistent error magnitudes.  Instead, the authors found that a gain-down

error causes a greater and more sustained increased in CS activity then a gain-up error
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(see Fig. 4 in Soetedjo and Fuchs (2006)).  Thus, when sensitivity to error was greater,

there was a greater CS response, supporting our hypothesis that CSs encode sensitivity to

error and not error magnitude.

2.4.6 Implications for patients

In the presence of an abruptly introduced force field perturbation, patients with

cerebellar degeneration are unable to adapt their movements and compensate for the field

(Smith and Shadmehr, 2005;Criscimagna-Hemminger et al., 2010).  However, when this

perturbation is introduced gradually, patients are able to adapt their movements

(Criscimagna-Hemminger et al., 2010).  In other words, when faced with widespread

cerebellar degeneration, patients were able to learn from small errors, but not large errors.

Given that smaller errors are more likely to induce a complex spike, it is possible that

adaptation in these patients is a reflection of greater engagement of the residual

functionality of the cerebellum. A greater understanding as to how the brain determines

an error to be large or small may provide insight into how patients with cerebellar

damage adapt, and may lead to improvements in therapeutics.

Additionally, abnormalities in the weighting of sensory feedback during motor

tasks are present in disease populations.  For instance, when visual feedback is rotated

from the hand position, patients with schizophrenia show increased confidence in visual

feedback relative to controls (Synofzik et al., 2010). In contrast, when children with

autism spectrum disorder adapt to a force field, they show increased generalization of this

learning in proprioceptive coordinates, relative to controls.  This suggests an overreliance
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on proprioception during motor learning (Haswell et al., 2009;Izawa et al., 2012b). For

both patient groups, these results may stem from an increased sensitivity to visual or

proprioceptive error, respectively.  Specifically measuring the sensitivity to visual and

proprioceptive error will allow for a greater understanding of how these abnormalities in

sensory processing impact motor learning in patients.
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Chapter 3

Sensitivity to motor error in children

with autism spectrum disorder

3.1 Introduction

Autism spectrum disorder is a developmental disorder, characterized by deficits in

social and communication skills, and repetitive and stereotyped patterns of behavior.

Though motor impairments are not considered a diagnostic feature of ASD, motor

deficits have been widely reported in ASD (Jansiewicz et al., 2006;Mostofsky et al.,

2006;Dowell et al., 2009;Dziuk et al., 2007;Gowen and Hamilton, 2013).  These

impairments are broad and generalized, and lack any clear clinical classification

(described in Chapter 1).  Likewise, abnormalities in sensory function have been

repeatedly demonstrated, but lack any clear signature impairment (Leekam et al.,

2007;Williams et al., 2004;Nakano et al., 2010;Nakano et al., 2012;Tannan et al.,

2008;Blakemore et al., 2006;Paton et al., 2012). Impairments in motor abilities can have

far reaching effects, as motor control is believed essential for communication, language,
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and potentially even the understanding of others thoughts and intentions (Iacoboni,

2009;Gallese et al., 2004).

To better understand the cause of this motor dysfunction, one must consider the

developmental nature of ASD.  It is likely that motor impairments, present even in

infancy (Provost et al., 2007;Teitelbaum et al., 1998), are rooted in the ability to acquire

motor skills, or motor learning. As described in Chapter 2, motor learning is believed to

be driven by the formation of internal models, which contain a mapping of action onto

expected sensory feedback (Wolpert and Miall, 1996).  Prior to making a movement,

these models are used to formulate a prediction of the sensory consequences of the

movement.  If the actual sensory feedback differs from what is predicted, an error is

experienced and motor adaptation ensues, updating the internal model of action.  Given

that motor learning is driven by sensory feedback, abnormalities in sensory processing

have the potential to disrupt the proper formation of internal models and motor learning.

On a developmental timescale, such impairments may lead to global motor deficits.

Interestingly, in sensorimotor tasks, the effect of these abnormalities can

sometimes lead to improved performance relative to healthy controls.  For instance, when

measuring generalization of motor learning during reach adaptation, children with ASD

show increased learning in proprioceptive coordinates (Haswell et al., 2009;Izawa et al.,

2012b). Similarly, in a haptic-to-visual shape matching task, in which subjects explored

an object by tracing it with their finger, individuals with autism are better able to identify

the object (Nakano et al., 2012). Further, individuals with ASD show lower thresholds in

measures of tactile perception of vibro-tactile stimuli (Tannan et al., 2008;Blakemore et

al., 2006), and less susceptibility to proprioceptive drift during the rubber hand illusion
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(Paton et al., 2012). We hypothesize that this oversensitivity to somatosensory feedback

will be reflected in an increased sensitivity to proprioceptive error during motor

adaptation.

In contrast, individuals with autism show deficits in their ability to utilize visual

feedback.  For example, individuals with ASD have well documented difficulties with

imitation (Dowell et al., 2009;Vanvuchelen et al., 2007;Stieglitz et al., 2008;Williams et

al., 2004).  Imitation, however, is a complex process involving the translation another’s

actions to one’s own body mapping, and reproducing them. Related efforts to identify a

core visuomotor deficit have examined the ability of individuals with ASD to properly

respond to biological motion.  They found that adults with ASD are less able to recognize

biological motion (Cook et al., 2009) and children with ASD show preferential attention

to motion of objects rather than biological motion, unlike their TD controls (Annaz et al.,

2012).  This hyporeactivity to the visual feedback of movement is believed to relate to

deficits in imitation and social cognition (Dziuk et al., 2007;MacNeil and Mostofsky,

2012;Mostofsky et al., 2006).  We hypothesize that, during simple motor adaptation,

children with ASD will show a decreased sensitivity to visual error, providing a

quantification of the hypo-responsiveness to visual feedback of motion.  Understanding

sensitivity to visual and proprioceptive error in children with ASD will not only offer a

better understanding as to how individuals with ASD learn to make movements, but also

provide insight into how they learn from and interact with their surroundings.
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3.2 Methods

