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A spatially unbiased atlas template of the human cerebellum
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This article presents a new high-resolution atlas template of the
human, cerebellum and brainstem, based on the anatomy of 20 young
healthy individuals. The atlas is spatially unbiased, i.e., the location of
each structure is equal to the expected location of that structure across
individuals in MNI space, a result that is cross-validated with an
independent sample of 16 individuals. At the same time, the new
template preserves the anatomical detail of cerebellar structures
through a nonlinear atlas generation algorithm. In comparison to
current whole-brain templates, it allows for an improved voxel-by-
voxel normalization for functional MRI and lesion analysis. Alignment
to the template requires that the cerebellum and brainstem are isolated
from the surrounding tissue, a process for which an automated
algorithm has been developed. Compared to normalization to the MNI
whole-brain template, the new method strongly improves the align-
ment of individual fissures, reducing their spatial spread by 60%, and
improves the overlap of the deep cerebellar nuclei. Applied to
functional MRI data, the new normalization technique leads to a
5–15% increase in peak t values and in the activated volume in the
cerebellar cortex for movement vs. rest contrasts. This indicates that
the new template significantly improves the overlap of functionally
equivalent cerebellar regions across individuals. The template and
software are freely available as an SPM-toolbox, which also allows
users to relate the new template to the annotated volumetric
(Schmahmann, J.D., Doyon, J., Toga, A., Petrides, M., Evans, A.
(2000). MRI atlas of the human cerebellum. San Diego: Academic
Press) and surface-based (Van Essen, D.C. (2002a) Surface-based
atlases of cerebellar cortex in the human, macaque, and mouse.
Ann. N. Y. Acad. Sci. 978:468–479.) atlas of one individual, the
“colin27”-brain.
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Introduction

While the simple and homogenous cerebellar micro-circuitry
suggests a uniform computational function of this structure, a
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unified theory of cerebellar function remains elusive. A number
of hypotheses have been proposed, including the coordination of
movement across different joints (Thach et al., 1992), timing
(Ivry et al., 2002), internal models (Wolpert et al., 1998), or the
cerebellum as a fast learning machine (Albus, 1971). With the
advent of neuroimaging, it has also become apparent that parts
of the cerebellum are involved in sensory (Gao et al., 1996),
and cognitive processes (Courchesne and Allen, 1997).

Underlying this apparent functional heterogeneity is the fact
that, while the cytoarchitecture of the cerebellum is homogenous,
inputs and outputs are not: the cerebellum receives afferent fibers
through the pons from nearly every cortical area (Schmahmann,
1996). These fibers appear to terminate in specialized regions of
the cerebellar cortex and form closed loops with their respective
cortical targets (Middleton and Strick, 1997; Kelly and Strick,
2003). While distinct functional areas in the cerebral cortex are of
the size of multiple cm2, distinct subregions of the cerebellum
may occur on a much smaller scale.

In applying functional magnetic resonance imaging (fMRI) to
the cerebellum, the small scale of functionally distinct regions
constitutes a major challenge. How does one combine anatomical
and functional data across participants, given the considerable
anatomical variability between individuals, and the rather small
size of functional subunits? One possibility is to parcellate each
cerebellum based on the individual anatomy into a set specific
regions, e.g., individual lobules (Pierson et al., 2002; Makris et al.,
2003, 2005). For functional analysis one would then average the
BOLD signal within each region and subsequently average each
region across individuals (Desmond et al., 1997, 1998). Although
such region-of-interest based approaches have been quite success-
ful in single cases, they are not widely used because they are very
labor intensive. More importantly, they limit analysis to a set of
distinct set of subregions and do not allow for a more fine-grained
voxel-based analysis.

Voxel-based approaches, in contrast, attempt a continuous
mapping between the individual anatomy and a specific template
(Woods et al., 1998b; Ashburner and Friston, 1999). In such
approaches, the template image, g(x), is matched to an individual
image, f(y), using the deformation map, yi=xi+v(xi), where x and
y constitute locations in template and individual image,
respectively. The deformation can be found by minimizing the
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cost function J, the squared voxel-by-voxel difference between
the template g and thedeformed source image f:

J ¼
X

i

ðf ðxi þ vðxiÞÞ � gðxiÞÞ2 ð1Þ

In the simplest case, the deformation map v can be concep-
tualized as a 12-parameter affine transform (Woods et al., 1998b),
yi=Axi+c, allowing for translation, rotation, scaling and shearing
of the template space to map onto the individual's brain. For the
cerebellum an affine alignment has been used by Grodd et al.
(2001), only allowing for translation and scaling. This approach
relied on a set of manually defined landmarks. Another popular
approach, also utilized in this paper, uses cosine basis functions
(Ashburner and Friston, 1999) to allow for nonlinear deformations
(see Methods).

Currently, the most widely used template for voxel-based
analysis is a template from the Montreal Neurological Institute
(MNI), accepted as a standard by the International Consortium for
Brain Mapping (ICBM). This template, the ICBM152, was
generated by averaging 152 anatomical scans after correcting for
overall brain size and orientation (Evans et al., 1993). As a result, the
template provides very little anatomical detail. This, as we show
below, leads to poor alignment of cerebellar structures, limiting the
usefulness of a voxel-based approach for infra-tentorial structures.

To overcome these limitations, we aimed at developing an atlas
template of the cerebellum and brainstem that represents the
average geometry of a sample of individuals, while still providing
enough anatomical detail to ensure that individual lobules within
the cerebellum can be aligned. Such a template should therefore
improve the overlap of cerebellar structures, while retaining the
advantages of a voxel-based approach (Woods et al., 1998b;
Ashburner and Friston, 1999).

One possible solution for a template would have been to use the
cerebellum of a particular individual, for example colin27, a young
individual who was scanned 27 times at the Montreal Neurological
Institute. The cerebellar anatomy of this individual has been
carefully documented (Schmahmann et al., 2000), and a flattened
representation of this cerebellum has been created (Van Essen,
2002b). However, using a single individual's anatomy as a
template, as was done by Talairach and Tournoux (1988), has an
important drawback: every individual shows some anatomical
idiosyncrasies that are not representative of the population. When
normalizing a sample of individual brains to this space, systematic
deformations would arise, which could affect both functional and
anatomical studies of the cerebellum.

