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Abstract

The aim of this thesis is to understand the computational process that underlie adaptive

motor control capabilities of humans based on the study of reaching movements of the arm

in the presence of novel force �elds� An internal model of arm dynamics has been proposed

as the computational unit in the CNS involved in learning control of novel dynamics� Based

on computational principles� the internal model has been further divided into a forward and

an inverse model� Co�existence of the two models has been proposed to facilitate learning of

novel dynamics� However� there is as yet little evidence to support co�existence of the inverse

and forward model� and little is known about their relative roles in adaptive motor control� In

this thesis we develop a computational framework to simulate arm movements and analyze the

properties of control methods based on these two models in the presence of novel force �elds�

We show that a control based exclusively on one of the two models is insu�cient to explain

performance characteristics of human subjects� However� a combination of the two models that

relies on feedback control through a forward model and feedforward control through an inverse

model is able to closely match the performance of human subjects� It is able to explain peculiar

kinematic patterns in the movement trajectory during initial exposure to a novel �eld based on

adapatation of the forward model� It is also able to mimic changes in key movement parameters

during gradual learning of the force �eld� based on fast exponentially�decaying adaptation of

both the inverse model and the forward model� This provides evidence that learning control

in the CNS is accomplished through co�existence and co�adaptation of inverse and forward

models� This adaptive control method based on both an inverse and a forward model provides

a framework for further study of computational processes and learning mechanisms in the brain�
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Introduction

Goal

The speci�c aim of this thesis work was to devise an adaptive control methodology which could

explain results obtained from experiments where human subjects made rapid reaching move�

ments of the arm in the presence of a novel dynamic perturbation called the curl force �eld� The

broader implication of this work would be to provide a control framework that could explain the

extraordinary ability of humans to perform motor tasks in unfamiliar interactive environments

and acquire new motor skills through practice� The goal was to evaluate the control issues

involved in the control of a nonlinear and complicated system like the human arm� develop a

model of the human arm that incorporated these control issues� test the model with appro�

priate control methodologies based on the current theories of human motor control� and then

determine the adaptive control method that could reasonably explain the force �eld adaptation

study data� Then by studying this control method a greater insight could be gained about the

computational problems faced by the brain to control the human arm and to understand the

process of motor adaptation and learning�

Issues in Human Motor Control

Humans use their arms for simple tasks like moving objects from one point to another and for

complicated tasks like playing tennis and sketching� Di�erent tasks ideally require a form of

control that is suited for that particular task� The main challange in the study of human motor

system is that of understanding how a single control system can perform greatly di�erent tasks�

There are two elements of control that are involved in any task � planning and execution� For

movements of the arm� planning refers to the computation of a desired trajectory for the arm�

and execution refers to the computation of motor commands that will move the arm along the

planned trajectory� Research in human motor control has focussed seperately on the issues of

planning and execution� The main interest in this study is in the execution aspect of motor

control given a planned trajectory� The problem of motor execution is di�cult and extremely
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challenging because of certain issues involved in the control of the arm�

The �rst control problem faced by the brain is that of controlling a nonlinear plant composed

of a multi�joint arm and attached muscles� The output of the controller �or the brain� is a neural

activation signal to the spinal cord that is then directed to muscles that move the arm� The

plant receives the neural signal as input and generates force or arm movement as output� The

input�output mapping of the plant is nonlinear beacuse the force or arm movement generated

by the system is a nonlinear state�dependent function of the input neural activation� This

nonlinearity is a result of the nonlinear force�length and force�velocity relations for the muscle�

and the nonlinear dynamics of a multi�joint system�

The second control problem is that of time delays in the feedback pathways� The brain

receives sensory in�ow of information about the output of the arm from muscle spindles and

golgi tendons and through visual feedback� In both cases� there is a time delay of nearly ��

msec� and is su�cient to cause instabilty in linear feedback control for rapid movements of the

arm�

The third and most important control problem is that of changing dynamics of the arm

because of di�erent external environments� Di�erent tasks alter the dynamics of the arm to a

varying extent� Moving hand�held objects of di�erent mass cause a shift in the center of mass

and inertia of the lower arm depending on the mass of the object� This changes the relationship

between input and output of the plant and a di�erent neural activation is required to move an

object of di�erent mass along the same trajectory�

A fourth problem is that of noise in the system arising from inaccurate or noisy sensors�

disturbances in the external environment� and noise in the output of the controller�

Current theories in Human Motor Control

The brain is able to overcome the control problems associated with a nonlinear time�delayed

system� changing plant dynamics and noise in the system� This is evidenced in the ability

of humans to perfectly control their arm movements and have the amazing ability to handle

numerous objects and interact with new dynamic environments with their hand with ease� Con�

ventional robots are sti� and clumsy in their operation compared to humans and can function

only in familiar dynamic environments� It is not the technological limitation but the lack of

suitable control methods that has prevented the robot from mimicking human motor behavior�

Thus the human motor control system represents a highly developed controller� understanding

of which will not only give a greater insight into the functioning of the brain but also new con�

trol methods for possible application in robotics� The main challenge in human motor control

is then to understand this controller and the computational processes therein�





A great amount of research work in the last twenty years has focussed on trying to gain an

insight into the brain control of movement� and has been divided into two di�erent approaches

� neurophysiological� based on the study of actual electrical signals and activity in di�erent

regions of the brain� and psychophysical� based on the study of movement behavior and hand

trajectories� Behavioral neurophysiology has so far failed to reveal the nature of computations

in the brain although it has provided knowledge of the signals that are represented in the brain

and their locations� �Georgopoulos et al�� ����� showed that movement direction was encoded

in M� neurons and the �ring of several neurons was sinusoidally modulated by movement

direction� A population vector derived from the �ring of individual cells could give a cue to

the direction of movement even before the movement was initiated� Later studies by �Scott

and Kalaska� ���
� Sergio and Kalaska� ���
� and �Fu et al�� ���
� showed that movement

parameters like movement position� velocity and acceleration were encoded by cells in both the

motor and premotor areas as well as in the cerebellar cortex� The study of neuronal circuitry

in the cerebellum has led to a hypothesis about a mechanism for learning and adaptation by

�Kawato and Gomi� ����� based on error related signals� but the exact biological nature of

these signals is currently not known�

Psychophysical studies have on the other hand been far more successful in revealing prop�

erties of the controller used by the brain� Point�to�point reaching movements of the arm have

been most commonly studied by reseachers� In one of the earliest experiments in human motor

control done by �Feldman� ������ it was shown how the elbow torque varied exponentially with

elbow displacement from the desired joint angle� Since the subjects were instructed not to

consciously interfere with the task� this was believed to represent a local circuit� possibly the

spinal re�ex loop� that functioned as a spring whose rest length could be adjusted� A theory

for motor control that evolved out of this was the ��equilibrium point hypothesis that required

the controller in the brain to program only the mean resting lengths of the muscles� Later

it was shown by �Bizzi et al�� ����� that muscles too had similar equilibrium properties that

led to the ��equilibrium point theory� The equilibrium point hypothesis presented a control

method that was simple� stable and independent of the dynamics of the plant� The equilibrium

point hypothesis came under criticism by �Gomi and Kawato� ����� because it required sti��

ness levels for straight movements that were higher than those observed physiologically� It was

also found by �Shadmehr and Mussa�Ivaldi� ����� that adaptation took place when subjects

performed in a curl viscous force �eld� The subjects initially showed a large deviation from the

desired straight path trajectory� but gradually with practice adapted to the �eld and converged

to the straight path� When the force �eld was turned o� after the subjects had adapted� the

hand paths showed deviations that were a mirror image of their �rst movements in the �eld

called �aftere�ects�� This led to the hypothesis of an internal model in the brain adapting to

the force �eld� This could not be explained by the equilibrium point hypothesis because it

required adapting to the dynamics of the environment� This reinforced a developing belief that
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instead of equilibrium point control� an inverse dynamics model for the plant could be used

for control of the arm� The inverse dynamics model translates desired states of the arm into

motor commands and is an inverse mapping of the input�output relationship for the plant� The

inverse model can be directly used as the controller in a feedforward path to control the plant�

The inverse model is capable of learning new dynamics of the plant as in the case of force �elds

by modifying its internal representation to model the new dynamics based on errors in desired

and actual performance�

Recent work by �Miall and Wolpert� ����� has suggested the existence of another type of

internal model� called the forward model� that allows the motor control system to predict the

consequences of a motor action� The forward model mimics the plant directly and estimates

the change in state of the plant given a copy of the motor commands being sent to the plant�

Evidence for existence of a forward model was presented in a paper by �Wolpert et al�� �����

The most important use of having a forward model in control of arm movements is to allow

feedback control in the presence of time delays� Smith predictor is one of the methods that

can be used and has been proposed by �Miall et al�� ���	�� It will be discussed later why a

simple smith predictor does not work in case of a nonlinear system like the human arm and the

forward model has to be computationally more complex� Another use of the forward model is in

distal supervised learning of the inverse model as proposed by �Jordan and Rumelhart� ������

In this scheme� the forward model is initially learned from the error in predicted state from the

forward model and actual state from the output of the plant� and is subsequently used to train

the inverse model� This method also allows the inverse model to be trained during an o�ine

period� This could be particularly relevant in the light of a recent result found by �Shadmehr

and Holcomb� ���
� that suggests that changes occur in the internal representation of the plant

during a period of rest following training in the force �eld� This is seen physiologically as

a change in the regions of the brain being activated� and behaviorally as an improvement in

performance� when subjects return to perform in the force �eld after a period of rest�

Tools from the Field of Robotics

Major advances have taken place in the �eld of robotics in the past several years� However�

the control of time�delayed nonlinear systems has received only limited attention� and direct

tools that can be readily considered for control of the human motor system are not available�

Nonetheless� the concepts of observers� control of nonlinear systems� adaptative control and

neural networks are important for understanding the computations that the brain must per�

form in order to control movements of the arm� These concepts have also been central to the

development of current theories on human motor control� An observer is a subsystem that

performs the observation of state variables of a system based on the information received from






measurement of the input and the output of the system� The observer has been proposed for

the control of nonlinear systems ��Lohmiller and Slotine� ������ and for overcoming time de�

lays in feedback loops ��Miall and Wolpert� ������� Adaptive control ��Slotine and Li� ���
��

refers to a control method where parameters of the controller can be modi�ed in the presence

of unmodeled changes in the plant and hence is an important tool for motor adaptation and

learning� Neural networks have been shown to have the ability to approximate large classes of

nonlinear maps su�ciently accurately� hence they can be used to construct controllers for non�

linear systems ��Narendra� ������� Neural networks also have the ability to learn new nonlinear

maps and hence can be used for adaptive control� The origin of neural networks is related to the

connectivity and computational processes in the brain� which makes it a particularly intersting

tool in human motor study� Recent work by �Massaquoi and Slotine� ����� on teleoperation

has suggested a method based on wave variables for control of time delayed nonlinear systems�

that could also provide a way to control the human arm�

Motivation for the Thesis

From previous work in human motor control� a single framework to study both human motor

control and adaptation for reaching movements of the arm is not available� An adaptive con�

troller for the human arm that incorporates nonlinear muscle properties and time delays in the

feedback loop has not been tested for performance in unfamiliar dynamic environments� The

concepts of inverse and forward models have been proposed as methods of dealing with the

problems of control and learning related to arm movements� but have not been tested for actual

performance and learning of novel dynamics� And little is known about the computational

processes in the brain during control of arm movements� and in particular� about formation of

motor memories and changes in the representation of these motor memories with time� The

motivation behind this thesis was to develop a framework that could provide a means to study

the control and learning of arm movements in the presence of novel dynamic environments� and

then try to explain experimentally observed shifts in motor memories on the basis of changes

in the controller�

In Chapter �� an overview of control issues related to the human arm is provided and mainly

involves a description of the time�delayed nonlinear plant represented by the arm� Methods to

model the plant that retain its properties� are also discussed� Attempt is made to model the

plant as accurately as possible� and simpli�cations are made only where they do not a�ect the

properties of the plant�

In Chapter �� a detailed account of various control methods based on concepts of equilibrium

point control� inverse models and forward models is provided along with simulations with these

controllers for reaching movements in the curl force �eld� The idea is to test the di�erent
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controllers in their ability to resolve the control problems faced by the system�

In Chapter 	� the results of actual experiments when human subjects make reaching move�

ments of the arm in the presence of force �eld perturbations are provided�

In Chapter �� two control methods� one based on purely a feedforward inverse model control�

and the other on forward�inverse model feedback control� are compared and tested in their

ability to explain human behavior in the presence of dramatic changes in expected dynamics�

In Chapter � an attempt is made to explain adaptation and learning data from Chapter 	

within the framework of forward�inverse model feedback control method� An attempt is also

made to distinguish between the two types of internal models and in their rates of adaptation�
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Chapter �

Modeling of the Human Motor

Apparatus

The human motor apparatus is the entire system involved in generating limb movements� In

this chapter� the di�erent components of the human motor apparatus and their features are

described� Methods for developing reasonable computational models of these components are

discussed� The human motor system under consideration here consists of the human arm�

the muscles that control movement of the arm� spinal cord and re�ex system� and supraspinal

nervous system including the visual system� The �rst six sections in this chapter present a

description of the human arm and its kinematic and dynamic properties� the muscles and their

nonlinear behavior� the dynamics of the entire human arm with the musculature� a method

of modeling the human arm assuming a simpli�ed model of three pairs of muscles� sensory

modalities including vision and proprioception� neural conduction pathways� and the spinal

re�ex mechanism� All relevant control issues concerned with each of these elements of human

motor apparatus are explored and attempt is made to incorporate them in the simulation model�

The last section of the chapter summarizes the model and parameter values used for simulations

in this study� The brain control of movement and modeling of the brain function is the focus

of this thesis and is dealt with separately in the remaining chapters�

��� The Human Arm � Kinematics and Passive Dynamics

The human arm is a simple mechanical system consisting of muscles and bones� For planar

point to point reaching movements� the kinematics and passive dynamics of the human arm�

governed by bone connectivity and the mass distributions� can be represented by a two�joint

two�link mechanical system illustrated in Fig ����
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Figure ���	 The human arm modeled as a two�joint two�link system

����� Kinematics of the Human Arm

The kinematics of the human arm refer to the con�gurational relationships between joint po�

sitions and hand positions and the transformation between these two coordinate systems� The

following are the equations that govern the forward kinematics of the arm and represent Carte�

sian or hand state in terms of joint state	

xh 
 l� cos �� � l� cos ��

yh 
 l� sin �� � l� sin ��

�xh 
 �l� sin �� ��� � l� sin �� ���

�yh 
 l� cos �� ��� � l� cos �� ���

The last two equations can be represented in vector notation by	
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�
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dx
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� �l� sin �� �l� sin ��

l� cos �� l� cos ��

�
�

where�

xh� yh are the cartesian x�y hand position
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�xh� �yh are the x�y hand velocity

��� �� are the absolute shoulder and elbow joint angles

���� ��� are the absolute shoulder and elbow joint velocities

l�� l� are the upper and lower arm lengths respectively

J is the Jacobian of joint to cartesian coordinate transform

The inverse kinematic relationship is given by the following equations�
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 cos��
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 �� � ���
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where�

��� is the relative angle between the two links� and�

�h is the angle made by the hand with respect to the x�axis and is equal to

arctanxh� yh�

The equation relating hand acceleration �x to joint acceleration �� is obtained by di�erentiating

Eq� ���� which gives�

�x 
 J�� �� � �J�� ��� �� ����

where�

�J 

dJ

dt



dJ

d�

d�

dt

����� Passive Dynamics of the Human Arm

The dynamics of the arm refers to the interaction between forces in the system and change of

state of the system� A torque acting on the joints causes a change in the joint position and

velocity� For the two�link two�joint system in Fig� ���� the dynamics can be represented in

terms of the link lengths and mass and inertia of the links with these equations	
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These two equations can be jointly expressed in matrix form as�
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d�� 
 m�l�lc� cos�� � ���

d�� 
 d��

h 
 �m�l�lc� sin�� � ����

D 


�
� d�� d��

d�� d��

�
�

C 


�
� � h ���

�h ��� �

�
�

����� are the absolute shoulder and elbow torque� D is the Inertia matrix� and C is the Coriolis

matrix� It is also posssible to represent the torque in terms of hand velocities and accelerations

as�

T 
 DJ����x� �JJ�� �x� � CJ�� �x ����

The forward dynamics of the arm is the functional relationship that gives change in state

of the hand in terms of the input joint torques� This is given by�

�x 
 JD���T� CJ�� �x� � �JJ�� �x

and can be expressed in a simpler form by a nonlinear function fD�

�x 
 fDT�x� �x�

The relationship that gives the torque required for moving the arm from one point to another

along a certain trajectory is called the inverse dynamics of the arm and is represented by Eq�

��



Figure ���	 A� the hand paths for movements in eight di�erent directions of movement� The

movements are numbered � to �� The start and end points for the movements are shown as

boxes with coordinates in terms of hand position xh� yh�� B� the bell�shaped minimum jerk

velocity pro�le in each direction�

��� or simply as f��
D

� If the hand position� velocity� and acceleration are given for any instant

of time then the torque can be computed using Eq� ����

Note� The representation of kinematics and dynamics of the human arm is in absolute joint

coordinate system throughout this thesis� This implies that the joint angles and joint torques

are expressed in absolute joint coordinates

Consider eight hand paths four pairs of outward and inward movements� shown in Fig�

���A� that result in the hand moving a distance of �� cm from the starting position ����� �

������ for outward movements� with a bell�shaped minimum�jerk speed pro�le Fig� ���B��

in eight equally spaced directions� The parameters for the arm assumed for simulating these

movements are provided in Sec�����

Note� A minimum jerk movement is considered because it has been experimentally found to best

represent the trajectory for point�to�point reaching movements �Flash and Hogan� ���	
� The

minimum jerk trajectory is a straight line movement from the start point to the target with a

symmetric bell�shaped velocity pro�le that minimizes the mean squared jerk for the movement�

Jerk is de�ned as the derivative of hand acceleration�

Note� All simulations in the current study are based on the eight hand movements shown in

Fig� ����A
 with the starting hand position at ���� � ����	� for outward movements� The eight

movements are numbered � to � based on the direction of movement� starting with the movement

in ����o leftward direction and proceding with other directions in an anticlockwise sequence�

These movements and their numbering convention will be used consistently in the rest of the

thesis�

The joint velocity in terms of ���� ���� for the eight directions is shown in Fig� ���� It can

be seen that the movements in direction � and � require rotation of mainly the elbow whereas

��
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Figure ���	 The joint velocities for movements in eight di�erent directions of movement as

illustrated in Fig� ���� The gray line is the shoulder velocity and the black line is the elbow

velocity�
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Figure ���	 The joint torque for movements in eight di�erent directions of movement� The gray

line is the shoulder torque and the black line is the elbow torque� The dotted lines show the

corresponding coriolis force components�

��



0.1 0.2 0.3 0.4

−1

−0.5

0

0.5

1

0.1 0.2 0.3 0.4
−0.5

0

0.5

time (s)

Jo
in

t T
or

qu
e 

(N
m

)

0.1 0.2 0.3 0.4
−1

−0.5

0

0.5

1

0.1 0.2 0.3 0.4

−1

0

1

0.1 0.2 0.3 0.4

−1

−0.5

0

0.5

1

0.1 0.2 0.3 0.4
−0.5

0

0.5

0.1 0.2 0.3 0.4
−1

−0.5

0

0.5

1

0.1 0.2 0.3 0.4

−1

0

1

Figure ���	 The joint torque for movements in eight di�erent directions of movement computed

using the simpli�ed linear equation relating torque and hand acceleration dotted line� and

compared to the exact torque computed previously solid� � The gray line is the shoulder

torque and the black line is the elbow torque�

the movements in direction � and � require rotation of mainly the shoulder� The joint torques

for these movements are given in Fig� ���� It is interesting to note that the torque pro�le

for both the elbow and shoulder joint is biphasic and that the magnitude modulates almost

sinusoidally with movement direction� In Eqn� ���� the contribution from the coriolis term is

almost negligible compared to the inertia term� The dotted line in Fig� ��� shows the coriolis

term component of torque which is small compared to the total torque solid line�� Since D

and J are locally constant and can be assumed to be independent of � for small movements�

and the coriolis term is small� the torque required for a desired hand acceleration can be simply

expressed as a linear function of hand acceleration� and approximately represented as�

T 
 DJ���x

The torque using this equation dashed line� is compared in Fig� ��� with the torque solid line�

required for unloaded arm as computed earlier and shows a very close correspondence� This

seems to indicate that the problem of arm control is simple in terms of torque generation for

unloaded arm movements�

However the equations derived above apply only for the situation where the arm is making

reaching movements in an unloaded situation� Typically� humans use their arm to pick and

��



place objects held in their hand or to move these objects along a desired trajectory� Holding

objects of di�erent shape� size and mass dramatically alter the dynamics of the arm and the

simple task of making reaching movements becomes more complex� How do these objects alter

the dynamics of the arm� The in�uence of external environment can be represented in most

cases by an interaction force Fx acting on the hand as shown in Fig ���� The additional joint

torque required to counteract this force is	

T 
 �JT ��Fx ����

Any object held in the hand generates this interaction force when the hand moves� For a

point mass� m � the force is Fx 
 m�x� For other objects the relation can be more complex and

may involve signi�cant velocity terms which were small in the case of unloaded arm control�

One thing to note however is the additive nature of this interaction force� The dynamics of the

external environment can be decoupled from that of the arm itself when represented in terms of

torque� This might make the task of learning and adaptation of di�erent tasks easier� Consider

interaction forces of the following structure	

Fxx� �x� t� 
 �x��x � �x� �x� �x��x�x� Fxt� ����

where� �� �� � depend on the external environment dynamics� Almost all external dynamic

interactions can be represented by this equation� Then� the net torque on the arm is�

T 
 DJ����x� �JJ�� �x� � CJ�� �x� JT ��x��x� � �x� �x� �x��x�x� Fxt�� ����

The �rst two terms on the right hand side of the equation represent the dynamics of the hand

alone and the third term the dynamics of the external environment� Hence the torques required

for interacting with the external environment are simply added to existing torques for moving

just the arm�

����� Two Cases of Novel Dynamic Environments

The Robotic Manipulandum

A novel dynamic environment is provided when reaching movements of the arm are made while

grasping a two degree of freedom robotic manipulandum as shown in Fig� ���� Coupling of the

robotic system with the arm alters the dynamics of the system being controlled� The dynamics

of the robotic arm is very similar to the human arm itself and can be expressed as�

��



Figure ���	 The robot manipulandum held in the hand� The �gure shows the con�guration of

the robot used for actual experiments and simulations�
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Figure ���	 The additional joint torque dotted line� required for movements due to the dy�

namics of the robot� compared to torque required for unloaded arm solid line�� the gray line is

shoulder torque and the black line is elbow torque
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Tr � Dr��� ��� C��� ��� ��

Dr �

�
� Kr� Kr� cos��� � ���

Kr� cos��� � ��� Kr�

�
�

Cr �

�
� � �Kr� sin��� � ��� ���

Kr� sin��� � ��� ��� �

�
�

Kr are constants that depend on link lengths and mass distributions of the robotic arm� The

interaction force acting on the hand as a result of this torque is Fx � ��J
T
r �
��Tr� If we express

the kinematics of the robot represented by � in terms of kinematics of the human arm � then

the overall dynamics of the system can be expressed as	

T � A��� �� �B��� ��� �� �
���

where	

A � D � JT �JTr �
��DrJ

��
r J

B � C � JT �JTr �
��CrJ

��
r J � JT �JTr �

��DrJ
��
r � �J � �JrJ

��
r J�

Assuming a Kr � ���
��	 �����	 ��
����	 link lengths r� � ����m� r� � ����m and the con�g�

uration of the robot arm as shown in Fig� 
��	 the torque required to be produced by the arm

with added dynamics of the robot is shown in Fig� 
��� The values of robot parameters used

here are derived from the experimental robotic setup used for measuring arm movements in

our laboratory and will be consistently used in all simulations with robot dynamics� Data from

experiments using this setup will be presented in a later chapter� Therefore	 it is important to

account for dynamics of the robot in modeling of the system so that accurate comparisons can

be made between experimental and simulated movements� As can be seen from the torque pro�

�le in Fig� 
��	 a signi�cant change in torque is required to move the robot	 and the dynamics

of the robot are comparable to the human arm itself�

The Curl Force Field

The curl force �eld is another type of novel dynamic environment shown in Fig� 
��� This

force �eld is considered here because human motor behavior in this �eld is used as the main

source of data for understanding human motor control and adaptation in this thesis� A wealth

of data on human learning in this �eld has been collected in our laboratory and will be used

��



Figure 
��� The curl force �eld for two cases �A� Force �eld B� with Kx � �� 
� �
 �� �B�

Force Field B� with Kx � �� �
� 
 ��� External force vector �represented by arrows� shown

as a function of x and y hand velocity�

in later chapters� Hence it is important to understand the structure and nature of this novel

dynamic perurbation� The curl force �eld causes a force on the hand that is perpendicular and

proportional to the hand velocity� The work done by the �eld is always zero	 therefore it does

not e�ect the energy of the system� The interaction force acting on the arm due to the curl

force �eld can be mathematically represented as	

Fx � Kx �x

Kx �

�
� � k

�k �

�
�

The overall dynamics of the arm is	

T � D����� � C��� ��� ��� JTFx � D ��� �C � JTKxJ � �� �
���

Assuming Kx �

�
� � 


�
 �

�
� �units in Ns�m�	 the torque change required with the altered

dynamics for reaching movement in the � directions is shown in Fig� 
�� and compared to the

torque required for the unloaded arm� The torque change is signi�cant compared to the torque

required for moving the arm� The net torque required is the sum of the solid and dotted line

as is changed signi�cantly by the addition of the force �eld�

�
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Figure 
��� The additional joint torque �dotted line� required for movements in the force �eld	

compared to torque required for unloaded arm �solid line�� the gray line is shoulder torque and

the black line is elbow torque
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Note� This force �eld will be used for simulations in Chapter � to test di�erent controllers for

their stability and robustness when faced with an unfamiliar dynamic environment� In actual

experiments with human subjects and for simulations in Chapter � and �� the novel dynamic

environment will be a combination of robot dynamics and the force �eld presented above and

the overall dynamics will be determined by the sum of external forces due to the robot and the

force �eld�

��� The Muscles and their Active Dynamic Properties

In the previous section the relationship between kinematic trajectory and joint torque was

established based on dynamics of the arm and the environment� In this section the dynamics

of the muscle actuators that generate joint torques are discussed� Starting with description of

a single muscle as a state dependent force generator	 it is shown how a group of muscles can be

used to generate joint torques as well as equilibrium states for control of the two�joint arm�

����� A Single Muscle

A muscle is made up of muscle �bers� Within the muscle �ber	 the site of muscle contraction

is the sarcomere� When an action potential is applied to the muscle �ber there is release of

calcium ions from the sarcoplasmic reticulum to the myo�brils and the sarcomeres� The calcium

ions initiate attractive forces between the actin and myosin �laments on the sarcomeres causing

them to slide together and contract� This generates the force of contraction� After a fraction

of a second	 the calcium ions are pumped back to the reticulum and the muscle contraction

ceases until the next action potential comes along� Each muscle is innervated by a number

of motoneurons receiving activation from the spinal cord� Each motoneuron in turn	 excites

hundreds of muscle �bers� The force generated by the muscle as a whole is governed by the

frequency of muscle stimulation and the number of motor units recruited at any time	 as well as

the length and velocity of contraction of the muscle� The spinal cord coordinates the activation

pattern to individual motor units to generate the desired force�

When the muscle �ber is given a short electrical stimulus it elicits a single muscle twitch�

This is the force response produced by an impulse of motor activation and is termed the force	

activation impulse response� The time duration of the twitch depends on the muscle type which

can be either fast or slow� When the muscle �ber is stimulated by a series of electrical impulses

at a certain frequency it elicits multiple contractions resulting in a sustained muscle force

output� The force output by a muscle �ber is the additive sum of the force due to individual

contractions and the net force produced by a muscle is the summation of the force output of

individual muscle �bers that make up the muscle� If we represent the normalized force response

of a single �ber to an electrical impulse by hi�s� such that
R
�

t�� hi�t� � 
	 then the net force

�



Figure 
�
�� The force activation impulse response function for the muscle

F �t�	 produced by a muscle composed of nm �bers	 each having a maximum twitch force cn

and receiving electrical impulse activity An	 is�

F �t� �
nmX
n��

hi � �cnAn��t� �
nmX
n��

Z t

�
hi���cnAn�t� �� d�

� hi �

nmX
n��

�cnAn��t�

where � denotes the convolution operation� If we now denote the summated force activity

of muscle �bers as F�t� �
Pnm

n���cnAn�t�� and de�ne a normalized electrical muscle activity

R � F

Fmax
	 then we can write	

F �t� � Fmax�hi � R��t� � �N�t�

where	 Fmax corresponds to �	 the maximum force generated by the muscle� N�t� is the

�ltered normalized electrical activity to the muscle equal to �hi � R�� N directly controls the

force produced by the whole muscle and hence will be used as the variable to represent the

central motor command to the muscle� The activation�force impulse response function of the

muscle is modeled as shown in Fig� 
�
� using the following third order equation�

hi�t� �
t�e�

�t

���� �

�� 
���

The results above are derived for an isometric muscle and hence F is the isometric force

produced by the muscle for a given neural activation� The force produced by an active muscle

also depends on muscle length and rate of change of length at that instant� For a �xed neural

��



Figure 
�

� A	 the force�length characteristics for the muscle� B	 the force�velocity relationship

for the muscle

activation	 the muscle force changes in proportion to the muscle length in the normal operating

region of muscle length� If the muscle lengthens	 the force of contraction increases and vice

versa� This represents a mechanical action analogous to a spring� The slope of this force�

length relation modulates with the level of activation and increases for greater activations� The

force�length relationship can be modeled as an active elastic element whose sti�ness changes

proportionately to neural activation� If we denote the length of the muscle as Lm and the mean

isometric muscle length as Lm�	 then we can represent the length�modulated force output Fa

as	

Fa � F �K�Lm � Lm��

Since the sti�ness is proportional to neural activation and the isometric force	 and also varies

with muscle length	 we can write K � FCm�Lm�	 where F is the isometric force and Cm is a

nonlinear function of muscle length� If we also de�ne a muscle displacement xm � Lm�Lm� as

the change in the length of the muscle from the isometric or mean muscle length	 then we get	

Fa � F �
 � Cm�Lm� �Lm � Lm��� � F �
 � Cm�xm�xm� �
�
��

For most muscles the force reduces to zero at half the mean length� Hence if we assume a

constant Cm	 and Lm����� m then at half the mean length xm����
 m and the force Fa���

This gives a value for Cm equal to 
�� The value of Cm is later derived from joint sti�ness

properties of the human arm observed by �Gomi and Kawato	 
���� and found to reasonably

close to this hypothesized value� The modeled force�length relation is shown in Fig� 
�

�A�

for ��
���N	 Lm�����m and Cm � 
��

��



The velocity of muscle contraction or expansion further a�ects the force generated by a

muscle� The force drops o� rapidly as the contraction velocity increases and goes to zero at the

maximum attainable velocity� When the muscle is expanding	 the force increases and saturates

at some value �assumed to be 
�� times the length�modulated force in the model�� The muscle

therefore behaves like a viscous element with variable viscosity� This can be modeled adequately

by a Hill parametrized model ��Krylow et al�	 
����� that treats this force�velocity relation as

a contractile element �CE� with the following equations governing its characteristics�

Ft �
bFa � a �xm
b� �xm

�xm � � �shortening�

Ft �
b�Fa � �a� � �Fa� �xm

b� � �xm
�xm � � �lengthening�

a� � ����Fa

b� � �b
a� � Fa

a� Fa

Ft is the velocity�modulated force of the muscle given a length�modulated force Fa and muscle

velocity �xm� a and b are constants that govern viscosity of the muscle� Two di�erent models

are used for contraction and expansion of the muscle to obtain the experimentally observed

behavior� The value of b� is derived to ensure continuity at �xm��� The following values for

constants a and b have been quoted in a paper by �Soechting and Flanders	 
�����

Wilkie �
���� a
Fmax

� ����
�xmmax

Lm�
� b Fmax

aLm�
� �

Zajac �
���� �xmmax

Lm�
� b Fmax

aLm�
� 
�

Fig� 
�

�B� shows the force�velocity relationship for three di�erent values of Fa� A value

of a � ��� and b � ��� is used in the model and is obtained by assuming Fmax � 
���N 	

Lm� � ���m and the ratio �xmmax

Lm�
� 
��

Ft is the output force of the muscle and is transmitted to the tendon� The tendon is an

elastic tissue with a very high sti�ness and transfers the force from the muscle to the bone� It

can be modeled as a series elastic element� However	 the dynamics of the tendon is negligible

compared to that of the muscle and it is reasonable to omit its e�ect when considering dynamics

of the arm� Similarly	 the passive elastic properties of the muscle visible during extreme muscle

stretch	 can be neglected in an intact muscle with normal operating length� For this reason	

the tendons and passive elasticity of the muscles are ignored in the current study�

The overall input�output relation for the nonlinear muscle	 relating the activation N with

the force Ft	 can be represented by a function fM 	

��



Ft � F �Km�F� xm�xm �Bm�F� xm� �xm� �xm

� �N �Km�N�xm�xm �Bm�N�xm� �xm� �xm

� fM �N�xm� �xm� �
�

�

where	 Km represents the nonlinear sti�ness due to force�length relationship and Bm the non�

linear viscosity due to force�velocity relationship for the muscle�

Inverse of the Force�Activation relationship

It is possible to compute the inverse of the relationship in the last equation� For a given muscle

force Ft at a certain state of the muscle	 there exists a unique muscle activation N that will

generate that force� Hence it is possible to de�ne an inverse muscle function f��M as	

N � f��M �Ft� xm� �xm� �
�
��

The signi�cance of existence of an inverse is that neural activation to the muscle can be

directly determined for generating a desired force using the inverse relation� In the model

the inverse is analytically computed by inverting the modeled force�velocity and force�length

relationships� In reality	 where the exact mathematical structure of these relationships is not

known	 the inverse can be implemented as a neural network or a series of basis functions	 and

might be the way that the inverse	 if it exists	 is represented in the brain�

However there is one problem with the inverse relationship derived here� The neural activa�

tion is represented in terms of the �ltered neural signal N � In section 
���
	 the actual signal to

the muscles is the un�ltered neural signal R� Hence to generate a desired force	 it is important

to invert the �lter function or the force�activation impulse response function� This may not be

possible if the �lter has signi�cant high order terms� The inverse used in the current study is

achieved by assuming the response function to be a pure time delay of �� ms and modeling the

inverse as a time�lead element that precomputes the neural signal R	 �� ms in advance of N �

This is the best approximation to the impulse response and works reasonably well�

Baseline or Tonic activation and force in the muscle

The muscles receive a baseline level of neural activity or muscle tone even at rest	 which causes

the muscle to be in a constant state of contraction and to generate a tonic force� The baseline

activity increases when producing arm movements� The baseline activity also results in cocon�

traction of a muscle pair acting on a joint that allows changes in the joint sti�ness as will be

discussed later� In the model we assume that each muscle maintains a constant baseline activity

��



Figure 
�
�� A model representing a single joint attached by two muscles

throughout the movement in order to generate a tonic force that equals 
����� of Fmax or �	

and a speci�ed sti�ness�

����� Linearization of the muscle

For the purpose of simplifying the study of the muscle and its dynamic behavior and to derive

certain equilibrium properties	 we will consider a linearized muscle model for the next two

sections� It is important to realize that linearization is perfectly valid when considering small

changes in the state of the muscle and hence the relationships are true locally� The non�linearity

in the system arises from nonlinear force�length and force�velocity relationships� If we linearize

the system around the normal operating state of the muscle	 mean length Lm� and zero velocity

�xm � �	 then we obtain the following relationships�

Ft � F �Kmxm �Bm �xm � �N �Kmxm �Bm �xm �
�
�

Km �
d

dxm
Fa

����
xm�Lm�

� FCm � �NCm

Bm �
d

d �xm
Ft

����
�xm��

�
a� Fa

b
�

a� �N

b

This linearized model consists of two model elements Km and Bm that are positive and depend

only on the neural activation N � Km is modulated multiplicatively and Bm additively by N �

����� A Muscle pair attached to a Joint and Equilibrium properties

So far we have only looked at an individual muscle� But in most situations and atleast for

the relevant case of human arm	 the muscles act in agonist�antagonist pairs around the elbow

��



and shoulder joints� It is this con�guration that gives rise to two important properties of the

muscles � �
� the capability to generate torques about a joint	 and ��� the capability to control

the equilibrium state of the joint� A model of a muscle pair acting on a joint is represented in

Fig� 
�
�� The following equations	 derived using linearized muscles	 govern the dynamics of

the joint�

Ft� � ��N� �Km�xm� �Bm� �xm�

Ft� � ��N� �Km�xm� �Bm� �xm�

� � Ft�r� � Ft�r�

� ���N� �Km�xm� �Bm� �xm��r� � ���N� �Km�xm� �Bm� �xm��r� �
�
��

� is the torque produced at the joint and r
	 r� are the moment arms for the two muscles about

the joint� If we assume that the mean angle for the joint is ��	 then we can represent xm� and

xm� as ��� � ��r� and �� � ���r� respectively� This gives	

� � ���N� �Km���� � ��r� �Bm�
��r�� r� � ���N� �Km��� � ���r� �Bm�

��r�� r�

� ���N�r� � ��N�r�� � �Km�r
�
� �Km�r

�
�� ��� � ��� �Bm�r

�
� �Bm�r

�
��
�� �
�
��

This equation represents a classical second order feedback control system for maintaining

the joint at its mean joint angle �� when the two muscle activations balance each other� If now	

we program the activations to the two muscles such that	

��N�r� � ��N�r� � �Km�r
�
� �Km�r

�
�� ��d � ��� � �Bm�r

�
� �Bm�r

�
��
��d �
�
��

we obtain	

� � ��Km�r
�
� �Km�r

�
�� �� � �d�� �Bm�r

�
� �Bm�r

�
�� �

�� � ��d�

� �K��� � �d��B�� �� � ��d� �
�
��

This shows that it is possible to program a desired equilibrium trajectory for the joint in

terms of a series of desired joint angle�d and joint velocity ��d by choosing appropriate muscle

activations based on a knowledge of Bm and Km� The system will asymptotically track the

desired trajectory in a stable manner because K� and B� are positive de�nite� This is the

property that governs the equilibrium of the joint and is used in the equilibrium control hypotheis

of the arm proposed by �Bizzi et al�	 
���� and discussed in a later section�

��



From Eqn� 
�
� it follows that for any given activation of the two muscles	 there exists

a stable equilibrium position for the muscle where the joint will come to a rest and remain

inde�nitely� The torque � and velocity �� will be zero at this position� This equilibrium position