3.2.1 Subjects

We recruited n=40 children, ages 8-12.  N=20 were typically developing (TD, 16

male, age 10.3±0.3, mean ±SEM, one left handed), and n=20 were diagnosed with ASD

(18 male, age 10.95±0.2, one left handed). ASD diagnosis was based on DSM-IV criteria

and established using both the Autism Diagnostic Observation Schedule (ADOS-G: first

9 participants, 14.6 ±1.8, mean ± SEM, or ADOS-2: final 11 participants, 11.4 ±1.3,

mean ± SEM) and was confirmed by ADI-R (Autism Diagnostic Interview, Revised) and

a pediatric neurologist.  Children were excluded if they had a known etiology for autism,

or a documented prenatal/perinatal insult.  Children from either group were excluded if

they scored <80 on the Wechsler Intelligence Scale for Children - IV (WISC-IV) Full

Scale IQ.  Subjects were matched for gender (Fischer’s exact test, p=0.66), age

(t(38)=1.70, p=0.09), Perceptual Reasoning Index (t(38)= 1.74, p=0.09), and Edinburgh

Handedness score, (t(38)=-0.64, p=0.52) (see Table 3.1). All protocols were approved by

the Johns Hopkins Institutional Review Board and a legal guardian for all participants

provided written, informed consent.
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Table 3.1: Participant information. There were no significant differences in gender, age, perceptual
reasoning index or handedness between groups.  Children with ASD were diagnosed with the ADOS-G or
ADOS-2 and by physician examination.

3.2.2 Psychophysical task

The robot task for the children was a modified version of the robot task used for

the adults (Chapter 2).  Briefly, children sat in front of a robot with a screen over their

arm, and made reaching movements to a target as it appeared on the screen (Fig 3.1A).

On random trials, their arm was perturbed with a force field to the left and right of

various different sizes (Eq 2.1) generating a small proprioceptive error ( b = ±6.5 N.s/m),

a medium proprioceptive error ( b = ±13 N.s/m) or a large proprioceptive error ( b =

±19.5 N.s/m).  At the same time, they had a visual gain applied which scaled the lateral

deviation of the cursor (Eq. 2.2) by 0, 1 or 2. Before and after each perturbation trial was

a channel trial, with which we could measure the motor output of the subject (Fig. 3.1A).

This created triplets of trials, or C1PC2 triplets, which were randomly separated by 0, 1 or

2 null field trials. Trajectories through all perturbation conditions for the hand and cursor

can be seen in Fig. 3.1B for a representative subject, and in Fig. 3.1C for the group.

ASD TD

n 20 20

Males 18 16

Age 10.95±0.22 10.30±0.30

Perceptual Reasoning Index 109.6 ± 2.9 117.7 ± 3.6

Edinburgh Handedness Score 0.737 ± 0.1 0.828 ± 0.1

ADOS-G/ADOS-2 14.6 ±1.8/11.4 ±1.3 N/A
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To modify the paradigm to make it more suitable for children, we eliminated the

gains of 0.5 and 1.5 from the paradigm that were present in the adult version of the task

(Chapter 2).  This was an effort to shorten the experimental duration.  Additionally, we

split the experiment into two sessions.  Both sessions began with a warm up block, and

then consisted of five experiment blocks. As with the adults, in each experiment block,

all perturbations were given once in each direction. This ensured that each block, and the

overall experiment, was balanced with a mean perturbation of zero. Finally, in addition

to feedback about movement timing (the target square turning red, blue or exploding for

movements that were too fast, slow or correctly timed, respectively), an animated coin

appeared for each movement that successfully crossed through the target between 150-

250 ms.  Children were instructed to collect as many coins as possible.

3.2.3 Quantifying adaptation to error

As evidenced in Chapter 2, this random perturbation schedule will produce

learning from error that can be measured as the difference in force from the channel

before (C1) to the channel after (C2) the perturbation (P). Specifically, adaptation can be

found using a state space framework for error dependent learning (Donchin et al., 2003),

and from Eq (2.4):

 ( ) ( ) ( 1) 2 ( 1),n n n n
v pe e f f    (3.1)
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where ( 1)nf  is the force measured during C1, ( 1)nf  is the force measured in C2, and  is

the adaptation that occurs in response to the visual and proprioceptive errors, ve and pe ,

experienced from the perturbation on trial n.

The decay term,  , quantifies how much force production of the subject decays

from trial to trial.  This was found using any instance in the experiment when there were

two consecutive error-clamp trials, which occurred 52 times across the duration of the

experiment.  To quantify  , we regressed the force profile in the second of the

consecutive error-clamp trials onto the first, telling us how much of the motor output was

retained in two consecutive movements.   We found that  = 0.91 ± 0.05 (mean ± SEM).

There was no significant difference in the value of alpha between groups (t(38)=0.60,

p=0.55).

To find a single value to represent motor output or error for a given trial, we used

the measured force or lateral deviation of the hand/cursor at 50% of the maximum speed

of the movement (Taig et al., 2012).  There was no difference between groups in time to

50% of max speed (t(38)=-0.12, p=0.91), which occurred an average of 149 ms after

movement onset. Thus, using Eq. (3.1), we could find  ( ) ( ),n n
v pe e as a scalar value.

Triplets were removed from analysis if 50% of max speed occurred prior to 100 ms from

movement onset, if they did not successfully complete the 8 cm reach, if the hand moved

further than twice the width of the target box (0.6 cm) from the midline during a channel

trial, or if the hand experienced a substantial error in the wrong direction (>±0.5 cm) in

response to a perturbation.  Additionally, within each condition, outliers were identified

and removed using the p < 0.001 criterion of the median absolute deviation.  Together,
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this removed 6.6% ± 0.76% (mean ± SEM) of triplets per subject, with no difference in

percentage of removed triplets between groups (t(38)=-1.1, p=0.29).  Learning from error

and error size were corrected for sign and collapsed to one direction. Though adaptation

and error are oppositely signed, data will be plotted in the first quadrant for ease of

viewing.  All analysis was completed using Matlab (Mathworks), Excel (Microsoft), or