Therefore, our goal was to make a spatially unbiased template
(for a similar argument, see Woods et al., 1998a). With this we
mean that the location of any particular structure i in the new atlas
template should be equal to the average, or expected, location of
that structure across all individuals n:

EðyðnÞi Þ ¼ zi 8i ð2Þ

Spatial bias can only be defined in respect to a common
reference frame in which locations across individuals can be
compared. As a commonly accepted reference frame, we chose
here the ICBM152 template. Therefore, the new cerebellar
template was generated using a group of 20 participants that had
undergone an affine alignment to the ICBM152 whole-brain
template. To limit the template and the normalization to the
cerebellum and brainstem, we developed an algorithm that isolates
the cerebellum and brainstem from the surrounding tissue. This
ensures that the boundaries of the cerebellum are properly aligned
across individuals. After isolation, all cerebella underwent a non-
linear normalization to a single individual cerebellum, and were
averaged. This average image was then deformed using the inverse
average deformation, creating a new Spatially Unbiased Infra-
tentorial (SUIT) template. As a result, the coordinates of a structure
in the new template are equal to the average coordinates of that
structures across individuals (Eq. (2)). At the same time, by using
the isolation algorithm and a high-resolution nonlinear deforma-
tion, the new template preserves much more anatomical detail than
the whole-brain template.

We show in an independent cross-validation sample of 16
participants that the new atlas template leads to a significantly
improvement in overlap of individual cerebellar fissures and of the
deep cerebellar nuclei. We also show that the template significantly
improves the analysis of functional data, making the new template
a useful tool for functional and lesion analyses of the human
cerebellum.

Methods

Participants

The atlas is based on anatomical data from 20 neurologically
healthy subjects (11 females and 9 males). Their ages ranged from
22 to 45 years, the mean age was 27.25 years. The atlas group was
comprised of 13 participants from Exp 1 in Diedrichsen et al.
(2005) and 7 new participants. For cross-validation we used the 16
participants (6 females and 10 males, ages 18–29 years, mean age
23. 8 years) that had participated in Exp 2 of the same study. The
Johns Hopkins School of Medicine Internal Review Board
approved the study procedures.

Data acquisition

Data were acquired on a 3T Philips Intera system (Philips
Medical Systems, Best, Netherlands). T1-weighted structural
images with a field of view of 256×256×150 mm were acquired
with 1×1×1 mm resolution using a MPRAGE sequence. TR was
8.25 ms and scan duration 575 s. Six receiver coils were used for
Sensitivity-Encoded MRI (Pruessmann et al., 1999), however, for
better signal-to-noise ratio k-space was fully sampled, i.e., the
SENSE factor was set to 1.

The functional protocols for Exp 1 and 2 have been described
previously (Diedrichsen et al., 2005). The whole brain was covered
in 37 axial slices (3 mm thickness, 0.5 mm gap, TR=2 s, SENSE
factor=2), each of which was acquired as an 80×80 matrix (FOV
was 24.0×24.0 cm), with a resultant voxel size of 3×3×3.5 mm.

Isolation algorithm

To ensure that only infra-tentorial structures are aligned to the
atlas template, the normalization procedure requires that the
cerebellum and brainstem to be isolated from the surrounding
tissue. This is necessary because cortical and cerebellar gray matter
has similar brightness values, and the cost function (Eq. (1)) would
otherwise fail to align the boundary between the visual cortex and
the anterior cerebellum. The isolation procedure is based on a
stepwise Bayesian integration of three pieces of information (Fig.
1) to determine the posterior probability of each voxel i belonging



Fig. 1. Algorithm for isolation of the cerebellum and brainstem from the surrounding tissue. The algorithm starts with a prior probability defined in the MNI
space and uses Bayes rule (Eq. (3), gray circles) to integrate new information on each step. The posterior probability from the first iteration (left column) is then
used as a mask to normalize to the SUIT template, repeating the algorithm with a more accurate prior (right column).
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to the cerebellum or brainstem (indicated by the Boolean variable
ci =1). The three pieces of information are:

1. The prior probability of any voxel to be part of the cerebellum or
brainstem, p(ci). To generate this prior probability map we
manually generated classification maps (ci=1 for cerebellum or
brainstem, 0 for other) for the 20 individuals, aligned them to the
ICBM 152 template, averaged them, and finally smoothed them
with a 3-mm Gaussian kernel. This prior probability map is
projected into the native space of the subject by finding the affine
whole-brain alignment of that subject to the ICBM 152 template.

2. The tissue type ti of the voxel i. An existing probabilistic
segmentation algorithm (Ashburner and Friston, 2005) is used to
calculate the probability of a voxel to be gray matter, p(ti=1),
white matter, p(ti=2), or CSF, p(ti=3). The algorithm combines
the voxel intensities after nonuniformity corrections with the
prior probabilities in the reference frame of ICBM template. The
prior probability maps are derived from whole-brain segmenta-
tion and show very low probabilities of gray and white matter for
inferior parts of the cerebellum, most likely due to image
inhomogeneities in the original sample. This causes the inferior
regions of the cerebellum to be classified as nonbrain voxels. We
therefore modified the prior probabilities in the inferior aspects
of the cerebellum based on the 20 individuals whose cerebella
were isolated and segmented by hand.

3. The spatial proximity of gray matter voxels to either cerebral or
cerebellar white matter. White matter voxels can be easily
classified as belonging to the cerebellum or the cerebrum based
on their connectivity with other white matter voxels and the
relative spatial location of these white matter clusters. Within
each slice, the algorithms classifies clusters, i.e. connected
voxels of white matter, as belonging to the cerebrum or the
cerebellum by averaging the prior probability p(ci) over all
voxels within a cluster.