�q is given by	

�q � �� �
��N�r� � ��N�r�

Km�r
�
� �Km�r

�
�

�
�
��

It is possible that for very large di�erences in N� and N�	 this equilibrium position will lie

outside the physiological space of the muscle or the joint� In such a situation the joint will

be driven to the mechanical limit for the joint� The virtual trajectory hypothesis proposed by

�Hogan	 
���� uses the idea of a complex equilibrium position trajectory to generate straight

line movements�

The muscle activations can also be used to produce a desired torque �d around the joint�

This can be achieved if	

��N�r� � ��N�r� � �d � �Km�r
�
� �Km�r

�
���� � ��� � �Bm�r

�
� �Bm�r

�
��
�� �
�
��

in which case	

� � �d

This is based however on accurate knowledge of the current state of the arm ��� ��� required

in Eqn� 
�
�� This is a representation of the muscles in the form of a state�dependent torque

controller� If the state of the muscle is known then the neural input can be programmed

to produce any desired torque� In control literature an observer is used to supply the state

information to the controller� It will be shown later how torque control seems to be the strategy

used by the brain to control the arm and how a forward model �similar to an observer� is used

to provide accurate estimates of current state of the arm�

To summarize	 the muscle is a force generating element but by using a combination of

two muscles it is possible to control an equilibrium state of a joint or alternately the torque

generated at a joint�

Muscle Co�contraction� Tonic Force� and E�ect on Sti�ness and Viscosity

In the previous section	 it was shown how the di�erence in muscle activations	 ��N�r����N�r�	

can be used for arm movements by controlling the equilibrium trajectory or the torque produced

at the joint� Since ��	 �� are two independent variables	 and there is one constraint	 there

exists a degree of freedom that can be controlled independentally� This can be the sum of

�



the activations or their baseline levels of activity� Eqn� 
�
� relates the joint sti�ness K� and

viscosity B� to Km and Bm and further on muscle activation N for the two muscles	

K� � �Km�r
�
� �Km�r

�
�� � ��N�Cm�r

�
� � ��N�Cm�r

�
�

B� � �Bm�r
�
� �Bm�r

�
�� �

a� � ��N�

b�
r�� �

a� � ��N�

b�
r��

For simplicity of equations	 assume that the two joint muscles are identical	 i�e� r� � r�	

Cm� � Cm�	 a� � a�	 b� � b� and �� � ��� This reduces the equations to�

� � ��N� �N��r �K��� � ����B�
�� �
����

K� � �Cmr
��N� �N��

B� �
ar�

b
� �r�

N� �N�

b

These equations show that the torque � generated at the joint is controlled by the di�erence

in the activations	 N� �N�	 whereas	 sti�ness or viscosity of the joint or some combination of

both is independently controlled by the sum of muscle activations	 N� � N�� If we de�ne a

muscle cocontraction or baseline activation	 Nb � ����N� �N�� and desired torque activation	

Nt � N� �N�	 then	

N� � Nb � ���Nt �
��
�

N� � Nb � ���Nt �
����

An interesting thing to note here is that if the cocontraction is kept constant	 then to

produce a certain torque there is increased activation of the agonist and a inhibition of the

antagonist by the same amount� This inhibition of the antagonist is seen physiologically in

EMG measurements� A problem with this de�nition arises when Nb 	 ���Nt� To overcome this

we can de�ne the activations such that	

N� �
N�
b

N�

and solve it with the constraint that N��N� � Nt� This is known as reciprocal inhibition and

is depicted in Fig� 
�
�

This approach is justi�able as long as the linear muscle model is considered� For a nonlinear

muscle	 it is easier to de�ne the co�contraction in terms of muscle force instead of muscle

activation	 such that	






Figure 
�
� Reciprocal inhibition of the agonist�antagonist muscle pair

Ft� �
F �
c

Ft�

and	

�Ft� � Ft��r � �d

Fc is the cocontractive or tonic force in each muscle� This relationship is used for modeling in

the presented study and Fc assumes a value that is 
������ of Fmax depending on the sti�ness

desired during the movement�

��� Dynamics of the Two�joint Human Arm

It is possible to extend the dynamics and properties derived for one joint connected by two

linearized muscles in the previous section	 to the real case of a two�joint arm attached by

several nonlinear muscles�

����� The Input�Output relationship for the Human Arm

The human arm is composed of several muscles� If muscles receive neural activation N	 and

produce an acceleration of the hand �x	 then the overall dynamics of the arm can be written as

a combination of muscle dynamics and passive arm dynamics derived earlier�

Ft � �N�Km�N�xm� xm �Bm�N�xm� �xm� �xm � fM �N�xm� �xm� �
���

�



T � �JTmFt �
����

�x � D���x��T� C�x� �x� � JTFx� �
����

fM is the muscle dynamics function and Jm is the Jacobian of muscle length to joint position

transformation de�ned as Jm � dxm
d�

� Jm also corresponds to the moment arms for the muscles�

The negetive sign relating T to Ft arises because Ft is a contractive force and opposite to the

coordinates of muscle length in direction� The overall forward dynamics of the plant can be

represented by a nonlinear function fp	

�x � fp�N�x� �x�

This is a general representation of the plant �the human arm� that will be useful when we look

at control methodoligies for this plant in a later section�

����� Equilibrium properties of the human arm

The equilibrium property for a single joint as derived earlier	 shows that the activation to

the muscles determine an equilibrium position for the joint	 or alternately	 that activations

can be programmed to move the arm along an equilibrium trajectory� It is possible to de�ne

similar equilibrium properties for the multi�joint human arm under certain constraints� An

equilibrium is de�ned as the state of the system where the rate of change of the state is zero�

The equilibrium point is locally �or globally� stable	 if additionally	 a small �or any� displacement

from the equilibrium state will bring the system back to the same equilibrium state� Local

stability for the human arm follows from the result that a nonlinear system can be linearized

locally and the linear muscle model has already been shown to yield stable equilibrium� Now

we want to show existence of a globally stable equilibrium point for a given activation of the

muscles�

At the equilibrium point	 the torque on the arm and arm velocity have to be zero� Hence	

Tq � �JTmFtq � �

Ftq � �N�Km�N�xmq� xmq

and therefore	

�JTm��N�Km�N�xmq� xmq� � �

JTmKm�N�xmq� xmq � �JTm�N





The solution of the last equation will give the equilibrium muscle state xmq or the corre�

sponding equilibrium joint position �q� Stability of the system will be ensured if the torque is

greater than zero for � 	 �q and less than zero for � � �q� This will de�nitely be true if
dT
d�

	 � for all ��


T


�
� �JTm


Ft


�
� Ft


JTm

�

The �rst term on the on the right hand side of the above equation can be further written as�

JTm

Ft


�
� JTm


Ft


xm


xm


�
� JTm


Ft


xm
Jm

Consider the shoulder joint angle �� and n muscles connected to the shoulder� The lengths

of these muscles are xm����n	 and the force generated by them Ft����n	� J
T
m is a vector of n terms

corresponding to the moment arms for the muscles around the shoulder	 r����n	 �
�xm����n�

���
� One

can represent the above equation for just the shoulder as�


��


��
� �

h
r� r� � � � rn

i
�
�������

�Ft�
�xm�

r�
�Ft�
�xm�

r�
���

�Ftn
�xmn

rn

�
�������
�

h
�r�
���

�r�
���

��� �rn
���

i
�
�������

Ft�

Ft�
���

Ftn

�
�������

� �

h
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i
�
�������

Km�

Km�

���
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�
�������
�

h
�r�
���

�r�
���

��� �rn
���

i
�
�������

Ft�

Ft�
���

Ftn

�
�������

For stable equilibrium	 the RHS should be negetive for all ��� This is ensured if slopes of

the force length relation for all muscle Km����n	 are positive and slopes of their moment arm

with respect to joint angle	
�r����n�
���

	 are positive� This is true in the case of a linearized muscles

with constant moment arms� However in reality	 the values of Km and
�r����n�
���

may not always

be positive at all ��� In this situation	 the constraint on the system for stable equilibrium is

that atleast the total sum of the terms on the left hand side be negetive for all ��� For real

muscles	 the majority of Km are positive and the magnitude of the �rst term on RHS of the

equation above is much larger than the second term with moment arm derivatives�

����� Parameters for major muscles in the human arm

The values for parameters of muscles in the human arm that play an important role in the

�exion and extension of the shoulder and elbow joint are outlined here� The values for mean

�



Figure 
�
�� The simpli�ed three muscle pair model� s
	 s� � shoulder single joint muscles� t
	

t
 � two�joint muscles� e
	 e� � elbow single�joint muscles

length have been taken from origin�insertion data from �Soechting and Flanders	 
����	 the

moment arm from �Murray et al�	 
����	 and Fmax from �Karniel and Inbar	 
�����

Muscle �Lm�	cm� PCSA �cm�� Fmax �N� Moment arm �r	cm�

Anterior Deltoid ��
 
��� ��� �

Posterior Deltoid �� 
��� ��� �

Brachialis�Brachioradialis � � ��� 
�����

Triceps �short� ��� 
��
 ��� ������

Biceps 

�� 

�� 
��� ���

Triceps �Long� 
��� ��� 
��� ������

��� Modeling the human arm using three pairs of muscles

Since it is very di�cult to model the exact musculature of the arm	 several researchers ��Karniel

and Inbar	 
���� Gribble et al�	 
���� have used a simpli�edmodel that has three pairs of muscles

attached to the arm� This is shown in Fig 
�
�� The three pairs are�

� Single joint shoulder muscles �s� � correspond to the anterior and posterior deltoid that

�



connect the upper arm to the body

� Single joint elbow muscles �e� � brachialis�brachioradialis and the short head of triceps

that connect the lower arm to the upper arm

� Two joint muscles �t� � biceps and the long head of triceps that span both the elbow and

shoulder joints and connect the lower arm to the body

For further simplicity we can assume that the two muscles constituting each pair are identi�

cal� But it is important to establish that this simpli�ed representation does not undermine any

signi�cant dynamics of the real arm� Since this study does not seek to compare actual muscle

activations �EMG� with the model	 and is instead focused on the dynamics of the arm	 any

simpli�cation of the actual musculature can be assumed as long as the dynamics of the arm are

preserved� The dynamics of the arm are fully described by the following factors � lengths and

mass distributions of the upper and lower arm	 sti�ness and viscosity of the elbow and shoulder

joints	 and muscle contraction dynamics� When assuming a simpli�ed arm muscle structure we

have to ensure that the joint sti�ness and viscosity are modeled correctly	 the other factors not

being a�ected� We show that the simple model is indeed capable of producing the sti�ness and

viscosity patterns found experimentally in humans�

It is �rst important to �nd the relation between muscle dynamics and joint dynamics� This

has already been derived for a single�joint in the previous section and can be easily extended to

the two�joint arm� In the simpli�ed musculature	 the two muscles in each pair are assumed to

be identical and to have the same moment arms� From Fig� 
�
�	 the relation between muscle

lengths for the three pairs and joint angles is	

xs� � �xs� � ���� � �s��rs

xe� � �xe� � ����� � �e��re

xt� � �xt� � ���� � �t��rt

where	 x denotes the muscle length	 s	 e	 t are subscripts for shoulder	 elbow and two joint

muscles respectively	 and 
	 � are subscripts for the �exor and extensor muscle respectively�

�� is the rest position for the joint� The torque generated by a muscle pair about the joint at

which they are acting was derived in Eqn 
�
� and can be computed for the three muscle pairs

in this case�

�s � �s�Ns� �Ns���K�s��� � �s���B�s
���

�e � �e�Ne� �Ne���K�e��� � �e���B�e
���

�t � �t�Nt� �Nt���K�t���� � �t���B�t
����

�



The net joint torque in terms of individual muscle torque is given by	

T �

�
� �s � �e

�e � �t

�
� �
����

The sti�ness about the joint the rate of change of torque with joint angle and can be derived

from the equation above as	

K� �




�
T �

�
� �K�s �K�e K�e

K�e �K�e �K�t

�
� �
����

Observe that the cross diagonal terms in the sti�ness matrix are equal�

The following values of joint sti�ness have been reported by di�erent researchers	