SPSS (IBM).
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Figure 3.1: Task and performance for children. A. Children participated in a reach adaptation task in
which they held a robotic manipulandum and made reaching movements to a target that appeared on a
horizontal screen. B. Hand and cursor trajectories for a representative ASD and TD subject display no
differences in online response to error. C. Group data for hand and cursor trajectories display no obvious
differences in speed or lateral deviation, indicating no difference in online response to error between
groups. D.  Perpendicular velocity of the hand for all perturbation conditions, a sensitive measure of online
feedback response, again shows no difference between groups. E. Lateral deviation of the hand, measured
at 50% of max speed, shows no effect of gain or group on hand error.
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3.3 Results

3.3.1 Feedback response during a perturbation

When quantifying the sensitivity to error during reach adaptation, it is important

to distinguish between the effects of online error correction within a movement, and the

trial to trial response to error we describe in Eq. (3.1). We anticipated that the applied

perturbations and their resulting sensory feedback would engage reflex pathways,

generating motor commands that partially corrected for the perturbation as the movement

proceeded.  Though we attempted to minimize this with short duration, ballistic

movements, it is important to ensure there are no confounding effects of online feedback

response in our trial-to-trial measurement of adaptation.

To examine the online response to error, we plotted the hand and cursor

trajectories during the perturbation trials.  Figure 3.1B shows the hand and cursor path for

a representative subject from each group, and Fig. 3.1C shows the group data, for all

possible perturbation conditions.  We detected no obvious difference between the

trajectories, indicating there was no difference in the nervous system’s response to an

error during the perturbation. A more sensitive measure of the motor system’s response

to sensory feedback is perpendicular velocity of the hand, which is plotted in Fig 3.1D.

Again, we see no discernable differences in perpendicular velocity between groups,

further demonstrating that both the short and long latency feedback response to error is

similar for ASD and TD children.
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As a scalar proxy for the error induced by the perturbations, we used displacement

of the hand or cursor, perpendicular to a straight line reach to the target, at 50% of max

speed.  The value of the hand error using this metric is plotted for all conditions in Fig.

3.1E.  We found that while increasing field strength increased proprioceptive error, there

was no difference in errors between groups.  Further, there was no effect of visual gain on

hand displacement, indicating that proprioceptive error for a given field size is constant,

regardless of the applied visual gain: ANOVA with a within-subject measure of hand

displacement for visual gain, and between-subject factor of group showed a significant

effect of field strength (F(1,38)=1575.1, p<0.001), but found no effect of visual gain

(F(2,37)=.623, p=0.54), and no effect of group (F(1,38)=0.66,p=0.42).  Thus, we have

found that during a perturbation trial, children with ASD responded normally to a visual

or a proprioceptive perturbation.  This implies that the visual and proprioceptive reflex

gains of the motor system are similar across groups, and the errors experienced between

the two groups were comparable.

3.3.2 Learning from proprioceptive error

Although demonstrating similar online responses to motor error, we hypothesized

that children with ASD would show an increased trial-to-trial response to proprioceptive

error.  To examine this, we utilized the framework discussed in Chapter 2 and defined the

adaptation, described in Eq. (3.1), as the independent sum of a visual and proprioceptive

component of adaptation:
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As demonstrated previously, each component of adaptation is the product of the error

experienced in that modality, and error sensitivity, which is a function of the error

experienced (Marko et al., 2012). We were able to quantify the response to

proprioceptive error using the three zero gain conditions ( g = 0 for all three values of b ).

When the visual gain is zero, the visual error is clamped to zero as well, and Eq. (3.2) can

be reduced:
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(3.3)

Figure 3.2A, left, shows adaptation to proprioceptive error alone, p , for the three

different field sizes for both groups.  We found that children with ASD learned more

from a given proprioceptive error than TD controls.  An ANOVA with a with-in subject

repeated measure of field strength and a between-subject factor of group resulted in a

significant main effect of group (F(1,38)=5.7, p=0.022), but no significant effects of field

size (F(2,37)=1.36, p=0.27) or group by field interaction (F(2,37)=0.009, p=0.99). In

other words, the ASD group learned significantly more from proprioceptive error than the

TD group.

We further examined this learning by calculating the proprioceptive sensitivity, or

p , at each error size:

   0, p
p p

p

e
e

e


  (3.4)



56

Proprioceptive sensitivity represents adaptation that has been normalized to the specific

error experienced, or how much learning occurs in response to a specific proprioceptive

error.  The results are shown in Fig. 3.2A, right, for each field size. As with the adults

(Chapter 2), we found that sensitivity to error decreased with increasing error size.

Importantly, we found that sensitivity to error was significantly larger for children with

ASD than for TD controls, echoing the finding for proprioceptive adaptation. An

ANOVA with a with-in subject repeated measure of field strength and between-subject

factor of group resulted in a significant effect of group (F(1,38)=4.7, p=0.035) and field

(F(2,37)=4.72, p=0.015).  There was no significant group by field interaction

(F(2,37)=.29, p=0.75). Thus, we find that when perturbed proprioceptively, children

with ASD exhibit greater sensitivity than normal.

3.3.3 Learning from visual error

Individuals with ASD are less able to imitate (Williams et al., 2004) or to

recognize biological motion (Cook et al., 2009), suggesting impairments in their

visuomotor abilities.  We therefore hypothesized that they would also show a decreased

sensitivity to visual error, as part of their deficit in processing visual information as it

relates to movement. To explore this question, we focused on our conditions in which

there was both visual and proprioceptive error present.  The learning that occurs, labeled

as  ,v pe e , is plotted as a function of visual error, ve in Fig. 3.2B: the left panel shows

adaptation for visual errors that occurred with medium proprioceptive error (b = 13),

and the right panel shows adaptation in response to visual error with the small
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proprioceptive perturbation (b = 6.5).  While it is difficult to discern visual sensitivity

from conditions with visual and proprioceptive error together, the TD group appears to

have a more dynamic response to changing visual error, which would suggest greater

visual sensitivity.  In fact, this was verified by a significant interaction.  Additionally, we

found a significant effect of field and gain on adaptation: ANOVA with a with-in subject

effect of field and gain and a between-subject factor group found a significant effect of

field (F(1,38)=5.1, p=0.29), a significant effect of gain (F(2,37)=20.9, p<.001), and a

significant gain by group interaction (F(2,37)=3.53, p=0.039).  All other effects were not

significant (p>0.05). Given that there are both proprioceptive and visual errors driving

this measure of adaptation, we have no specific hypothesis regarding a group effect.