If the probability exceeds 0.5, the cluster is classified as
cerebellar white matter, if it was lower than 0.5, as cerebral white
matter. After white matter has been divided in this way, we use the
fact that neo-cortical gray matter is typically found in a range of
3.5 mm of the cerebral white matter and the cerebellar gray matter
in general in a range of 2.5 mm of the cerebellar white matter. To
approximate the probability that a voxel is in the range of at least
one cerebral white matter voxel, p(ri

cerebral), we convolve the
probability map of being a cerebral white matter voxel with a 3-d
boxcar function with a width of 7 mm. A similar procedure is used
to estimate the probability that each voxel is in the range of at least
one cerebellar white matter voxel, p(ri

cerebral).
These pieces of information are then integrated using a

Bayesian approach (Fig. 1). Each integration step uses a prior
probability, p(c), and the probability that statement x is true, given
evidence E from the raw image, p(x|E). The state x can be the fact
that a voxel is of a particular tissue type, or that the voxel is in the
range of cerebellar/cerebral white matter. The application of
Bayes rule also requires the conditional probabilities of x if the
voxel belongs to the cerebellum or brainstem, p(x|c), and if it does
not p(x|¬c). Generally, the posterior probability of c given the
evidence from the image can be calculated as:

p cjEð Þ ¼ p xjEð Þ pðxjcÞpðcÞ
pðxjcÞpðcÞ þ pðxj b -cÞpð b -cÞ

þ p b -xjEð Þ pð b -xjcÞpðcÞ
pð b -xjcÞpðcÞ þ pð b -xj b -cÞpð b -cÞ ð3Þ
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For the tissue information, x represents the event that the voxel
is either gray or white matter. Because the cerebellum consists only
of gray or white matter, the probability p(Ix|c) is zero and the
second term vanishes. All other conditional probabilities were
calculated from the manually defined cerebellar classification maps
used for atlas generation.

After tissue information, spatial range information is integrated
accordingly. The prior probability at this step is set to the posterior
probability from the previous step. Range information is integrated in
two separate steps, one for the cerebral, one for the cerebellar white
matter. All these computations are performed in a 14×9.4×7.4 cm
bounding box around the cerebellum and brainstem.

The isolation procedure relies heavily on the initial prior
probability, which is based on finding an alignment between the
individual and the reference frame in which the prior is defined. To
improve the accuracy of this prior information, the algorithm runs
through the steps described above twice (Fig. 1). During the first
iteration, a prior in the space of the ICBM152 template is used and
sampled into the space of the individual using an alignment. The
preliminary segmentation obtained by the first iteration serves as a
weight map for an affine alignment to the new infra-tentorial
template, such that only the tissue that has been identified as
belonging to the cerebellum or brainstem influences the alignment.
During the second iteration, a new prior defined in the SUIT
template space, which was obtained by averaging the classification
maps of the atlas group after affine alignment to the infra-tentorial
template. Because of the improved anatomical alignment, this prior
is much more clearly defined than the prior used in the first
iteration, therefore improving the classification results.

To obtain smooth edges on segmentation, the final probability
map was smoothed with a Gaussian kernel of 3-mm FWHM. The
resulting probability maps were visually inspected, and, if necessary,
hand corrected (see Results). For hand correction, the probability
map was thresholded at p=0.5 and manipulated using CARET (Van
Essen et al., 2001). To reapproximate a probability map, this binary
hand correction was then smoothed with a 3-mm kernel.

Normalization procedures

The normalization of an individuals to a template relies on
techniques developed by Ashburner et al. (1999), implemented in
the SPM2 package (Friston et al., 1999) and the deformations
toolbox. The deformations are parameterized as an affine
transformation (A, c) including shear, scaling, rotation and
translation, and a nonlinear deformation vector field v(x). This
vector field is approximated using a set of i× j×k cosine basis
function for deformations in each of the 3 directions d:bijk

(d)(x).

vðdÞðxÞ ¼
XI

i¼1

XJ

j¼1

XK

k¼1

tðdÞijk b
ðdÞ
ijk ðxÞ

y ¼ Aðxþ vðxÞÞ þ c
ð4Þ

The basis functions are generated by taking the Cartesian
product of a set of three one-dimensional cosine basis functions. A
Newton–Raphson algorithm is used to find the best estimate for the
coefficients of the nonlinear basis functions.

Standard normalization in SPM2 uses the ICBM152 template in
a bounding box of 18.2×21.8×18.2 cm, and basis functions up to
a cutoff frequency of 2.5 cm, yielding a total of 441 basis functions
for each dimension (7 in x-, 9 in y-, and 7 in z-direction). Because
the template lacks fine anatomical detail, the source image is
smoothed, as standard in SPM, with an 8-mm Gaussian kernel
before normalization.

For cerebellar normalization we use a 14.1×9.5×8.7 cm
template and basis function down to a cutoff frequency of 1 cm,
yielding 1120 basis function for each direction (14 in x-, 10 in y-,
and 8 in z-direction). Before alignment to the cerebellar template
the individual images are multiplied with the probability map
obtained by the segmentation algorithm, retaining only infra-
tentorial structures. Because the cutoffs for the brainstem above
and below the pons are arbitrary, these boundaries are excluded
from the normalization by multiplying the cost function (Eq. (1))
with a weighting image w(x). In this image, the values of brainstem
structures above the pons and below the medulla oblongata are set
to zero. The location of the brainstem cutoff, therefore, does not
influence the normalization procedure. Given the higher anatomi-
cal detail in the template, the source image is smoothed with a 2-
mm Gaussian kernel prior to normalization.

Generating an unbiased infra-tentorial template

The process of generating a spatially unbiased atlas template
for the new cerebellar template is depicted in Fig. 2. First, we
found a 12-parameter affine transformation (Ai) between each
individual anatomical image and the ICBM152 template by
minimizing the voxel-by-voxel cost-function (Eq. (1)), normal-
izing for brain size, rotation, offset and shear. The cerebellum and
brainstem were then isolated for each individual using the
described method, and, if necessary, manually corrected. The
original anatomical image was multiplied with the resulting
probability map, retaining only cerebellum and brainstem. These
images were then normalized to the colin27 cerebellum using a
nonlinear deformation field consisting of cosine basis functions.
For every location xi in the colin27 cerebellum, we found a
deformation vector vi

(n) that mapped the colin27 space into the
space of the nth subject: yi

(n) =xi+vi
(n). These deformations

were then averaged v̄i ¼ 1=20
P

n¼1
20 vðnÞi and a new template

space was defined as zi=xi+ v̄ i. As a result this new space was
spatially unbiased with respect to the original group of
individuals, i.e., the expected deformation vector between yi
and zi is zero. To arrive at the new template image, we resampled
each individual into the new space defined by z, using trilinear
interpolation and averaged the resulting images. These computa-
tions were conducted numerically using the deformation toolbox.
Whenever possible, deformations were combined and resampling
was performed directly from the original images.