�Mussa�Ivaldi et al�	 
����

K� �

�
� ��
 �

� ��

�
�

�Flash	 
����

K� �

�
� ��� 
�


� �
�

�
�

�Gomi and Kawato	 
����

K� �

�
� �� 
�


� �
�

�
�

It is important to note that these sti�ness matrices are in absolute joint coordinate system

and may have been converted from the value reported by these authors if they used relative

coordinate systems� The cross�diagonal terms in these experimentally determined sti�ness

matrices are indeed equal as desired and hence the sti�ness can be represented by a simpli�ed

three muscle�pair model�

For the model	 the sti�ness reported by Kawato is chosen because their experiment was done

while subjects actually performed reaching movmements with the arm� One of the factors that

contributes to sti�ness and viscosity of the arm and has not been discussed yet	 is the spinal

re�ex� The role of the spinal cord will be discussed in a later section� In order to derive the

sti�ness parameters for the muscles	 we have to know the contribution from the spinal re�ex�

From values of sti�ness reported by �Sanes and Shadmehr	 
���� for dea�erented patients	 who

presumably have no spinal re�ex	 the values of the sti�ness matrix are close to ��� of the

normal subjects� This implies that the spinal re�ex contributes ��� of the sti�ness and the

other ��� comes from muscle properties� Hence	

�



K� �

�
� ��Kms� �Kms��r

�
s � �Kme� �Kme��r

�
e �Kme� �Kme��r

�
e

�Kme� �Kme��r
�
e ��Kme� �Kme��r

�
e � �Kmt� �Kmt��r

�
t

�
�

� ���

�
� �� 
�


� �
�

�
�

We assume the following values for moment arms of the muscle pairs	 rs � ����	 re � ���	

and rt � ��� based on the average values of muscle moments described earlier for the real

muscles� This gives	

Kms� �Kms� � �sCms�Ns� �Ns�� � ����

Kme� �Kme� � �eCme�Ne� �Ne�� � ����

Kmt� �Kmt� � �tCmt�Nt� �Nt�� � ����

At the baseline level of activity during movement	 and for the given � for each muscle�pair	 we

get	

Cms � 
����

Cme � 
��

Cmt � 
���

The joint viscosity of the arm is typically 
����� of the joint sti�ness �Shadmehr and Mussa�

Ivaldi	 
����� Since the viscosity of spinal re�ex is only 
�� of spinal sti�ness as will be shown

later	 this implies that muscle viscosity should be close to ��� of the muscle sti�ness� The

viscosity for the muscle is approximately given by Bm � a
Fa
b

� Values of a and Fa at baseline

level of activity are	

a � ����Fmax � �����

Fa � ��
Fmax � ��
�

For Bm � ����Km one gets	

bs �
����s
����Kms

� 
��

be �
����e
����Kme

� ����

bt �
����s
����Kmt

� 
��


�



This successfully completes the task of specifying the observed dynamics of the arm mus�

culature in terms of a simpli�ed model consisting of only three muscle pairs�

����� Torque generation about elbow and shoulder joint �the inverse prob�

lem�

So far we have only looked at forward dynamics of the system that gives the torque generated

by the arm for a neural activation input� If a certain torque is desired at the joints	 then the

forward dynamics have to be inverted to arrive at the appropriate neural activations to the

muscles� This relationship was derived for the single joint case and is extended here for the two

joint human arm connected by three pairs of muscles� The inverse problem involves determining

the three single joint torque �s� �t� �e	 given desired elbow and shoulder joint torque Td� The

relation between them is	

T �

�
� �s � �e

�e � �t

�
�

The problem is that of inverting this equation� There are two variables on left hand side

and three on right hand side of the equation� Hence it is not a unique one�to�one mapping�

Physiologically it is found that around the elbow joint	 the single�joint elbow muscles and the

two�joint muscles	 that is the short head and long head of biceps and triceps	 produce forces

that complement each other� The elbow torque is thus distributed between the single�joint and

two�joint muscles� The exact distribution for these torques is not known	 so it is assumed that

��� of the desired torque comes from single�joint muscles ��e � ������ and the remaining ���

from two�joint muscles ��t � ������ which gives	

�
���
�s

�e

�t

�
��� �

�
���

 ����

� ���

� ���

�
��� Td

The following equations can then be solved simultaneously for the three pairs of muscles �m �

s� e� t� to give the force to be generated by each muscle pair Ftm� � Ftm� 	

Ftm� �
F �
cm

Ftm�

and	

�Ftm� � Ftm��rm � �m

where	 Fcm is the cocontractive or tonic force and has a value equal to ��
�� This gives	

�



Ftm� �
�m

�rm
�

s
��m
�r�m

� Fcm

Ftm� �
F �
cm

Ftm�

The muscle activations to each muscle is obtained from the inverse of the muscle dynamics

in Eqn 
�
 and can be expressed as N � f��M �Ft� xm� �xm��

��� Sensory feedback to the brain

��	�� Muscle Spindles and Proprioception

Muscle spindles refer to a group of intrafusal muscle �bres that sense the length of the muscle

and the velocity of length change of the muscle and transmit this information to the spinal cord

which eventually reaches the brain� This knowledge of muscle state can be integrated for the

whole arm to determine the position of the limb and the velocity at which it is moving� The

feedback delay for this information to reach the brain is assumed to be 
�� ms �Turrell et al�	


����� This implies that during movement of the arm	 the brain does not have exact knowledge

of the state of the arm during the 
�� ms preceding the current time� The a�erent signals are

also a�ected by noise and may not be very accurate� However	 for the simulations	 we assume a

perfect proprioceptive system that provides accurate and precise measurement of muscle length

and muscle velocity with a time delay of 
�� ms� We also assume the existence of accurate

internal kinematic transformforms from which joint state and hand state can be determined�

Noise in the measurement and robustness of the system to noise will be considered in a later

chapter�

��	�� Visual Feedback

Vision plays a major role in the control of arm movements� Reaching movements are usually

directed towards a visual target� To move the hand from one point to another	 a trajectory

has to be planned� There is evidence to show that this plan is executed in the perceived visual

space and is a minimum jerk hand path connecting the two points� �Wolpert et al�	 
����

and �Flanagan and Rao	 
���� have shown that when curvature of the perceived hand path is

visually altered	 subjects adapt their arm movements in order to preserve straight line paths in

visually perceived space�

In another recent study done by �Conditt et al�	 
����	 it was found that if a visual�

proprioceptive mismatch was introduced during a practiced fast reaching movement	 then the

��



movement was controlled by visual feedback� In the experiment subjects were trained to make

fast reaching movement while grasping a robotic manipulandum� During certain movements

the curl force �eld was turned on� A group of subjects received altered visual feedback during

this movement that restricted vision to a straight line path to the target	 while another control

group received unaltered visual feedback� The control group produced hand movements that

were de�ected in a clockwise direction by the �eld and then hooked back to the target� In

the experimental group	 however	 the movement terminated when the perceived visual hand

postion reached the target	 although the actual position of the hand was still in the deviated

position observed in controls just prior to the corrective hook� This provided evidence for online

control of arm movements by visual feedback even during fast reaching movements�

Vision seems to play a role in the plan of movement in the visually perceived space and then

in feedback correction during the arm movement if there is an error in perceived and planned

visual movement� Vision provides information about the state of the arm in terms of hand

position and velocity� However	 there are signi�cant delays in the visuomotor pathways as in

the case of proprioception� We assumed a delay of 
�� ms in the model that is the same as

proprioceptive delay� Whether vision provides any more information than proprioception has

not been established although it seems to play a dominating role in control of visually�guided

movements as evidenced by the two experiments cited above� Experiments on control of arm

movements in dea�erented subjects who su�er loss of proprioception ��Gordon et al�	 
�����

reveal that arm movements are a�ected in the dea�erented subjects	 but in the presence of

vision the subjects are able to perform reasonably well�

Note� In the simulations considered in this thesis� no distinction is made between proprioception

adnd visual information and both are assumed to provide accurate state information to the brain

with a time delay of 
�� ms� This is also based in part on the observation that movements in

the force �eld considered in the current study are not a�ected in the absence of vision and show

the same behavior

��	�� E
erent conduction delays from the brain

There is a delay in motor commands reaching the muscles in the arm from the brain because

of conduction path delays and synaptic delays in the spinal cord� This delay is an important

consideration in the problem of motor control because it adds to feedback loop delays and can

cause instability in the system� For the current study a delay of �� ms is assumed between the

issuance of motor commands by the brain and their reaching the muscles in the arm�
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��� The Spinal Re	ex

The spinal re�ex is a feedback mechanism that tries to correct for unexpected perturbations

to the arm� It works at the individual muscle or muscle pair level and increases the activation

to the muscle and thereby the contraction force if it senses an increase in the length of the

muscle� A nonlinear model of the relation between change in activation and change in length

is provided in a study by �Gielen and Houk	 
����� In the current study a linear relation

between activation and muscle length is assumed for simplicity� The activation to the muscle

Nr	 through the spinal re�ex pathway is based on reciprocal inhibition of a muscle pair and is

the solution of	

Nr� �Nr� � Ks�xm � xms� �Bs� �xm � �xms� and� �
����

Nr� �
N�
rc

Nr�
�
����

where	 xms� �xms are the set�point muscle length and velocity	 Ks is the re�ex sti�ness	 Bs

the re�ex viscosity	 and Nrc the reciprocal inhibition constant� The ratio of Bs to Ks has been

reported to be ��
 by �Gielen and Houk	 
���� and is assumed in the model here� The re�ex

pathway is modeled as a time delay of ��� s based on results of �Gielen and Houk	 
����	

which implies that proprioceptive information about muscle length and velocity takes � msec

to reach the spinal cord and a�ect the activation�

As was mentioned earlier	 the re�ex mechanism contributes to ��� of the muscle sti�ness�

Hence for the three muscle pairs the values of Ks are	

Kss �
����

�s
� ���

Kse �
����

�e
� ���

Kst �
����

�t
� ����

For the model the values of Ks and Bs � ��
Ks were taken as	

Ks �

�
���
���

���

��

�
��� Bs �

�
���
���

���

��

�
���

The net activation going to the muscles is the sum of the activations from the brain NC

and activation from the spinal re�ex NR

��



Figure 
�
�� Block diagram of the plant represented by the human arm

N � NC �NR

The spinal re�ex provides a fast feedback corrective loop to achieve the state speci�ed by

the set point muscle length and velocity� If the gain for a zero�delay feedback loop is in�nity	

then it can be easily shown that the output of the two�joint system is equal to the set�point at

all times� However	 the gain of the spinal re�ex is limited by � msec plus muscle activation

delay in the feedback loop� It was determined through simulations that a feedback gain that

was  times the physiologically determined values	 caused the system to be unstable� Hence the

values determined here seem to be close to the maximum allowable without causing instability

in the system�

��
 Model of the Human Arm used for Simulations

In the previous sections a general overview of the plant and its properties was provided� The

physiological parameters controlling dynamics of the human arm and methods for modeling

them were discussed� A summary of the equations and parameter values used in the computa�

tional model for simulating arm movements in the current study are presented here� The block

diagram of the plant is shown in Fig� 
�
��

The arm is modeled as a two�joint inertial system with kinematics and dynamics derived in

Sec� 
�
� fD represents the nonlinear forward dynamics function of the two�joint arm and Fx

is the external force acting on the hand� The following parameter values for the human arm

are used and taken from �Jordan et al�	 
�����
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l� � ��m

l� � ���m

lc� � ��
��m

lc� � ��
�m

m� � ����kg

m� � 
��kg

i� � ����kgm�

i� � ���

kgm�

d�� � �����kgm�

d�� � �����kgm�

The three muscle pair model of the arm �Sec� 
�� is used for torque generation at the

joints� The muscles in each pair are assumed to be identical and modeled as nonlinear elements

with dynamics modeled in Sec� 
���
� The muscle dynamics are represented by the nonlinear

function fM that transforms the �ltered neural input N to the muscles into joint torque T�

The activation �lter hi acts on the neural signals from the brain NC and the spinal re�ex path

NR to give N� The muscles have the following parameters�
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The gains for the spinal re�ex are chosen to be the same as those derived earlier� The set�

point for the re�ex is speci�ed by the brain as �SP and is a combination joint angle position

and velocity signal�

�
���
Kss

Kse

Kst

�
��� �

�
���
���

	��


��

�
���

�
���
Bss

Bse

Bst

�
��� �

�
���
���

��	

��


�
���

The total time delay in the spinal re�ex loop is equal to ���
 s� The cortical feedback time

delay is modeled as ���� s and the eerent motor command path delay as ���� s�

Note�The simulations of arm movements are performed by discretizing the signals in the system

with time interval of ����� s and then using a �rst order iterative procedure to solve the nonlinear

equations governing the dynamics of the system� A �rst order approximation is used because

it is found to be reasonably immune to quantization noise� and higher order methods are not

required�
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Chapter �

Methods for Control of the Human

Arm and Simulation Results

In the prevous chapter the properties of the human arm system were outlined� This included a

description of the arm dynamics� muscle properties� visual and proprioceptive feedback available

to the brain and delays associated with them� and spinal re�ex mechanism� components of the

system that received neural activation from the brain� In this chapter� control methods based

on feedforward and feedback modalities that the brain can use for controlling arm movements

are investigated�

��� Requirements for a Control Method

For point�to�point reaching arm movements the hand moves along a predetermined trajectory

from the start point to the target� The controller has to generate motor commands to the

muscles to execute this planned movement� A method to control human arm movements has

to be capable of meeting for the following requirements�

� Generate a movement of the arm along any desired trajectory expressed in terms of

cartesian hand position and velocity

� Provide stable control and correct movements of the arm in the presence of perturbations

or external forces on the hand� for example not to spill the contents of a glass when

accidently pushed on the hand�

� Be robust to noise in sensory feedback and errors in the controller

� Track the desired trajectory in the presence of deterministic novel dynamic environments�

for example when objects of dierent weights have to be moved along the same trajectory�
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This may require it to have adaptive capabilities�

��� Properties of the human arm important for design of con�

trol methods and their incorporation in the simulations

� Equilibrium properties of the muscle pair around a joint and capability to adjust joint

stiness by changing the cocontraction to the muscle pair� This is represented by an

additional desired coactivation control block providing input to the inverse muscle model

that can adjust the coactivation of muscles based on the desired stiness�

� Fast but limited and �xed gain local feedback loop through the spinal re�ex with a time

delay of 
� ms and whose set point can be adjusted by the brain� The set�point is sent as a

joint position and velocity signal from the brain and delayed through the neural pathway

by �� ms in order to arrive in synchrony with the feedback from the sensors�

� Feedback delay from vision and proprioception to the brain of about ��� ms because of

which conventional feedback control does not work� specially for fast movements�

� Nonlinearities of the plant that have to be compensated for in control loops� This is a

problem because the inverse of such nonlinear functions may not exist� The muscle inverse

can invert the nonlinear force�length and force�velocity relation for the muscle� but cannot

model the muscle activation�force impulse response function hi� The best compensation

to this impulse function without causing instabilty is achieved by assuming it to be a pure

time delay of �� ms and modeling its inverse as a time�lead element that precomputes the

signals �� ms in advance�

� Descending neural path delay of �� ms from the brain to the muscle� which requires the

motor command from the brain to be precomputed �� ms in advance� This includes

the �� ms compensation for activation�force response� All signals in the brain used for

computation of the desired behavior of the system like the desired trajectory and torque

have to lead the current time by �� ms�

��� Simulation Methods

The control methods outlined in this section are used for simulating arm movements to test

the properties of each controller� The desired trajectory for all controllers is a minimum jerk

trajectory with a movement time of ��� s to a target placed �� cms away in one of eight equally

spaced directions� Each method is tested under two cases of arm dynamics�
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�� Null �eld B� � Unloaded arm with only the dynamics of the arm�

�� Force Field B� � A curl force �eld with Kx �

�
� � �


��
 �

�
� acting on the hand and

altering the dynamics of the arm

In the two cases� the controller expects a null �eld and hence the force �eld B� acts as an

external perturbation to the arm� The idea is to test stability and robustness of the controller

to unmodeled changes in arm dynamics� In some cases� a third dynamic situation is created

where the controller expects �eld B� but has to perform in an opposite �eld B� with Kx ��
� � ��


�
 �

�
��

����� Glossary of terms and symbols used in block diagrams

� xmd� �xmd � the desired trajectory in terms of muscle position and velocity respectively

� �d� ��d � the desired trajectory in terms of angular position and velocity for the joints

respectively

� xd� �xd � the desired trajectory in terms of hand position and velocity respectively

� �xm� ��xm � the estimated trajectory from the forward model in terms of muscle position

and velocity respectively

�
��� ��� � the estimated trajectory in terms of angular position and velocity for the joints

respectively

� �x� ��x � the estimated trajectory in terms of hand position and velocity respectively

� xm� �xm � the actual trajectory in terms of muscle position and velocity respectively

� �� �� � the actual trajectory in terms of angular position and velocity for the joints

respectively

� x� �x � the actual trajectory in terms of hand position and velocity respectively

� Td � the desired joint torques

� T � the actual torque generated by the muscles

� Fx � the external force acting on the hand

� NC � the descending motor command from the brain

� NR � the additional motor command from the spinal re�ex
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� N � the motor command input to the muscles given by N � hi � �NC �NR�� where hi is

the activation �lter�

� Kp� Kv � the gains of the supraspinal linear feedback controller that receives error signal

between desired and estimated trajectory

� t � the current time in msec

� � � the delay in the neural paths

Note� Signals for the state of the arm �x��� are represented at certain places as only position

signals but actually refer to both position and velocity signals� The activation �lter hi is not

explicitly shown in the block diagrams for the controllers� but is used for computing N�

��� Feedforward Control of the Human Arm

This refers to a control method by the brain that uses only the predetermined desired trajectory

to generate control signals for movement of the arm� It is a feedforward control system and

does not rely on feedback during the movement� Stability of the system is achieved by the

spinal re�ex loop and equilibrium properties of the muscle� An important distinction of this

method to feedback methods discussed later is that desired trajectory directly drives the system

without the use of intermediate variables like muscle activation or torque� although they are

used in block diagrams for simpli�cation� The brain does not have independent control over

torque or muscle activation generated in the system and controls only the trajectory� It was

established in Section ��� that the muscle can be used as a trajectory controller or as a torque

generator� In the feedforward methods discussed here� the controller relies on trajectory control

properties of the muscle�

����� Equilibrium Point Control

An important property of the system is the existence of a stable equilibrium state for the arm

that can be programmed by muscle activations and spinal re�ex set points� Any hand trajec�

tory through space can be represented in terms of muscle lengths and velocities as a series of

equilibrium states� Given the stable equilibrium properties of the human musculature shown

in Sec���
��� the arm will asymptotically track the desired the desired equilibrium trajectory�

Exact tracking of a fast trajectory may not be possible because the system is only asymptoti�

cally stable� implying that it will go to equilibrium at in�nite time� However it will approach

equilibrium with a faster or slower time constant depending on the dynamics of the arm that

depend on the inertia� stiness and viscosity� Higher stiness� for example� will cause closer

tracking of the desired trajectory�
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Figure ���� Block diagram illustrating the equilibrium point control method

This is a very simple form of control and requires programming of muscle activations and

spinal re�ex set point to the equilibrium values of muscle lengths and velocities� Let the desired

hand trajectory be given by �d� ��d� If the neural activation Nm �m � s�e�t� to each muscle

pair is programmed such that Ts � Te � Tt � � then it represents an equilibrium state for the

arm because torque about the joints are zero� This was derived as the solution of the following

equations for the linearized muscle model�

��Nm� �Nm��r � K���d ���� �B�
��d

Nm� �
Nmc

�

Nm�

which then gave�

T � K���d ��� �B�� ��d �
���

If now we additionally program the set point for the spinal re�ex as the desired trajectory�

NR � Ks��xm � xmd
� �Bs� ��xm � �xmd

�

then�

T � K���d ��� �B�� ��d �
��� �K�s��d ��� �B�s� ��d �

���

This is a feedback control loop acting on each joint and providing asymptotically stable control�

For the nonlinear muscles� the muscle activation can be computed from the following equations

and as already established in Sec� ��
� retain the equilibrium control properties around the

joint�

��
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Figure ���� Simulated trajectories for equilibrium point control� �A� null �eld� �B� force �eld

B�� ���� hand paths for eight directions movement represented as dots �big gray dots� actual�

small black dots� desired� at �� ms intervals� ���� parallel �gray line� and perpendicular �black

line� hand velocities for downward movement direction

Ft� �
F �

b

Ft�

Ft� � Ft�

NC � �f��M �Ft�xmd
� �xmd

�

The Equilibrium point hypothesis is very attractive not only because of its stability but also

because the computation involved for generating armmovements is very simple� It is represented

as a block diagram in Fig ���� The desired trajectory is the input to the equilibrium activation

model� which is equivalent to an inverse model of the muscle dynamics� and is based on an

estimate of the non linear muscle properties K� and B�� The output is the computed neural

signals NC � This is the only computation performed in this system� The desired trajectory has

to precede the actual trajectory by �� ms because of conduction pathway delays� The desired

trajectory also acts as set�point to the spinal re�ex and is delayed 
� ms to arrive in synchrony

with the feedback signal�

Note� All simulations in this chapter are performed without the robot dynamics coupled to the

arm� An unloaded arm refers to dynamics of just the human arm� In the following chapters

where comparison is made with experimental data robot dynamics will be coupled to the arm

and taken into account during the simulations�

A simulation using equilibrium point control shows the advantages and disadvantages of the

��



Figure ��
� Block diagram illustrating inverse dynamics model control

method� Fig� ��� shows two movements �A� and �B�� The desired trajectory for both movements

is a minimum jerk trajectory from the center of the workspace directly outward to a point ��

cms away� �A� is a movement of the unloaded arm� For normal stiness levels �based on data

by �Gomi and Kawato� ������ during a movement� the actual hand path only approximately

follows the desired straight line path showed in dotted line� Hence it is not possible to generate

the desired movement with this method� Another disadvantage is in terms of adaptation to

novel dynamics as presented by the curl force �eld� �B� shows a movement in the force �eld

B� with ��� times the normal stiness and shows a large deviation from the desired trajectory�

Muscle coactivation is the only control parameter in this model and an increase in coactivation

and stiness does not seem to be an energy e�cient or a very eective way to correct for forces

due to the �eld� However the advantage to be noted here is that although the movement in

the �eld is not as desired� the gross characteristics of movement are preserved and the system

tracks the desired behavior in a asymptotically stable manner� Passive dynamics of the arm are

completely ignored but stability is still maintained� Another advantage is that delays in the

system can be ignored and do not aect the behavior of the plant�

����� Inverse Dynamics Model Control

A modi�cation of the equilibrium point control that can overcome its drawbacks is the addition

of an inverse dynamics model to the feedforward control� The muscles are not only programmed

by the desired equilibrium trajectory but also by the torque required to move the arm along

the trajectory� An inverse dynamics model of the arm is capable of generating the torques

required to move along the desired trajectory� The motor commands sent to the muscles can

then be programmed to produce these torques as well as maintain an equilibrium trajectory�

The computations involved are based on the equations derived in previous sections�

��



The torque required to move along the desired trajectory expressed in terms of joint angle

�d� is given by�

Td � D��d� ��d � C��d� ��d� ��d �����

The inverse dynamic model is an approximation of this relationship that computes the

desired torque Td required to move along the desired trajectory� Td is then converted to

desired forces in individual muscles Ftd � and then using the inverse muscle model� to give the

motor commands N�

N � �f��M �Ftd �xmd
� �xmd

�

To generate the correct torque and exactly track the desired trajectory� perfect knowledge

of the dynamic relationships represented by D�C� f��M is required� If Td and N is computed

by the brain and sent to the muscles� then for the linearized three muscle pair model one can

derive the actual torque generated by the muscles as�

T � Td �K���d ��� �B�� ��d �
���

The torque is a sum of the desired torque and corrective terms derived for the equilibrium

point control in the previous section� The system retains the equilibrium point characteristics

and is able to compensate for known dynamics of the arm�

Fig� ��
 shows the block diagram for this method of control� The main computational block

in this system is the inverse dynamics model represented by �f��D which is an estimate of the

inverse passive dynamics represented in Eq� ���� A perfect inverse muscle model �f��M � f��M is

assumed� Together they can be represented as the estimated inverse dynamics for the whole

plant �f��P �

When the inverse model perfectly models the dynamics of the arm �f��P fP � �� there is exact

tracking of the desired trajectory and T � Td� and the equilibrium properties of the muscles

and spinal re�ex are not required� However when the model is not accurate and does not

generate the correct torque values causing deviation from the desired trajectory� the equilibrium

control takes over and controls the characteristics of movement just as in the previous section�

thereby still maintaining the asymptotically stable behavior of the plant� This is illustrated in

a simulation in the null �A� and force �eld �B� in Fig� ��	� In both cases the inverse dynamics

model is estimating only the dynamics of the unloaded arm with no external dynamics� The

null �eld simulation is an unloaded arm movement when no external forces act on the arm� In

this situation a near perfect movement is obtained� The reason that the movement is not exact

is because the dynamics associated with the neural activation �lter hi cannot be inverted and
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Figure ��	� Simulated trajectories for inverse model feedforward control� �A� null �eld� �B�

force �eld B�� ���� hand paths for eight directions movement represented as dots �big gray dots�

actual� small black dots� desired� at �� ms intervals� ���� parallel �gray line� and perpendicular