In Fig 3.2B, the middle data point for each plot shows the adaptation in the g = 1

condition, or the condition in which visual and proprioceptive errors are consistent.  This

is a “normal” adaptation condition, for which prior studies have found no difference in

the amount of adaptation between groups (Gidley Larson et al., 2008;Haswell et al.,

2009).  Likewise, we found no group difference in adaptation in response to a consistent

visual and proprioceptive error: ANOVA with a with-in subject repeated measure of field

strength and between subject factor of group found no significant effect of group

(F(1,38)=0.28, p=0.61), a significant effect of field (F(1,38)=4.45, p=0.042) and no

significant group by field interaction (F(1,38)=0.006, p=0.94).  Therefore, in “normal”

conditions in which visual and proprioceptive feedback are consistent, the gross motor

output of the ASD group appears normal.

To quantify sensitivity to visual error alone, we focused on the change in motor

output when proprioceptive error was held constant and visual error was varied. As
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shown in Fig. 3.1E, this occurs across visual gains within the small (b = 6.5) and medium

(b = 13) perturbation conditions. As in Chapter 2, for a given field size, we can measure

 0, pe in the g = 0 condition, and substitute this into Eq. (3.2). We can then find

sensitivity to visual error as:

     , 0,v p p
v v

v

e e e
e

e
 




 (3.5)

The result of this analysis is plotted in Fig. 3.2C.  We again found that sensitivity to

visual error was smallest for large errors, echoing our findings in adults (Chapter 2).  We

also found that sensitivity to visual error was smaller for children with ASD than TD

controls: ANOVA with a with-in subject repeated measure of perturbation size and

between-subject factor of group resulted in a significant effect of group (F(1,38)=6.4,

p=0.016), and a significant effect of perturbation size (F(3,36)=5.4, p=0.004), but no

significant interaction (F(3,36)=0.21, p=0.89). In other words, children with ASD show

less sensitivity to visual error, as compared to TD controls.
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Figure 3.2: Response to motor error in children with ASD. A. Adaptation (left) and sensitivity (right)
to proprioceptive error in children with ASD is greater than normal. B. Adaptation in response to visual
and proprioceptive errors suggests that children with ASD are less responsive to changes in visual error. C.
Sensitivity to visual error is lower than normal in children with ASD.
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3.3.4 Relationship between sensory modalities

Children with ASD show increased proprioceptive sensitivity and decreased

visual sensitivity, but a normal response when visual and proprioceptive errors are

consistent.  Therefore, we wondered if there was a tradeoff between the two modalities,

balancing out the overall amount of learning. For each child, we averaged the three

measurements of proprioceptive sensitivity (Fig. 3.2A, right) and the four measurements

of visual sensitivity (Fig. 3.2C).  The results are plotted for each subject in Fig. 3.3A. We

saw that children who demonstrated greater proprioceptive sensitivity exhibited less

visual sensitivity, and vice versa, as demonstrated by a significant correlation across the

population: (r=-0.54, p<0.001).  There was also a significant relationship within the ASD

group alone, (r=-0.57, p=0.0089), and a trend towards significance in the TD group (r=-

0.35, p=0.13). As it follows from the results in Fig. 3.2, the average proprioceptive

sensitivity (x-axis) was significantly larger in the ASD group (t(38)=-2.1, p=0.035) and

the average visual sensitivity (y-axis) was smaller (t(38)=2.5, p=0.016), (Fig 3.3B).  We

will use these parameters for our brain-behavior correlations in Chapter 4.

Finally, to ensure these results were not the product of our sensitivity analysis or

due to the process of normalizing by error, we looked at the average proprioceptive

adaptation, p , and average visual adaptation, v , for each child (Fig. 3.3B).  We again

found that children with ASD show greater adaptation in response to proprioceptive error

(t(38)=2.4, p=0.022) and less adaptation in response to visual error (t(38)=-2.6, p=0.013),

as compared to TD controls. Corresponding to our results with sensitivity to error, there

was a negative correlation between the amount of adaptation in response to visual and



61

proprioceptive errors (r=-0.32, p=0.044).  Therefore, our findings are robust to our

methods of calculating sensitivity to error.

Figure 3.3: Relationship between sensitivity to error in children. A.  The relationship between visual
and proprioceptive sensitivity to error suggests that sensitivity is a trade-off across modalities. B.
Consistent with our findings in Fig. 3.2, children with ASD show greater proprioceptive sensitivity and
learning, and less visual sensitivity and learning, as compared to TD controls.
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3.4 Discussion

Prior to being able to successfully execute complex motor behaviors, one must be

able to learn to generate accurate motor commands.  From infancy, these motor abilities

must adapt and develop as our bodies change in size and strength, and we move through a

lifetime of different environments.   Present from infancy (Provost et al.,

2007;Teitelbaum et al., 1998), motor impairments in autism spectrum disorder are

potentially rooted in an inability to appropriately adapt their movements.  In the present

study, we examined how children with ASD respond to visual and proprioceptive errors.

Though we found no clear differences in their within movement response to a

perturbation, when measuring the trial-to-trial response to error, we found that children

with ASD are more sensitive to proprioceptive errors and less sensitive to visual errors.

3.4.1 Proprioceptive sensitivity in ASD

A particularly interesting aspect of studying autism spectrum disorder is that in

certain tasks, individuals with autism can outperform their typically developing peers.