This process was repeated 2 times, each time replacing the
target image with the new cerebellar atlas template. Although the
geometry of the template changed minimally after the first cycle,
we found that this process improved the gray/white matter contrast
of the new cerebellar template. It is important to note that we
would have arrived at an identical atlas space if we had used the
cerebellum of any of our participants as the first template, as the
definition of spatial bias (Eq. (2)) does not depend on a particular
choice of the initial template x. By using the colin27 brain,
however, we were able to calculate deformation maps between the
colin27 cerebellum and the new atlas space. Therefore, the existing
MRI atlas of the cerebellum (Schmahmann et al., 2000) and the
cerebellar flatmap (Van Essen, 2002a) can be easily utilized within
this new reference frame.

We repeated the above process on the same 20 individuals a
second time using a nonlinear warp to the ICBM152 template

http:http://www.fil.ion.ucl.ac.uk/spm/


Fig. 2. Generation of a spatially unbiased infra-tentorial atlas template.
Individual anatomical scans (T1, 1 mm MPRAGE) were aligned to the
ICBM152 template using affine alignment (A). The cerebellum and
brainstem were then isolated from the surrounding tissue. A nonlinear
deformation (v(n)) was found between the isolated cerebellum and brainstem
of one individual, colin27, and each of the current participants. The
individual images were averaged in the space defined by colin27. The
nonlinear deformation fields were averaged (v̄), and this deformation was
applied to the averaged image. The process was repeated two times, each
time replacing the colin27 cerebellum with the new template.
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(using the SPM2 default normalization) instead of the affine
alignment as the first step. Surprisingly, we found systematic
differences between the affine and nonlinear whole-brain normal-
ization (see results). For this reason, we also generated a spatially
unbiased cerebellar template for the nonlinear ICBM152 normal-
ization (SUIT*).

Measures of anatomical overlap

To quantify the degree of anatomical overlap, we used three
criteria: the voxel-by-voxel correlation between images, the spatial
consistency of two selected fissures, and the spatial overlap of the
deep cerebellar nuclei. For the first measure, we computed all
possible pair-wise correlations between individual anatomical
images after normalization with one of the four methods (Affine
or nonlinear normalization to the ICBM152 template, SUIT, or
SUIT*). The correlations were computed voxel-by-voxel within a
mask spanning the cerebellum plus a 1-cm rim around it. This
method allows for the evaluation of both the internal overlap and
the correspondence of the edges. These computations were
performed for the 20 individuals in the atlas group and for the
16 individuals in the cross-validation group.

To measure the spatial spread of anatomically equivalent
structures after alignment, we marked two fissures on each of the
16 cross-validation participants. We chose a major fissure, the
primary fissure, which separates lobules V and VI, and a minor
fissure, the intrabiventer fissure, which separates lobules VIIIa and
VIIIb. The fissures were drawn as surfaces in the 3d-volume
(Schmahmann et al., 2000), defined by vertices at a distance of ca.
3 mm from another. The surfaces were then subsampled to an inter-
vertex distance of 1 mm and deformed using the affine or nonlinear
normalization to the ICBM152, the SUIT, or SUIT* template. We
then evaluated the alignment by computing, for each possible pair of
participants, the average distance between corresponding surfaces.
For each point on the source surface we found the minimal distance
to a point on the target surface. These values were then averaged
across all points of the source surface. For each possible pair this
computation was performed in both directions, yielding similar, but
due to the finite sampling of the surface, not identical values.

To determine the overlap of the deep cerebellar nuclei after
normalization, we outlined these nuclei as regions of interest (ROI)
on the mean functional image of each individual in the cross-
validation group. Due to their high iron content, the nuclei are
visible as hypo-intensities on these T2*-weighted images (Dimi-
trova et al., 2005). Although the low resolution of the functional
images only provided a rough estimate of the location of the deep
cerebellar nuclei, the main emphasis was a comparison of the two
normalization methods in terms of the degree of spatial overlap.

Functional analysis

To measure the influence of the new atlas in the analysis of
functional data, we reanalyzed the data from a previously
published study (Diedrichsen et al., 2005). All participants from
Exp 1 (N=13) were part of the atlas group. To cross-validate the
results, we reanalyzed the functional data from Exp 2 (N=16).
Both experiments employed a blocked paradigm, in which blocks
of ten point-to-point arm movements (20 s) alternated with blocks
of 16 s rest. Exp 1 had three movement conditions (unperturbed,
visual rotation and target jump) and two eye movement control
conditions, while Exp 2 had only three movement conditions
(unperturbed, visual rotation and force field).

A first-level general-linear model (GLM) was performed on the
motion corrected functional data, excluding artifacts using a
weighted-least squares method (Diedrichsen and Shadmehr, 2005).
Percent signal change imageswere then computed for each condition.
These images were then aligned to the high-resolution anatomical
image of each participant. We applied two nonlinear deformations to
the functional data. One was derived from the nonlinear normal-
ization to the ICBM152 whole-brain template, using the default
parameters in SPM2, the other was derived from normalization
to the SUIT* template. All functional images were resampled at
2×2×2 mm and smoothed with a 6-mm Gaussian kernel. For the
cerebellar template, we masked the functional data before smoothing
with the cerebellar segmentation to prevent activation of the visual
cortex from bleeding into the anterior cerebellar lobe.

Results

Isolation of cerebellar and brainstem

Isolation of the cerebellum and brainstem from surrounding
tissue took approximately 4 min per individual on a standard PC-
laptop machine. A successful example of resulting probability
maps is shown in Fig. 3A. The outline of the cerebellum is clearly
defined and the map could be used without manual correction for
the subsequent normalization steps. In the majority of the
individuals, however, it was necessary to manually correct the
segmentation because of frequently occurring defects. In many of



Fig. 3. Isolation of cerebellum and brainstem. The resulting posterior
probability (thresholded at 0.5) is overlayed on a T1 anatomical image.
Probabilities range from 1 (red) over 0.75 (yellow) to 0.5 (blue). A success-
ful segmentation (A) and two commonly occurring errors are shown. The
transverse sinus is often marked as part of the cerebellum (B). More rarely,
the segmentation sometimes also extends into the bone marrow (C).
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the individuals, parts of the transverse sinus or the cerebellar
tentorium, the hard membrane that separates the cerebellum from
cortex, was marked as part of the cerebellum (Fig. 3B, arrow). Less
frequently, but more damaging to subsequent normalization, part of
the bone marrow was sometimes mistaken for cerebellar gray
matter (Fig. 3C, arrow). If necessary, manual correction of the
cerebellum took 5–10 min per individual.
Fig. 4. Coronal, horizontal and sagittal view of the Spatially Unbiased Infra-tent
template. Each structure is at the same coordinate as it would be on average after af
image is based on the average anatomical image of 20 individuals.
Generation of template

We generated the new spatially unbiased infra-tentorial (SUIT)
template, following the nonlinear atlas generation algorithm
described in the methods (Fig. 2). We deformed each of the
individual isolated cerebella into the new space defined by the
average geometry and averaged the anatomical images. The
resulting image has a coordinate system that is compatible with
that defined by the ICBM152 template (Fig. 4). Compared to the
whole-brain alignment (Fig. 5A), the new template preserves the
anatomy of the cerebellum with higher spatial detail. All individual
lobules are clearly visible.