For instance, in a pair of creative tasks by Nakano and colleagues (Nakano et al.,

2010;Nakano et al., 2012), adults with autism were tested in their ability to identify a

common object or shape, by integrating sensory information about the object.  In the first

study, subjects were shown a line drawing of a common object as it passed behind an

occluding screen with a small slit, allowing only a sliver of the image to be available at a

time.  When asked to identify the object, individuals with ASD made more errors than

controls.  The authors attributed their findings to the “weak central coherence” theory,
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indicating that the impaired performance was due to an impairment in integrating sensory

information to form a mental representation of “the big picture.” In the second study, the

haptic equivalent to the original study, adults with ASD had to identify the shape of a

wooden block by tracing it with their finger.  Surprisingly, though the authors

hypothesized that the ASD group would again show worse performance due to weak

central coherence, the ASD group made fewer errors.  In light of our findings, these

studies seem to be consistent with a bias towards proprioceptive feedback and against

visual feedback, and not due to weak central coherence.  Alternatively, the proprioceptive

integration task involved active movements to explore the block.  This may tap into the

increased proprioceptive sensitivity during movement we found to be present in ASD.

In another example of improved performance in autism, and our inspiration for

our current study, we found that children with ASD showed increased generalization of

force field adaptation in intrinsic, or proprioceptive, coordinates (Haswell et al.,

2009;Izawa et al., 2012b).  We believed this reflected an increased reliance on

proprioceptive error during motor learning, but were unable to directly measure

proprioceptive sensitivity.  By using our single trial adaptation task, with a mix of visual

and proprioceptive errors, we were able to measure adaptation and sensitivity to

proprioceptive error alone and found support for our original hypothesis.  Inevitably, one

may wonder if this heightened proprioceptive sensitivity, allowing for "improved”

performance, reflects a compensatory mechanism.  If so, it presents a greater question at

hand: does the ability to compensate for a visual deficit reflect an increased impairment

due to autism, or are those who are less able to compensate more impaired? Given the

complex developmental nature of ASD, this would require examining the developmental
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time course of sensitivity to error in both healthy children and children with ASD.

Though undoubtedly interesting, such a question is beyond the scope of this thesis.

3.4.2 Visual sensitivity in ASD

With this study, we found that children with ASD learn less from visual feedback

about their movements, using a very basic, single trial adaptation task.  The ability of

individuals with ASD to imitate, likely a much more complex and higher order form of

visual learning, has long been a focal point of autism research (Dowell et al.,

2009;Vanvuchelen et al., 2007;Stieglitz et al., 2008;Williams et al., 2004).  Often, it is

attributed to a deficit in theory of mind, or the rather ability to mentally assume another’s

perspective (Baron-Cohen et al., 1985). Likewise, additional tasks have found deficits in

recognition and understanding of biological motion (Cook et al., 2009).  For instance, a

study by Cattaneo et al. (2007) found that when TD children observe someone bring a

piece of food to their mouth, relative to watching a person bring an object to a cup on

their shoulder (a very similar series of movements), children experience muscle

activation in their neck as though they themselves were preparing to eat (Cattaneo et al.,

2007).  This activation was absent in children with ASD. However, children with ASD

show impairments in imitation of meaningless gestures as well as meaningful gestures,

suggesting that the deficit lies in the visuomotor requirements of such tasks (Dziuk et al.,

2007;MacNeil and Mostofsky, 2012). If the ability to learn from visual feedback

regarding one’s own movements is impaired, it could potentially underlie the ability to

learn and understand a complex series of movements performed by others, or to imitate.
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It is important to note, however, that our measure of visual sensitivity is not an

absolute quantity.  Certainly, sensitivity to error changes with task parameters (Burge et

al., 2008;Wei and Kording, 2009;Marko et al., 2012).  For instance, in a force field

adaptation task in which visual feedback was removed, adaptation occurred normally

compared to adaptation with cursor feedback available (Scheidt et al., 2005).

Additionally, task structure can alter sensitivity to error, such that subjects up-regulate

learning in the presence of consistent errors (Smith and Shadmehr, 2004).  Perhaps this

can explain our previous findings:  when children with ASD were asked to make reaching

movements in the presence of a visual rotation, a perturbation in which the cursor

feedback is rotated relative to the reach direction, and causing a visual error but no

proprioceptive error, children with ASD were able to adapt at normal speeds (Gidley

Larson et al., 2008).  Given the flexible nature of sensitivity to error, it is possible that

consistent, repeated visual errors up regulate sensitivity to visual error in the ASD group.
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Chapter 4

Cerebellar abnormalities in children

with autism

4.1 Introduction

When exposed to a force field, individuals with acquired cerebellar damage are

unable to adapt to the suddenly experienced, large errors that result from the perturbation

(Smith and Shadmehr, 2005;Criscimagna-Hemminger et al., 2010). Specifically,

cerebellar deficits reduce the ability to learn to predict the sensory consequences of motor

commands (Izawa et al., 2012a). This implicates the cerebellum as the most likely

location for the acquisition and storage of internal models of action.  In fact, temporary

disruption of the cerebellum through transcranial magnetic stimulation (TMS) delays

proper planning and execution of movement, indicating that it is responsible for the

feedforward component of adaptation (Miall et al., 2007).

Interestingly, the cerebellum has been a key focus for autism pathology.  In post-

mortem studies of individuals with ASD, reduced Purkinje cell numbers are the most

consistent neuropathological finding (Ritvo et al., 1986;Bailey et al., 1998;Whitney et al.,
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2008;Kemper and Bauman, 1998).  Furthermore, imaging studies find a decrease in the

size of the cerebellar vermis (Murakami et al., 1989;Hashimoto et al., 1995;Courchesne

et al., 2001;Scott et al., 2009), while reports of overall cerebellar volume are more mixed

but tend to show an overall increased volume (Courchesne et al., 2001;Sparks et al.,

2002;Murakami et al., 1989;Stanfield et al., 2008).  Functionally, MRI activation during

motor activity is abnormal in ASD as well (Mostofsky et al., 2009;Allen and Courchesne,

2003). If the cerebellum is the site of pathological disruption in ASD, then this would

likely interfere with the ability to appropriately form internal models and lead to the array

of motor impairments found in ASD. Here, we examined the region of the cerebellum

that exhibits resting state functional connectivity with the motor and somatosensory

cortices, as described by Buckner et al. (2011).  We hypothesized that the volume of this

region would relate to the anomalous patterns of motor learning found in children with

ASD, presented in Chapter 3.

4.2 Methods

We wanted to focus our analysis on the specific region of the cerebellum that is

most likely related to motor adaptation, and determine if these regions are related to

performance in the psychophysical task.  To do so, we utilized the cerebellar mappings

described by Buckner et al. (2011).  These maps defined distinct regions on the basis of

differential functional connectivity with the cerebral cortex.  This produced two atlases of

the cerebellum, mapping its functional relationship to the cortex on a voxel-by-voxel

basis.   One atlas labeled each cerebellar voxel as communicating with one network
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within a 7 network cerebral cortex.  The other atlas labeled each cerebellar voxel as

communicating with one network within a 17 network cerebral cortex (each cortical map

covered the entire cortex).  For the 7 network atlas, Buckner and colleagues found a

region of the cerebellum that exhibited resting state functional connectivity to the motor

and somatosensory cortices, which we will refer to as the sensorimotor cerebellum.  The

connectivity between the cortex and this region of the cerebellum was validated using a

movement task of the tongue, hand and foot.  For the 17 network atlas, the cortical

sensorimotor area was split, separating the tongue from the hand and foot representations.

In the cerebellum, the sensorimotor region was more finely resolved into two

corresponding networks.  We focused on the network that contained the hand

representation, which we will term the hand and foot sensorimotor region of the

cerebellum.  Both the 7 and the 17 network atlases were recently published as a

standardized atlas with the Spatially Unbiased Infra-Tentorial (SUIT) toolbox

(Diedrichsen, 2006), allowing us to isolate and examine these sensorimotor regions of the

cerebellum in our healthy children as well as children with autism.

For each child who participated in the reaching task described in Chapter 3 (see

Table 3.1), we acquired a 1 mm3 isotropic T1-weighted magnetization prepared rapid

gradient echo (MP-RAGE) on a Philips 3T (Achieva, Philips Healthcare, Best, The

Netherlands).  The MP-RAGE scans were acquired using the following parameters: TR =

7.99 ms, TE = 3.76 ms, Flip angle = 8°, 200 coronal slices. Two children were excluded

from the analysis due to poor image quality: one due to severe motion artifact, and one

for poor gray/white matter segmentation.  The cerebellum was isolated and the resulting

image was then registered to the SUIT template (Diedrichsen, 2006).  This produced a
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deformation matrix, which morphed the native image to the standardized template of the

cerebellum.  To find the volume of the sensorimotor regions of the cerebellum, we used

the deformation matrix for each child, produced by SUIT, to invert the atlas of the 7 and

17 network cerebellar parcelation into each child’s native space. This produced a native

space, labeled atlas of the whole cerebellum.

In particular, we chose to focus on the brain tissue (excluding CSF).  To do so, we

segmented the cropped native image, which resulted from the isolation step, into gray

matter, white matter and CSF, using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).  We thresholded the resulting tissue

probability maps by 0.5 to produce binary tissue maps.  For each child, we multiplied

their grey and white matter binary maps by the labeled, native space atlas of the

cerebellum. From this, we calculated the regional gray and white matter volume of the

sensorimotor cerebellum (or the hand and foot sensorimotor cerebellum), and summed

the resulting volumes to get total brain tissue for the specific region of the cerebellum.

4.3 Results

4.3.1 Volume of the sensorimotor region

The reach adaptation task studied in chapters 2 and 3 depends on the integrity of

the cerebellum (Smith and Shadmehr, 2005;Criscimagna-Hemminger et al., 2010;Miall et

al., 2007;Donchin et al., 2012).  Thus, we hypothesized that the behavioral differences we

found from our reaching task would be reflected in anatomical differences in the volume
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of specific regions in the cerebellum.  To test our hypothesis, we obtained anatomical

MRIs for the children who participated in the task in Chapter 2.  We isolated the

cerebellum and measured the regional volume of the sensorimotor network, or the region

of the cerebellum that exhibits the greatest amount of resting state connectivity with the

somatosensory and motor cortices in the cerebrum (Buckner et al., 2011).  This region

stretches bilaterally over the anterior lobe of the cerebellum, extending into parts of

lobule VI as well.  It also includes the posterior proprioceptive representations in lobule

VIIIb.  This region is identified in red for a representative ASD and representative TD

child in Fig. 4.1A.  It appeared that the volume of this region was smaller for the ASD

child.  Indeed, as shown in Fig. 4.1B, we found that the volume of this region was

significantly smaller for children with ASD than TD controls (t(36)=-2.39, p=0.022).

We then refined our analysis through use of the 17 network atlas.  This allowed us

to focus on the hand and foot sensorimotor region, which covered a smaller and more

specific region of the cerebellum, as displayed in blue for the same example subjects in

Fig. 4.1A.  As this region is completely contained within the sensorimotor region of the

cerebellum, it overlays onto the red labels as purple. Again, this region appeared smaller

for children with ASD, which we verified across the group in Fig. 4.1B (t(36)=-2.59,

p=0.013).  This finding is entirely independent of our psychophysical results in Chapter

3, and finds that the anatomical region of the cerebellum involved in sensorimotor control

is smaller in children with ASD than in TD controls.

To check the specificity of this result, we considered two additional volumes – the

total cerebellar volume (TCV), found as the sum of the volumes of all of the cerebellar

networks from the 7 network atlas, and the total brain volume (TBV), as measured by
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FreeSurfer, which includes the grey matter and white matter for the whole cerebrum and

cerebellum, and excludes the dura, CSF, and ventricles.  We found no significant

difference between groups, for both TCV (t(36)=-1.67, p=0.10) and TBV, (t(36)=-0.54,

p=0.59).