It should be noted however, that while the new atlas template
is unbiased in respect to the ICBM152 template, it suffers from
the same bias as the ICBM152 template itself. Specifically,
during the affine alignment to the ICBM152 template our atlas
brains were magnified on average by 8% in the x-, 6% in the y-,
and 19% in the z-direction, a bias has been reported previously
(page 347, Ashburner et al., 1997). Therefore, the new cerebellar
template is slightly larger than the average cerebellum (Grodd et
al., 2001).

Differences between whole-brain normalization methods

Instead of the affine 12-parameter alignment to the ICBM152
whole-brain template, we also used a 1323-parameter nonlinear
normalization, using the default values in SPM2. Surprisingly,
these two methods led to slightly divergent results. For example,
cerebellum after nonlinear normalization (Fig. 5B) was more
elongated in z-direction than after affine normalization (Fig. 5A).

To test whether nonlinear alignment led to a systematic
deformation compared to affine alignment, we calculated the
deformation field between the two methods. We tested the null
orial (SUIT) template. The coordinate system is defined by the ICBM152
fine alignment to the generally accepted MNI reference frame. The template



Fig. 5. Average anatomical image of the cerebellum of 20 participants after (A) affine whole-brain alignment to the ICBM152 template, (B) nonlinear
normalization to the ICBM 152 using cosine basis functions with 2.5 cm cutoff frequency, (C) nonlinear normalization (1 cm cutoff frequency) to the unbiased
infra-tentorial template with respect to the affine registration (SUIT), (D) nonlinear normalization to the unbiased infra-tentorial template with respect to a
nonlinear normalization with cosine basis functions (SUIT*).
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hypothesis that the average deformation vector at each point was
zero, using the Hotellings T2 statistic:

T 2 ¼ nv̄TR�1 v̄ ð5Þ

in which n is the number of individuals, v̄ is the mean vector
at a voxel location, and Σ the variance–covariance matrix of
the vectors. The statistic F=(n−p)/(n−1)pT2 has approximately
F-distribution with p and n−p degrees-of-freedom, where p is
the dimensionality of the vector (in our case 3).

The most significant deformation, F(3,17)=94.2, p<0.001,
was found in the middle of the ICBM152 atlas template, at the
coordinate (0, −52, 11). Here the average shift in the z-
direction was 5. 5 mm upward compared to the affine
normalization, highly systematic across individuals. The lower
boundary of the cerebellum showed a downward shift of 1.
5 mm, leading to the elongation that is visible in the
comparison of Figs. 5A and B.

The reason for this systematic deformation is not entirely clear.
However, the same result was obtained using SPM5, as well as the
cross-validation sample. It is possible that contrast differences
between template and individual images, or an inherent feature of
the template or normalization method using cosine basis functions
caused such systematic biases.

Given these results, we generated two separate atlas templates,
a spatially unbiased infra-tentorial template in respect to the
affine normalization to the ICBM152 template (SUIT), and a
spatially unbiased infra-tentorial template in respect to the
nonlinear normalization to the ICBM152 template (SUIT*). We
strongly encourage use of former template, because it most
closely represents the average size and geometry of the
cerebellum. For analysis of fMRI data, however, nonlinear
whole-brain normalization using cosine basis functions has
become an accepted standard. Thus, for the purposes of this
article, we will use the SUIT* template to compare results
obtained with standard SPM2 normalization to normalization
using an infra-tentorial template.
Size of spatial deformation and spatial bias

After aligning individuals to the new cerebellar templates (Fig. 4),
we calculated the deformation vector between each point in the
template z and the corresponding point in the individual image y (after
normalization to the ICBM152 whole-brain template). The average
and maximum length of the vectors v(x) within the cerebellum
(excluding the brainstem) provided a measure of the difference
between the whole-brain and the cerebellar normalization method.

The average and maximum length of the deformation vectors
within each participant provided a measure of how much the
methods differed for an individual case. Across the 20 participants,
the average length was 3–4 mm and the maximum length 9 mm.
Similar results were obtained in the cross-validation group (Table
1A). Thus, for each individual participant, normalization to the
cerebellar template substantially altered results compared to the
whole-brain normalization.

The mean and maximum length of the average deformation
vector (Table 1B) indicates how much the cerebellar normalization
differed systematically from the whole-brain normalization.
Because the new templates were designed to be spatially unbiased,
the average deformation between whole-brain and cerebellar
normalization should be zero (Eq. (2)). For the 20 atlas brains,
the average length of the deformation vector was 0.3 mm with a
maximum length of 1 mm, both for the SUIT and SUIT* templates.
Although very small, the average deformation did not vanish
completely. Fig. 6, which displays the remaining average
deformation in x- and y-directions, hints at a possible reason. In
the pons, for example, the average deformation from atlas to
individual showed a rightward shift on the left side and a leftward
shift on the right. The deformation vectors at the edges of the pons



Table 1
Mean and maximal size of the nonlinear deformation vectors within the
cerebellum

Affine vs. SUIT Nonlinear vs. SUIT*

Atlas Crossval Atlas Crossval

A. Size of deformation for individuals (mm)
Mean 3.60 4.51 3.24 3.38

(0.98) (1.13) (0.77) (0.63)
Max 8.79 9.93 9.15 9.04

(1.13) (1.95) (1.99) (1.45)

B. Size of systematic deformation (mm)
Mean 0.33 1.38 0.34 1.48
Max 1.01 3.07 1.48 3.65

Deformations are defined for each cerebellum between the affine
alignment to the whole-brain ICBM152 template and the SUIT template
(columns 1–2), as well as between the standard SPM2 nonlinear
normalization to the ICBM152 template and the SUIT* template (columns
3–4). Results are provided for the individuals defining the atlas (N=20)
and for a set of cross-validation individuals (N=16). (A) The average and
maximum length of the deformation vectors (SD in parenthesis) computed
within each individual indicates how much the two normalization methods
differed for a given case. (B) The average and maximum of the average
deformation map captures the size of the systematic differences (biases)
between the two methods.