Figure 4.1: Volume differences of the sensorimotor cerebellum. A. Representative cerebellum from a
TD child and ASD child.  Red labels indicate the sensorimotor cerebellum, blue labels (which overlay onto
the red labels as purple) indicate the location of the hand and foot sensorimotor cerebellum. B. Group
results for volume of each region show that children with ASD have significantly less volume for both the
sensorimotor cerebellum and the hand and foot sensorimotor cerebellum.
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4.3.2 Behavioral relationship to cerebellar anatomy

Does this volume relate to performance in the learning task?  To understand the

relationship between sensitivity to error and volume of the sensorimotor cerebellum, we

used a generalized linear model (GLM). In the GLM, the volume of the sensorimotor

cerebellum for each child was the dependent variable, and sensitivities to visual and

proprioceptive error (found in Chapter 3) were the independent variables.  As a result, the

GLM included factors of group, sensitivity to proprioceptive error, sensitivity to visual

error and group by sensitivity interactions.  We found that the GLM was significant

(p=0.008, Table 4.1), suggesting that these factors are robust predictors of cerebellar

volume.  The GLM identified a significant main effect of group, a significant main effect

of visual sensitivity and a significant group by proprioceptive sensitivity interaction.  The

main effect of visual sensitivity indicates that as visual sensitivity increases, the volume

of the sensorimotor cerebellum increases.  The interaction suggests that there is a

significantly more positive relationship between proprioceptive sensitivity and volume

for the ASD group.  We repeated this analysis using the restricted volume of the hand and

foot sensorimotor cerebellum, and found our results to be consistent (Table 4.2).  This

confirms our finding that sensitivity to error is a significant predictor of volume in the

regions of the cerebellum most likely related to motor adaptation.
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Table 4.1:  GLM results for the sensorimotor cerebellum. We found a significant relationship between
the volume of the sensorimotor cerebellum to the learning task (Chapter 3).

Table 4.2:  GLM results for the hand and foot sensorimotor cerebellum. We repeated our analysis for
the hand and foot sensorimotor cerebellum, and found our results to be consistent with the results presented
in Table 4.1.

Likelihood
Ratio Chi-
Square df Sig.

15.650 5 .008

Wald Chi-
Square df Sig.

(Intercept) 901.142 1 <0.001
Group 10.482 1 .001
Proprioceptive
Sensitivity

1.593 1 .207

Visual
Sensitivity

4.799 1 .028

Group *
Proprioceptive
Sensitivity

6.705 1 .010

Group * Visual
Sensitivity 1.988 1 .159

Omnibus Test
Tests of Model Effects

Source

Type III

Likelihood
Ratio Chi-
Square df Sig.

16.953 5 .005

Wald Chi-
Square df Sig.

(Intercept) 804.050 1 <0.001
Group 12.126 1 <.001
Proprioceptive
Sensitivity

1.269 1 .260

Visual
Sensitivity

4.605 1 .032

Group *
Proprioceptive
Sensitivity

7.585 1 .006

Group * Visual
Sensitivity 2.323 1 .127

Omnibus Test
Tests of Model Effects

Source

Type III
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4.4 Discussion

4.4.1 Autism and the cerebellum

Despite the range of potential upstream physiological causes of autism, there are

still key diagnostic features present in all patients that define the disorder – deficits in

social and communication skills, and repetitive and stereotyped patterns of interest and

behavior.  How might the cerebellum relate to these features?  It is important to note that

the cerebellum is not simply a motor structure, and is reciprocally connected to the

frontal cortex (Middleton and Strick, 2001) and the basal ganglia (Middleton and Strick,

2000).  Children with congenital or early cerebellar insults show a range of autistic

symptoms (Tavano et al., 2007), while adults with acquired cerebellar disease experience

a host of non-motor symptoms, termed the Cerebellar Cognitive Affective Syndrome,

that impacts executive function, visual spatial abilities, language and affect

(Schmahmann and Sherman, 1998).  Certainly, damage to the cerebellum can have

effects far outside of the motor domain.

Importantly, the cerebellum has been the location of a number of physiological

abnormalities for individuals with autism.  In fact, lower Purkinje cell numbers are the

most consistent post mortem finding (Ritvo et al., 1986;Bailey et al., 1998;Kemper and

Bauman, 1998;Whitney et al., 2008).  Imaging studies with targeted measurements of the

vermis find it to be smaller in size, as well (Murakami et al., 1989;Hashimoto et al.,

1995;Courchesne et al., 2001;Scott et al., 2009).  However, the results are not always

clear, and reports of overall cerebellar volume are mixed, tending to find an overall larger
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volume compared to controls (Courchesne et al., 2001;Sparks et al., 2002;Murakami et

al., 1989;Stanfield et al., 2008).  Likewise, functional imaging studies have found

children with ASD to have both reduced (Mostofsky et al., 2009) and increased (Allen

and Courchesne, 2003) cerebellar activation during a simple movement task.  Indeed, a

greater understanding of the role of the cerebellum in autism may offer a greater

understanding of the diverse autism phenotype.

4.4.2 The sensoriomotor cerebellum and motor learning

Dating back to the 1940’s, recordings during proprioceptive and tactile

stimulation found two sets of sensory maps in the cerebellum: an inverted homunculus

stretching primarily over the anterior lobe, and two smaller fully body representations in

the hemispheres of lobule VIII. This sensory information reaches the cerebellum through

both spinocerebellar projections and neocortical afferents projected through the pontine

nuclei (Manni and Petrosini, 2004).  It came as no surprise, therefore, that Buckner and

colleagues (Buckner et al., 2011) chose to validate the findings of their resting state

connectivity maps with a motor task, and found corresponding functional activation for

simple hand, foot and tongue movements (see Fig. 5 in Buckner et al. 2005).  But do

these sensorimotor maps relate to motor adaptation?  In a study of cerebellar patients

using voxel based morphometry, or a voxel-by-voxel quantification relating the density

of grey matter to performance in a reaching task, Donchin et al. (2012) found that

anterior regions from lobules IV-VI were related to the ability to adapt in a force field or

visual motor rotation paradigm.  Performance in the two tasks was not correlated and was

dependent on largely separate regions within the cerebellum, supporting our claim that
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learning occurs from independently from visual and proprioceptive errors.  Importantly,

the region of the cerebellum most relevant to adaptation appears to correspond with that

sensorimotor cerebellum described by Buckner et al. (2011).

Given the anatomical and functional relationship between the cerebellum and

adaptation, how can we understand our findings?  Independent of our psychophysical

results, we find that the volume of the sensorimotor region of the cerebellum is smaller in

children with ASD.  When relating this volume to sensitivity to error, we found a main

effect of visual sensitivity and a group by proprioceptive sensitivity interaction.  The

main effect of visual sensitivity on volume echoes that which is described in Donchin et

al. (2012): that visual motor adaptation depends on integrity of this general region, and

greater volume will allow for improved performance.  For our task, higher visual

sensitivity can be considered comparable to improved visual performance, which

correlates with higher volume. Potentially, reduced cerebellar Purkinje cell density in

ASD (Ritvo et al., 1986;Bailey et al., 1998;Kemper and Bauman, 1998;Whitney et al.,

2008) may cause this reduced volume, and may subsequently reduce one’s ability to learn

from visual error.

The significant group by proprioceptive interaction is a bit more difficult to

interpret.  We found that there is a more positive relationship between volume and

proprioceptive sensitivity in the ASD group than in the TD group.  A popular theory

explaining the underlying basis of ASD claims that there is a bias towards short range

connections in the brain, and against long range connections (Frith and Happe, 1994).

With no direct connections between the visual cortex and the cerebellum, visual

information must travel from through the parietal cortex before it is relayed to the
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cerebellum through the pons (Glickstein, 2000).  Proprioceptive information, however, is

relayed both through the pons from the cortex, and through the spinocerebellar tract,

directly from the body (Manni and Petrosini, 2004).  Therefore proprioceptive feedback

may have an advantage, relative to visual feedback, in that it can be received both from

the shorter path through the somatosensory cortex as well as directly through the

spinocerebellar tract.

4.4.3 The relevance of the functional connectivity atlas

It is important to note that the atlas used for this analysis was developed through

the analysis of 1000, healthy, adult subjects (Buckner et al., 2011).  Our analysis is

focused not only on children, but children with a developmental disorder, therefore it is

unclear how appropriate the Buckner atlas is for our participants.  Though the cerebellum

does have a protracted development, reaching peak volume around age 15 (Tiemeier et

al., 2010), the children in our study were restricted in age and are believed to be stable,

developmentally speaking.  It would be undoubtedly exciting to track the evolution of a

functional cerebellar atlas through development, even more so within an autism

population.  Regardless, based on anatomy alone, the region that we can best assume to

be related to motor control in the cerebellum is smaller in children with ASD.  This

anatomical finding is a promising potential contributor to the multitude of motor

impairments that impact children with ASD.
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Chapter 5

Conclusion

Whether you are a stumbling toddler learning to navigate the playroom, a

professional baseball player perfecting your swing, or a student learning to type on a new

keyboard, the ability to learn from motor error shapes all of our lives on a continuous

basis. Any disruption to this process, especially in the developing mind of a child, will

have far reaching consequences. In Chapter 2, we used computational principles to

quantify how much one learns from motor error.  We found that in healthy adults,

adaptation to visual and proprioceptive feedback occurs independently.  Sensitivity, or

the relative amount one learns from an error, is greatest for small errors and declines as

error size increases, a phenomenon we found to be true for both vision and

proprioception.  Critically, this led us to reexamine the neural basis of error based

learning, where we found that complex spikes in the Purkinje cells of the cerebellum

resembled sensitivity to error more than error itself.  This changes our view of cerebellar

learning, which previously was thought to depend on error signals delivered through

climbing fiber input to the Purkinje cells, generating a complex spike (Marr, 1969;Albus,

1971;Ito, 1972).  Instead, we now believe that error, which is rich and complex in nature,

is delivered through high frequency simple spikes. This offers a deeper look into a

critical mechanism by which we learn.
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With the framework developed in Chapter 2, we could then ask a targeted

question in Chapter 3 – how do children with autism spectrum disorder learn from motor

error?  We found that, as with adults, sensitivity to error declines with increasing error

size.  Importantly, we found that, as compared to their TD peers, children with ASD

show an increased sensitivity to proprioceptive error and a decreased sensitivity to visual

error. A diminished capacity for learning from the visual feedback of one’s own motor

error may offer a simple underlying cause for the difficulty that children with ASD show

in performing more complex visual-motor tasks, such as identifying biological motion

(Cook et al., 2009) and imitation (Williams et al., 2004). Imitation, in particular, plays a

key role in the development of social cognition (Iacoboni, 2009), deficits of which are a

defining feature of autism.

While the neurophysiology of social cognition is decidedly complex, the neural

basis of motor learning is relatively well understood.  Error based motor learning depends

on the cerebellum (Smith and Shadmehr, 2005), therefore we hypothesized that

sensitivity to error would relate to volume of the cerebellum, in particular, a region of the

cerebellum that is functionally connected to the motor and somatosensory cortices. In

Chapter 4, we found that children with ASD had a smaller volume of the sensorimotor

cerebellum, and that sensitivity to error was a robust predictor of this volume.

Interestingly, the cerebellum has been a known site for neurophysiological dysfunction in

autism for decades (Ritvo et al., 1986), and with projections to the frontal cortex

(Middleton and Strick, 2001), cerebellar damage can affect far more than motor abilities

(Schmahmann and Sherman, 1998).
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This work has brought to focus an interesting element of motor learning, shining a

spotlight on error sensitivity.  Simple in concept, sensitivity is often assumed to be a

fixed parameter, fit to data telling a compelling story about another aspect of motor

control.  But when examined on its own, sensitivity to error had unique properties, its

own neural representation, and may hold the key to deficits in a devastating

developmental disorder.  Naturally, with this further insight, comes further questions.  If

complex spikes encode error sensitivity, how is error represented during learning?  Can

we increase visual sensitivity for individuals with autism?  What causes the sensorimotor

cerebellum to be smaller in children with autism? Though this thesis ends without those

answers, the body of work completed here offers insight towards a greater understanding

of how the brain learns from error, and a small step towards an ultimate understanding of

autism spectrum disorder.
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