Fig. 6. Remaining spatial deformation in x- and y-directions after two
iterations of the atlas generation procedure. Vectors indicate residual average
deformation from individuals to atlas, magnified by factor 5. The longest
deformation vectors are below a size of 1 mm.
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were near zero. This deformation would shift voxels within the
pons, where there was no brightness contrast, but would leave the
outline untouched. Therefore, the mean anatomical image did not
change when this deformation was applied to it. Similar remaining
deformations were observed in the posterior end of the cerebellum,
where folia run in the horizontal direction. Remaining deforma-
tions therefore can occur in places where the cost function (Eq. (1))
does not provide any constraints for deformations in that direction.
It should be noted, however, that the remaining deformations were
very small, below 1 mm in size.

To test whether the average deformation vector was
significantly different from zero, i.e., whether there were
significant spatial biases, we used Hotellings T2 statistics (Eq.
(7)). We thresholded the maps at p<0.005 and used Gaussian
field theory (Worsley et al., 1996) to correct for multiple
comparisons over the volume of the cerebellum (excluding the
pons and brainstem). For either the SUIT or SUIT* templates,
none of the remaining deformations within the cerebellum were
significant. Thus, within the bounds of individual variability, our
method for generating a representative spatial template for the 20
cerebella was successful.

To test whether these templates were also representative for a
new set of participants, we used the set of 16 cross-validation
participants. The average deformation vector for these participants
had a length of about 1 mm, with the maximal length being
approximately 3 mm (Table 1B). For the SUIT template none of
these biases reached significance when correcting for multiple
comparisons. Indeed, only a small cluster of 17 mm3 exceeded the
uncorrected threshold of p<0.005, an event that is highly likely
given the number of voxels tested.

In contrast, the average deformation vector of the 16 cross-
validation scans to the SUIT* template showed a significant
deformation vector in a cluster in the left crus II, F(3,13)=61.2,
p=0.007, corrected. This deformation vector moved voxels from
the nonlinear whole-brain alignment 2.2 mm superior and 0.9 mm
anterior to the SUIT* template. Because this deformation was not
found for alignment to the SUIT template, we suspect that this
discrepancy was induced by the systematic spatial biases in the
nonlinear whole-brain normalization, as observed in the systematic
differences between the affine and nonlinear normalization
methods reported above.

In conclusion, we show that whereas the SUIT* template may
be somewhat biased, the SUIT template represents the average
anatomy of a sample of cerebella from young, healthy individuals
in a spatially unbiased fashion.

Anatomical measures

Figs. 5C and D show the average anatomical image of the 20
participants after normalization to the new infra-tentorial tem-
plates. These images are practically identical to the templates
themselves, which were generated using the same method. The
anatomical overlap appears dramatically improved. Even on the
average anatomical image, all lobules and major fissures are
clearly visible. To evaluate the anatomical overlap quantitatively,
we used three measures; the correlations between anatomical
images, alignment of fissures and overlap of deep cerebellar
nuclei.

Anatomical correlations
The average pair-wise correlation between images (and the

interval spanning 95% of the data) can be seen in Table 2. As
expected, the affine whole-brain normalization led to the poorest
overlap, with an average correlation of 0.84. When using the
whole-brain nonlinear normalization, these correlations increased
slightly to 0.87. However, the ranges of pair-wise correlations
were overlapping. Our methods led to a jump of the pair-wise
correlations to 0.97, with even the lowest correlation being
higher than the highest obtained with the old methods. To
ensure that these results did not solely reflect the fact that the
template images represent the average geometry of those
specific individuals, we cross-validated the results with
anatomical data from 16 independent participants (Exp 2,
Diedrichsen et al., 2005). The resulting anatomical correlations
were in the same range as the results obtained with the 20 atlas



Table 2
Improvement of anatomical overlap, comparing the normalization to the
SUIT template with the normalization to the MNI-whole brain template

Whole-brain
Affine

SUIT Whole-brain
Nonlinear

SUIT*

Anatomical correlations
Atlas sample

(N=20)
0.84 0.97 0.87 0.97
(0.72–0.91) (0.96–0.97) (0.81–0.91) (0.96–0.97)

Cross validation
(N=16)

0.79 0.96 0.86 0.96
(0.63–0.88) (0.95–0.97) (0.80–0.90) (0.95–0.97)

Average fissure distance (mm)
Cross-validation sample
Primary fissure

(Vermal)
3.96 1.34 3.56 1.41
(2.23) (0.40) (1.93) (0.37)

Primary fissure
(Hemisphere)

3.97 2.45 3.53 2.43
(1.88) (1.47) (1.78) (1.14)

Intrabiventer
fissure

4.14 1.26 2.87 1.23
(2.05) (0.29) (1.11) (0.26)

Correlations between normalized T1 images were calculated for each
possible pairing of individuals. The mean and the interval spanning 95% of
the correlations (assuming a normal distribution) were calculated on Fisher-z
transformed values, which were subsequently inversely transformed into
correlations. The average fissure distance (SD between pairs) is the average
distance of two surfaces defining the same fissure, calculated for each
possible pair of individuals.
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brains (Table 2), showing the general applicability of the new
method.

Alignment of fissures
To evaluate the anatomical overlap of cerebellar structures more

precisely, we outlined the primary fissure and intrabiventer fissure
on the individual anatomies. Both fissures were substantially better
aligned using the cerebellar template than when using the whole-
brain template (Fig. 7). As a metric of overlap we computed the
average distances between corresponding fissures for all possible
pairs of participants (Table 2). For the intrabiventer fissure and the
vermal portion of the primary fissure, the average inter-fissure
distance decreased from 3–4 mm for the two whole-brain
normalization methods to 1.3 mm for the SUIT templates. For
the hemispheric portion of the primary fissure, the drop in inter-
fissure distance was smaller. This reflects the fact that the primary
fissure is not as apparent in the hemisphere as in the vermis
(Schmahmann et al., 2000), and, as a result, is not visible clearly in
the new atlas template. Despite this limitation, the average inter-
fissure distance still dropped by 30% compared to the whole-brain
normalization.

We also compared alignment of the fissures following an affine
instead of nonlinear alignment to the new template. The average
inter-fissure distance was 2.5 mm for the vermal portion of the
primary fissure and the intrabiventer fissure, double the error
achieved with a nonlinear deformation. This underlines the
limitations of any procedure that is based on affine transformations
only (Grodd et al., 2001).

Overlap of deep cerebellar nuclei
Would the better anatomical overlap obtained with the new

method lead to a measurable improvement in the overlap of the
deep cerebellar nuclei? This is not a trivial question, as these nuclei
are only visible on a T2-weighted image, and not the T1-weighted
image that drove our normalization.
Recently, Dimitorva et al. (2005) published a probabilistic atlas
of the dentate nuclei. These authors marked the cerebellar nuclei on
individual T2-weighted images, and then used nonlinear normal-
ization to the ICBM152 template, implemented in SPM (Ashburner
and Friston, 1999). The maximal overlap, i.e., the maximal
proportion of individual maps that were marked as deep cerebellar
nuclei for the same voxel, was 70%.

We repeated this analysis for the deep cerebellar nuclei of the
16 cross-validation subjects. To be able to compare across studies,
we used the same nonlinear normalization method and compared it
to the normalization to the SUIT* template. However, similar
results were obtained when comparing the affine registration to the
ICBM152 with the normalization to the SUIT template.

The bilateral ROI (see Methods) had an average volume of
0.93 cm3. After nonlinear alignment to the ICBM152 whole-brain
template, the individual ROIs were spread out over an area of
4.93 cm3 with a maximal overlap of 87%. The higher value of the
overlap in comparison to past work (Dimitrova et al., 2005) may
have resulted from a slightly more generous criterion for including
voxels into the ROIs. Using the SUIT* template, the ROIs were
distributed over an area of 3.5 cm3 with a maximal overlap of
100%. The area in which more than 60% of the ROIs overlapped
increased from 0.18 cm3 for the whole-brain ICBM template to
0.42 cm3 using the SUIT* template. Thus, the new method
considerable improved the alignment of fissures in the cerebellar
cortex, and also increased the overlap of the deep cerebellar
nuclei.

Functional analysis

Finally, we asked whether the improved anatomical overlap
would also improve the alignment of the functional data. Again,
this is not a trivial question, as it is possible that the inter-individual
functional variability is so large that the clear improvements seen
in the anatomical alignment would be inconsequential for the
analysis of functional data. Possible improvements, however, may
be caused by two factors. First, better normalization may improve
coverage of cerebellar structures, i.e., an increase in the area for
which sufficient data is observed across individuals. Second, better
anatomical inter-subject alignment should cause better super-
position of the functional areas that are covered, thereby increasing
the significance of true activations.

Coverage
Group statistics are typically not calculated on voxels for which

data from a certain percentage of participants are missing. If inter-
subject alignment is poor, more voxels on the fringe of the
cerebellum will “drop out” as not all the edges are precisely
aligned to each other. In the first-level GLM we included only
voxels with a mean brightness in the EPI images that exceeded a
threshold defined by 1/8 of the mean brightness of within-brain
voxels. For all other voxels no statistics was calculated and the
corresponding voxel in the individual mask image was set to 0. We
normalized these mask images into a space defined by the
ICBM152 or by SUIT* template, applying the nonlinear deforma-
tion that was found between the individual anatomical images and
the templates. Because resampling involves trilinear interpolation
of voxels in the original image, the normalized mask had
continuous values ranging from 0 and 1, indicating the proportion
of data observed for that voxel. The mean of these images
determines the proportion of data coverage across the group. We



Fig. 7. Location of primary fissure (1st column) and intrabiventer fissure (2nd column) after affine whole-brain normalization (1st row) or after normalization to
the cerebellar atlas (2nd row). Fissures were drawn as surfaces using individual anatomies and then normalized. Shown is a slice through the group of normalized
fissures, parasagittal (x=+3) for the primary fissure, horizontal slice (z=−55) for the intrabiventer fissure.
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applied a threshold of 80% for data analysis. Using this criterion,
the ICBM152 normalization led to coverage of 68% of the
anatomically defined cerebellum (excluding brainstem) in Exp 1,
and 74% in Exp 2. Part of this is caused by signal dropout and
geometrical distortions that occur in the cerebellum due to
susceptibility artifacts. Although the new normalization method
can not remove these basic limitations in data acquisition,
application of the new method reduced the noncovered area by
4.8% for Exp 1 and 5.4% for Exp 2.

Improvements in activation statistics
More important than these relatively modest improvements in

coverage was the better superposition of the functional areas. There
are at least two movement-related areas in the human cerebellum,
one in the anterior cerebellum in lobulus V (extending into VI),
and one in the inferior cerebellum in lobules VIIb–VIII (Grodd et
al., 2001). If the new normalization method improves functional
overlap, the maps of the group statistic for movement against rest
contrasts should reflect this both in both the height of the peak
values, and in the size of the peaks.

To measure the influence on peak t values, we defined the 5%
most activated voxels by averaging the t values based on the
ICBM152 and the SUIT* normalized functional data. This
ensured that the selection of areas of peak activation was not
biased toward one of the templates. Within these areas, we
measured the change in t value for the movement vs. rest
contrasts when moving from the whole-brain normalization to the
SUIT* normalization. The average t values increased by 5–13%
depending on contrast and experiment (Fig. 8, Table 3).
Improvements were more apparent in Exp 1, but were also
clearly noticeable for Exp 2.

We also measured the total cerebellar volume that showed task-
related BOLD-signal at an uncorrected statistical threshold of
p<0.001, a typical value for imaging studies. This volume
increased between 5 and 15%, depending on Experiment and
contrast (Table 3). The increase in activated volume was calculated
only within the area of the cerebellum that was covered by both
normalization methods. If one also counts the activated volume in
the newly covered areas, then the new method led to 8.3% rather
than 6.6% increase in activated volume for Exp 2. This increase is
especially apparent in the activated regions on the inferior border
of the cerebellum.

Discussion

We present here a cerebellar atlas template that is based on the
average geometry of a group of individuals, and at the same time
preserves the detail of cerebellar anatomy. The atlas template was
created such that it is spatially unbiased, i.e., the location of
structures in the template represents the expected location of the
corresponding structures in the individual anatomies after affine
normalization to the ICBM152 template. Thus, average coordi-
nates within the new SUIT template can be treated as being
equivalent to average MNI coordinates, albeit with less spatial
variance across individuals. Although 20 participants constitute
an admittedly small sample, we show that there are no significant
deformation when cross-validating the results with an indepen-
dent sample of 16 participants.



Table 3
Percent improvement in the functional group analysis, comparing the
normalization to the SUIT* template with the nonlinear normalization to the
ICBM152 whole-brain template

Exp 1 (N=12) Exp 2 (N=16)

T value for highest 5% 11.20% (10.2–12.7) 6.10% (4.8–6.8)
Volume with p<0.001 12.20% (10.5–14.3) 6.60% (4.9–8.0)

For cerebellar voxels only, we calculated the change in t value for the 5%
most activated voxels and the change in the suprathreshold volume
(p<0.001, uncorrected). The values were calculated for 3 basic contrasts
for Experiment 1 and Experiment 2 from Diedrichsen et al. (2005). Mean
values and the range across contrasts are shown.

Fig. 8. Functional contrast of arm movements (visual rotation condition) vs.
rest from Exp 1 (Diedrichsen et al., 2005), thresholded at t(12)>5,
p<0.0002, uncorrected. After normalization to the SUIT* template (B),
peak t values and area of activation increased by 10–14% relative to the
standard SPM2 nonlinear alignment to the whole-brain template (A).
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The advantage of a voxel-based approach over previous
landmark-based approaches (Grodd et al., 2001) is that the new
approach is independent of a possibly subjective placing of
landmarks and that it allows for nonlinear deformations. Compared
to voxel-based whole-brain templates, the new template preserves
anatomical information to a higher degree, allowing for improved
accuracy of inter-subject alignment for fMRI and lesion studies.
We found considerable improvements in the overlap of individual
fissures of the cerebellum and of the deep cerebellar nuclei. We
also found that these changes lead to more a powerful functional
analysis, with improvements in functional activation due to better
overlap of about 10–14% in Exp 1, and about 6% in Exp 2. One
possible explanation for this difference might be that the
participants in Exp 1 were part of the sample used to define the
atlas, whereas those in Exp 2 were not. However, we believe this
hypothesis unlikely. We showed that the difference in average
geometry between the two groups was quite small. Thus, if we had
defined the atlas template on the 16 participants in Exp 2, we
would have obtained a similar template and consequently a similar
functional analysis. Rather, we suspect that the difference between
experiments may reflect differences in the degree to which
anatomical variability in cerebellar shape contributed to misalign-
ment of the functional data using standard methods.

If a high-resolution template improves the alignment of infra-
tentorial structures, why has this approach not been utilized for the
cerebral cortex? The answer lies, we believe, in the large inter-
individual variability of cortical folding patterns, which increases
as one moves away from primary sensory and motor regions (Van
Essen, 2005). Thus, an average template that approximates the
outline of the cerebral cortex is likely the best that can be achieved
using 3d-normalization. Considerable improvements in inter-
individual alignment for the cortex can be obtained by flattening
the cortical sheet and using 2d-normalization techniques (Fischl et
al., 1999; Van Essen, 2005). The lobular structure of the
cerebellum, in contrast, is quite stable across individuals, allowing
for accurate alignment of individual lobules in three dimensions.

Using the new technique requires two steps. In the first step the
cerebellum and brainstem are isolated from the surrounding tissue.
We developed a Bayesian algorithm to perform this task. However,
the algorithm is not completely fail-proof and small hand
corrections are necessary in many cases. Given that these can be
performed in a relatively short time (5–10 min per individual), we
feel that the additional effort is quite justified. The second step is
fully automated and leads to nonlinear normalization of the isolated
cerebellum and brainstem to the new atlas template. The resulting
deformation can then be applied to functional or lesion data for that
individual.

The new atlas has some important limitations. First, it should be
noted that the template was defined on young, neurological healthy
individuals ranging in age from 22 to 45 years. For research
concerning the cerebellar anatomy in children, adolescents or
senior individuals, a specialized atlas template should be created.
The nonlinear atlas generation algorithm proposed here offers a
simple and efficient way to perform this task.

The second limitation is inherent in normalization using cosine
basis functions. While computationally very efficient, we found
that the resulting deformations sometimes showed rippling
artifacts, as are visible in Fig. 6. Because these deformations are
below 1 mm, they would not change functional analysis or lesion
overlap analysis to any appreciable degree. However, if deforma-
tion maps are used to compute local expansions and compressions
to evaluate possible neuroanatomical changes in pathological
populations, these artifacts may play a role. For the study of small-
scale anatomical differences, we are currently working to employ
alternative algorithms that do not use basis functions (Joshi and
Miller, 2000). These changes should avoid the rippling artifact
observed here and will result, we hope, in deformation maps that
can be used for fine-grained morphometric analysis. However, for
the analysis of standard resolution functional imaging and lesion
data, we believe that the cosine basis function approach is
sufficient, and may be preferable to other algorithms given its
computational efficiency and broad popularity.

The atlas templates and the code for segmentation and
normalization, implemented in MATLAB® and SPM2, can
be downloaded freely from http://www.bangor.ac.uk/~pss412/
imaging/suit.htm. Along with the atlas we provide a flat
representation of the colin27 cerebellum (Van Essen, 2002a) in

http://www.bangor.ac.uk/~pss412/imaging/suit.htm
http://www.bangor.ac.uk/~pss412/imaging/suit.htm
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the reference frame of the new template, such that functional data
can be visualized in 2D. We also provide MATLAB code that
translates coordinates between the new atlas space and the space
defined by the colin27 cerebellum. Although the colin27 atlas
cerebellum was aligned to the MNI space, it would be inaccurate
to use MNI coordinates to reference the corresponding location in
the annotated atlas of the colin27 brain (Schmahmann et al.,
2000). As any other individual, the colin27 cerebellum shows
deformations up to a size of 9 mm relative to the expected location
of structures in MNI space. By using the provided nonlinear
translation functions, locations of structures in the colin27
cerebellum (Schmahmann et al., 2000) can now be more accu-
rately related to their average MNI coordinates across the
population.

In summary, we present here a time-efficient, voxel-based
method to improve the alignment of infra-tentorial anatomical and
functional areas. While our evaluation has focused on the
cerebellum, similar improvements are likely to be present for
brainstem structures as well. We therefore believe that the method
presented here constitutes a valuable addition to the toolkit of the
neuroscientist with an interest in the anatomy and function of the
cerebellum and brainstem.
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