�black line� hand velocities for downward movement direction

is approximated here by a time delay of �� ms� When the force �eld is turned on in �B� then

the hand trajectory initially shows a clockwise deviation due to the force �eld but then returns

to the desired end�point position in a stable manner due to the equilibrium properties of the

arm�

In force �eld B�� if the inverse dynamics model is altered so that it predicts the force �eld

and accounts for the change in dynamics due to the �eld� then the hand can track the desired

trajectory exactly and looks like a movement in the null �eld� An adaptive mechanism that

modi�es the inverse model can be based on the error signal derived from the dierence in

desired and actual trajectory as shown in Fig� ��
 by the dotted line� The model adjusts itself

to minimize this error� A problem associated with this type of learning due to a particular form

of redundancy in nonlinear systems has been pointed out by �Jordan� ������ This problem can

be overcome by using a Feedback Error Learning approach developed by �Kawato et al�� �����

that makes use of a feedback controller to guide the learning of the inverse model� In the case

of the human arm� such a feedback controller is present in the form of spinal re�ex� and the

output neural activation of the spinal controller NR can be used for adapting the inverse model�

Hence the inverse model based feedforward control method provides stable control when the

arm dynamics are suddenly altered and also a mechanism for adaptation to changes in the arm

dynamics�
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��� Feedback Control of the Human Arm

Feedback control is a method where the brain uses sensory feedback information about the state

of the arm from vision and proprioception to generate or modify the motor commands sent to

the arm based on error in the measured state and the desired trajectory�

The feedback control of a system has the following advantages�

� It is robust to noise and changes in the plant

� With high feedback gains it is possible to emulate the inverse dynamics of the system with

a simple linear controller and achieve close to exact tracking of the desired trajectory

Its disadvantages�

� Extremely sensitive to noise in feedback

� A�ected greatly by time delays in the feedback loop

� The actual trajectory can never track the desired trajectory exactly

In the human motor system� feedback control is very attractive because of its advantages�

specially because humans have to interact with di�erent environments that continually alter the

dynamics of the system they are trying to control� And� visual control of movement is a form

of feedback control that is very useful� However the time delays in the feedback loop severely

limit the scope of feedback control and do not allow simple feedback control of the system� The

reason is that information about the outcome of a control action is not available instantly and

has to go through a delay before reaching the controller� By the time the control action is taken

it may no longer be appropriate for dealing with the current errors in the output of the system�

To overcome delays in the feedback� what is required is a method to obtain the current state

or output of the system without having to wait for it to feed back� For stable feedback control

the brain has to compute the state of the arm at current time t from a delayed measurement

of the state at time t � t�� where t� is the feedback delay� and a history of motor commands

sent out by the brain until the current time t� In control literature� a computational unit that

estimates or predicts current state estimates is called an observer� Hence an observer has to be

designed to solve the time�delay problem� In the context of arm movements� the concept of a

Forward Model has been proposed by �Miall and Wolpert� ���	
 to construct an observer and

achieve feedback control in the presence of time delays in the system�
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Forward Dynamics Model based Feedback Control

The forward dynamics model refers to a hypothetical computational network in the brain and

has been de�ned by �Miall and Wolpert� ���	
 as an internal model that mimics the causal

ow of a process by predicting its next state given the current state and the motor commands�

The forward model is a model of the input�output mapping of the human arm from muscle

activation to arm movement� It can be represented as an estimate of the forward dynamics

of the plant �fP � that predicts hand acceleration ��x� from neural signal N and hand state x� �x�

�Miall et al�� ����
 proposed a control strategy based on the forward model known as a Smith

predictor model for feedback control of fast movements� This method was initially developed

by O�J�M� Smith for time�delayed single variable linear systems� Miall et al� tested the Smith

predictor method for feedback control of a time�delayed single variable linear system and showed

that it succeeded in doing so� but became unstable when the delay time or the plant was not

accurately modeled� The main problem with the Smith predictor approach is that it cannot be

used for nonlinear systems and results in unstable oscillatory behavior� To test this method for

estimating the state of a two�joint human arm� let us formulate the problem in the framework

of an observer� The actual plant can be expressed as�

� � �x�t
 � fp�N�t
� x�t
� �x�t



y�t
 � x�t� t�


�y�t
 � �x�t� t�


where� N is the motor command input to the system� x is the state of the system� and y is

the output of the system being measured� We have to design an observer that can estimate the

state x from the measurement y and input N� The observer design based on a Smith predictor

is as follows�

�� � ��x�T 
 � �fp�NC�T 
� �x�T 
� ��x�T 



�x��
 � x��


��x��
 � �x��


��x�t� i�
 � ��x�t� �i� �
�
 �

Z t�i�

t��i����

��x�T 
 dT

�x�t� i�
 � �x�t� �i� �
�
 �

Z t�i�

t��i����

��x�T 
 dT

��x�t
 � ��x�t
 � � �y�t
� ��x�t� t�
�

�x�t
 � �x�t
 � �y�t
� �x�t� t�
� � � � �y�t
� ��x�t� t�
�

i � �����

�	



Figure ���� Block diagram showing how a forward model �fp can be used to construct an observer

for a time�delayed nonlinear system�

where� �x� ��x are the feedback�updated state estimates output by the observer� and �x� ��x are the

non�updated state estimates� The observer is presented in Fig� F� Simulation of a movement

based on this observer is presented in a later section in Fig� F and shows that this method

is unstable in the presence of unmodeled dynamics when the forward model does not exactly

mimic the plant�

The Smith method is based on the solution of a linear system at time t given the output of

the plant at time t� t� and the inputs to the system in the interval t� t� to t� It uses a single

forward model to compute the state estimates� However� it does not work for nonlinear systems

because the solution to nonlinear systems cannot be found analytically and has to be computed

iteratively� So an observer has to be designed that can solve a nonlinear system iteratively�

A new observer that is capable of performing this iterative computation can be formulated as

follows�

�� � ��x�T 
 � �fp�NC�T 
� �x�T 
� ��x�T 



�x�t� t�
 � y�t


��x�t� t�
 � �y�t


��x�t� t� � i�
 � ��x�t� t� � �i� �
�
 �

Z t�t��i�

t�t���i����

��x�T 
 dT

�x�t� t� � i�
 � �x�t� t� � �i� �
�
 �

Z t�t��i�

t�t���i����

��x�T 
 dT

�x�t
 � �x�t


��x�t
 � ��x�t


i � ����
t�

�
�� n


where� �x� ��x are state estimates output by the observer� and �x� ��x are intermediate variables used

by the observer� The above equations represent the iterative solution of a system �fp at time t�

given the initial state of the system y� �y and the input NC during the time interval t � t� to

��



t� � is the discretized iteration time interval which should ideally be in�nitely small� However

for practical systems the value of � can be determined by the frequency response of the system

and for simulations in the current study was chosen to be ����� sec� A network to implement

the forward model based observer is presented in Fig� ���� It requires multiple copies of the

forward model� The number of these copies n can be optimized by choosing the optimal �� The

computation time for the observer to generate current state estimate depends on the number of

forward models computations that have to be performed and hence is directly proportional to

n� In the current study this computation time was modeled as � msec and was the time delay

in the estimation process�

For the simulations� t� has a value of ��� msec� and is composed of ��� msec feedback delay

and 	� msec descending neural path delay including the �� msec muscle activation delay� The

estimate represents the best knowledge of the current state of the hand and can then be used

by the brain to issues neural commands to correct for error in the desired and estimated state�

The forward model will give wrong estimates if the estimate of the plant �fp is not equal to fp�

This occurs when the dynamics of the arm are altered by unknown external perturbations to

the arm� In the following sections the ability of the forward model to control arm movements�

its robustness to unmodeled dynamics� and its adaptive capabilities are examined�

Three di�erent modalities of feedback control based on three coordinate systems involved in

the motor system are possible� The �rst one is based on the muscle coordinate system and uses

linear feedback to directly modulate the activation of muscles� The second method is based on

the joint coordinates and applies linear feedback to control the torque produced by the arm�

And the third method based on cartesian coordinates uses linear feedback to change the desired

acceleration of the hand� The estimates derived from the forward model can be expressed in

either of these three coordinates and then used for appropriate control� These three methods

are examined in the next three sections�

����� Neural Activation Feedback Control

The descending motor command NC is directly controlled and is computed as�

NC � Kp��xm � xmd

 �Kv� ��xm � �xmd


 ����


This is a very simple form of feedback control which requires computation of the muscle

state through the forward model and then uses a linear controller to vary the neural activation

to each muscle based on the error in muscle length and velocity� It is analogous to the way that

spinal reex works� The set�point to the spinal reex loop is the estimated muscle postion and

velocity� which gives�

��



Figure ��	� Block diagram illustrating the neural activation feedback control method� The

switch is in position � for feedback only control and in position � for feedback�feedforward

control

NR � Ks��xm � xm
 �Bs� ��xm � �xm


The block diagram for this control is shown in Fig� ��	 with the switch connected to ��

The simulations using this control for arm movements in eight directions for the unloaded arm

�null �eld
 and in the presence of force �eld B� is shown in Fig� ����A�B
� The forward model

in both cases� models the dynamics of the arm in the null �eld and therefore generates wrong

estimates when the external force �eld is introduced� The gains of the feedback control used

for the simulations are kp � �� and kv � �� The gains are �xed at half the value at which

they cause unstable oscillations in the system in the force �eld� The ratio of kp and kv is

optimized to give the maximum gain possible� The movements in the null �eld are not straight

and do not track the desired trajectory exactly� although they converge to the target� This

is because the feedback gains are not in�nitely high� Simulations in the force �eld show that

the system is oscillatory but damped so that stability is maintained� It is possible to change

the forward model so that it models the force �eld B� and produces correct state estimates�

A mechanism for this adaptation of forward model could be based on the error in estimated

and actual state of the arm� Fig� ����C
 shows the simulation for the corrected forward model�

There is great improvement in the performance of the system and the movement is closer to

the desired trajectory� However it is still not able to track the deisred trajectory exactly in a

straight line path� This shows that this method though e�ective for stable feedback control of

movement� is not able to produce the desired behavior exactly� The reason for this inability

��
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at �� ms intervals� ��
� parallel �gray line
 and perpendicular �black line
 hand velocities for

downward movement direction
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Figure ���� Block diagram illustrating the joint torque feedback control method� The switch is

in position � for feedback only control and in position � for feedback�feedforward control

to produce the desired trajectory is that dynamics of the plant are completely ignored in the

controller and the feedback gains are not in�nitely high�

����� Joint Torque Feedback Control

This is a method of torque control based on the linear feedback error between estimated and

desired joint state� The muscles are programmed to control the joint torque� The desired torque

is computed as�

Td � Kp���d ��
 �Kv�
���d � ��
 ����


The individual muscle forces Ft are determined from the desired torque� and then the motor

commands are computed using the inverse muscle model f��M �

NC � f��M �Ft� �xm� ��xm


It is important to note that the inverse muscle model relies on estimated muscle state

generated from the forward model to compute the activation� In order to produce the desired

torque and muscle force one requires the current state of the muscle� The best knowledge of

the current state for a time�delayed system is the estimate from the forward model�

The set�point to the spinal reex loop is again�

	�



(A1)

0.5 1 1.5 2

0

0.1

0.2

0.3

Time (s)

H
an

d 
V

el
oc

ity
 (

m
/s

)

(A2)

(B1)

0.5 1 1.5 2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

(B2)

(C1)

0.5 1 1.5 2

−0.1

0

0.1

0.2

0.3

Time (s)

(C2)

Figure ���� Simulated trajectories for torque feedback control� �A
 null �eld� �B
 force �eld

B�� �C
 force �eld B� with the forward model adapted for the �eld� ��
� hand paths for eight

directions movement represented as dots �big gray dots� actual� small black dots� desired
 at

�� ms intervals� ��
� parallel �gray line
 and perpendicular �black line
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downward movement direction

NR � Ks��xm � xm
 �Bs� ��xm � �xm


The block diagram representing this control method is given in Fig� ��� with the switch

in position �� Fig� ��� shows the simulations of arm movements with this method� The

feedback gains are kp � �� and kv � � and chosen with the same critireon as in the previous

control method� In the null �eld the movements of the hand are not straight even though the

estimates are correct� This is because dynamics of the arm are ignored in the computation of

the torque and the gains are not in�nitely high� If the feedback gains are kept limited by the

uncertainties in the dyanmics of the arm� then this represents a drawback for this control� The

simulations with the force �eld seem to be oscilatory but stable and converge to the target after

the initial deviation� The performance is more stable than the neural feedback control because

of added stability of inverse muscle dynamics� but it su�ers from the same drawbacks� The

same arguments as in the case of neural feedback system apply here� A change in the forward

model so that it models the force �eld B� and produces correct state estimates� is simulated

in Fig� ����C
 and shows that there is improvement in the performance of the system and the

	�



Figure ����� Block diagram illustrating the hand acceleration feedback control method� The

switch is in position � for feedback only control and in position � for feedback�feedforward

control

movement is closer to the desired trajectory� However it is still not able to track the deisred

trajectory exactly in a straight line path� This method like the activation control is e�ective for

stable feedback control of movement� but is not able to produce the desired behavior exactly�

����� Hand Acceleration Feedback Control

In this method� the brain controls the acceleration of the hand based on the error in estimated

and desired hand position and velocity� The acceleration is computed as�

�xd � Kp�xd � �x
 �Kv� �xd � ��x
 ����


To produce the desired acceleration� the controller relies on the inverse plant model �f��P �

that consists of the inverse dynamics model �f��D and the inverse muscle model f��M � to generate

the motor commands�

NC � �f��P ��xd� �x� ��x


It is important to note that the inverse plant model also relies on estimated muscle state

generated from the forward model to compute the activation�

The set�point to the spinal reex loop is again�

NR � Ks��xm � xm
 �Bs� ��xm � �xm
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Figure ����� Simulated trajectories for hand acceleration feedback control� �A
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The block diagram representing this control method is given in Fig� ���� with the switch in

position �� Fig� ���� shows the simulations of arm movements with this method� The feedback

gains are kp � ��� and kv � �� and chosen with the same critireon as in the previous control

method� In the null �eld the movements of the hand are straight and almost exactly track the

desired trajectory� This had not been possible with the previous two methods� The reason

that performance is much better for feedback in hand space is the incorporation of an inverse

dynamic model of the arm in the controller� The simulations with the force �eld B� seem to be

oscillatory but stable and converge to the target after the initial deviation� Fig� �����C
 shows

that if the forward model is changed so that it now models the altered dynamics with the force

�eld B�� then the performance of the system is greatly improved� Performance identical to

that in the null �eld can be obtained if a change is also made in the inverse dynamics model to

include the force �eld� Hence with this method it is possible to not only provide stable feedback

control but to also to adapt to altered dynamics of the arm and converge to the straight path

desired movement�

��� A Method using both Feedforward and Feedback Control

One of the problems associated with feedback control is that of tracking the desired trajectory

exactly� With feedback gains that are not su�ciently high� the actual trajectory only approx�

imates the desired trajectory as was seen with only feedback control of movement for neural

activation and torque control methods� The other disadvantage with these methods was that

of adapting to altered dynamics by changing the forward model� which improved performance

but still caused errors in tracking the desired trajectory� One way to overcome this drawback is

to combine inverse model feedforward control with feedback control� In the new con�guration�

the feedforward signal controls the system and the feedback signal corrects for unmodeled dis�

turbances to the system� hence this method integrates the advantages of both the feedforward

and feedback techniques� New block diagrams for the three feedback schemes considered earlier

are obtained by connecting the switch to position �� which adds feedforward signals to the con�

troller� The results of simulations for the null �eld and force �eld B� movements are provided

in Figs� ��������A�C
 for the three control methods� There is great improvement in behavior

for the �rst two methods with neural activation and torque feedback control� For the neural

activation feedback �Fig� �����A

� there is great improvement in stability of the system� This

is expected because a muscle inverse model that provides equilibrium point control is added to

the system� An inverse plant model generates the feedforward activation for the null �eld case

from the desired trajectory� For the torque feedback �Fig� �����A

� the improvement occurs in

the null �eld case because of addition of the inverse dynamics model that generates the correct

torque for the movement� This allows for exact tracking of the desired trajectory� There is

almost no change in the hand acceleration feedback case� Figs� ��������B
 show the trajecto�
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Figure ����� Simulated hand paths for feedback�feedforward neural activation control shown

in Fig� ��	 with switch in position �� �A
 null �eld with IM�FM��� �B
 force �eld B� with

IM�FM��� �C
 force �eld B� with IM�FM�B�� �D
 force �eld B� with IM�FM�B�
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ries for the three controllers in unmodeled force �eld B�� Figs� ��������C
 show the change in

behavior once both the inverse and forward models adapt to �eld B�� All three controllers are

capable of adapting fully to altered dynamics� A fourth simulation in Figs� ��������D
 where

both the forward and inverse models have changed to adapt to force �eld B� but are made

to perform in the opposite �eld B�� is done to test the stability and robustness of the three

methods to a larger error in modeled dynamics� Comparison of the simulations for the three

cases where both feedforward and feedback control is used� with each other� reveals that they

are almost identical in behavior and stability properties� This suggests that all three methods

of control are almost equivalent although their feedback structure is in di�erent coordinates�

The common properties of these three methods are�

�� Use of an inverse model to generate the feedforward signals� and a forward model to

generate the estimates for feedback control� Hence the control relies on both the forward

and inverse plant models�

�� Exact tracking of the desired trajectory can be achieved�

�� Stable control of the arm in the presence of external force �elds

�� Adaptation to the altered dynamic environments through changes in the forward and

inverse models�

�� Greater sensitivity of performance of the system to changes or errors in the forward model

than to the inverse model

	�



Chapter �

Experimental Results for Reaching

Movements of the Arm

This chapter examines experimental data collected from human subjects for point�to�point

reaching movements in order to assess the properties of the controller used by the brain when

novel external dynamic conditions are introduced� The task given to the subjects is to move a

robotic manipulandum �see Fig ��	
 in a horizontal plane at the shoulder level from one point

to another� The position of the hand and the target to move to� are presented on a vertical

screen in front of the subjects� They are instructed to move their hand from its current position

to a target � a � cm� box 
 placed �� cms away in one of eight equally spaced directions� They

have to get to the target within ��� � ���� s to successfully complete the movement� The target

explodes if the movement is performed succesfully� otherwise it provides a visual cue to the

subject to move faster if the movement is slow� or move slower if the movement is too fast� The

robot can be programmed to apply a force on the hand when the movement is being made�

��� Terms used to describe Hand path and Trajectory

� Parallel velocity � the component of hand velocity in the direction of the target

� Perpendicular velocity � the component of hand velocity perpendicular to direction of the

target

� Jerk � the third order derivative of hand position or the rate at which acceleration changes

��� Key Parameters for Characterization of the Movement

In order to quantify and charaterize the movement the following general parameters are de�ned�

��



�� Movement time �tm
 � the time required to complete the movement� de�ned as the time

from when the speed increases beyond ��� of its maximum value to the time when it

drops below �� of its maximum value and then stays below it�

�� Movement distance �dm
 � the path length for the movement

�� Peak speed � a measure of how fast the movement is� de�ned as the �rst peak in the speed

pro�le after the speed crosses ��

�� Jerk ratio � the ratio of the cumulative squared jerk for the movement and the cumulative

squared jerk for a minimum jerk movement of the same peak speed� It measures the

smoothness of the acceleration pro�le for a movement with respect to that of a minimum

jerk movement�

�� Movement Area � the area between the hand path and the straight line connecting the

starting point to the target� It is a measure of the deviation from the straight line path�

	� Movement Correlation � the correlation coe�cient of hand velocity of a movement with

that of a minimum jerk movement� The method for computation of the correlation coef�

�cient is provided in �Shadmehr and Mussa�Ivaldi� ����


�� Perpendicular displacement � the perpendicular displacement of the hand path from the

straight line path� ��� or ��� ms into the movement� It measures deviation from the

desired trajectory

�� Perpendicular power � the power in the frequency spectrum of perpendicular velocity�

�� Mean Error Energy � the mean of a Lyapunov like energy function for the movement

de�ned as E � � ��d � ��
TD� ��d � ��
 � ��d ��
TK��d ��
� where D is the inertia

matrix and K is the sti�ness matrix associated with the plant dynamics�

As will be shown later� the movements to the target in the presence of force �elds ex�

hibit near�discontinuous behavior in the hand path during the corrective phase of the move�

ment� These near�discontinuities cause the hand path to look segmented� Hence the near�

discontinuities are termed as segmentation points� The near�discontinuities occurs where there

is a sharp change in the direction of movement and in the derivative of speed of the movement�

Hence a segmentation point is de�ned as a point in the movement that exhibits a sharp change

in movement direction and speed derivative� The segments also exhibit curious kinematic pat�

terns� In order to quantify this kinematic pattern� the following segmentation parameters are

de�ned�

�� t� � the time required to move from the start point to the �rst segmentation point

��



�� d� � the distance covered in the �rst segment

�� �� � the angle between the line joining start point to the target and the �rst segment

�� t� � the time required to move from the �rst segmentation point to the second segmentation

point

�� d� � the distance covered from the �rst segmentation point to the second segmentation

point

�� �� � the angle between the line joining �rst segmentation point to the target and the

second segment

	� t� � the time required to move from second segmentation point to the third segmentation

point


� d� � the distance covered during the third segment

�� �� � the angle between the second segment and the third segment

�� NS � the number of segmentation points in a movement

��� jvjSP� � the hand speed at the �rst segmentation point

The signi�cance of these segmentation parameters will be established in the next chapter� Fig�

��� in the next chapter shows the segmentation process and the segmentation parameters�

��� Movements in the Null Field

The subjects are initially trained to make reaching movements with the robotic manipulandum

for four sets of ��� movements each� The robot does not produce any active force on the hand�

This is called the Null �eld� This is to train the subjects thoroughly with the experimental

paradigm� the visuomotor transformation from the horizontal plane hand coordinates to the

vertical plane visual coordinates� and the passive dynamics of the robotic manipulandum� The

averaged movement and the maximum correlated movement for eight movement directions at

the end of training for a group of �� subjects is shown in Fig� �������� The last three movements

in each direction for the last set of ��� movements is taken for each subject �and hence a total of

�
 movements for each direction�� The movements are normalized to a peak velocity of �� m�s

by scaling the time axis and the hand velocity by the ratio of peak velocity for the movement and

the normalization velocity of �� m�s� The normalized trajectories are subsequently averaged

to obtain the mean trajectory� For each movement direction� the correlation between velocity

pro�les of the �
 movements is computed� and the movement with the maximum correlation
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x�axis in sec��
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Figure ���� Typical and desired speed pro�le for late training in null �eld� Center subplot� hand

paths� Surrounding subplots� minimum jerk desired speed �gray line� and typical movement

speed �black line�� Units for y�axis are in m�sec and x�axis in sec�

to all other movements found� This is de�ned as the typical movement for all the subjects� In

Fig� ��� the speed pro�le for the typical movements is compared to the minimum jerk speed

pro�le� From these �gures� the following can be concluded about hand trajectory formation at

the end of training�

�� The subjects are able to complete the movement successfully in �� s

�� The hand paths are straight line movements to the target

�� The speed pro�les are bell�shaped and symmetric about the center of movement where

peak in speed also occurs and correspond very closely to the minimum jerk speed pro�le

�� The subjects are able to adapt completely to the visuomotor transform and the dynamics

of the robot

It has been shown previously by �Flash and Hogan� ��
�� that humans plan reaching move�

ments in order to follow a minimum jerk trajectory� The results here are consistent with the

previous �ndings� The minimum jerk trajectory seems to represent the desired behavior for

subjects when making reaching movements� In other words� it is their kinematic plan for moving

from one point to another�

	�



0.5 1 1.5 2

0

0.1

0.2

0.3

0.5 1 1.5 2

0

0.1

0.2

0.3

0.5 1 1.5 2
−0.1

0

0.1

0.2

0.3

0.5 1 1.5 2

0

0.1

0.2

0.3

0.5 1 1.5 2

0

0.1

0.2

0.3

0.5 1 1.5 2

0

0.1

0.2

0.3

0.5 1 1.5 2
−0.1

0

0.1

0.2

0.3

0.5 1 1.5 2

0

0.1

0.2

0.3

Figure ���� Average Trajectories in Early Training of Force Field B�� Center subplot� hand

paths� Surrounding subplots� parallel �gray line� and perpendicular �black line� velocities �units

for y�axis are in m�sec and x�axis in sec��

��� Movements in Force Field B�

After the initial training in the null �eld� the robot is programmed to generate active forces on

the hand while a movement is being made� The forces produced by the robot simulate the force

�eld B� introduced in Sec� ���� This alters the dynamics of the system that the subjects are

trying to control as presented previously� The subjects perform three sets of ��� movements in

this force �eld� The behavior of �� human subjects is summarized in Fig� �������� Figs� �������

shows the average and typical hand paths and velocity pro�les when the subjects are initially

exposed to �eld B�� There is an initial deviation from the straight line desired path as the force

�eld pushes the hand in a clockwise direction� followed by a quick corrective movement to the

target� The typical trajectories show that there is some oscillatory and unstable behavior as

the subject tries to correct for deviation due to the force �eld�

As the subject trains in the force �eld the performance shows a gradual improvement until

it converges back to the desired minimum jerk trajectory� Figs� ��	���
 show the average and

maximally correlated movements late in the training of �eld B� and one can see that the hand

paths are almost straight lines to the target with smooth bell shaped speed pro�les� This

shows that some change has taken place in the controller used by the brain� that allows one

to counteract the forces due to the force �eld and adapt to the altered arm dynamics� To

understand how the behavior of the controller progresses over time� certain key movement

parameters are studied over the duration of the three sets of training� Fig� ��� shows how the
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key movement parameters� averaged for groups of �� movements and for all �� subjects� progress

with training in the �eld� The exponential change in the parameters supports the hypothesis

that there is a gradual transition in the controller that causes improvement in performance with

training�

In another set of experiments� �� other subjects are trained in the null �eld and then in the

force �eld� However� for �� movements in each set of ��� movements in the force �eld� the force

�eld is turned o� so that the movement is made in the null �eld� The subject is not told of

this sudden change� The behavior of the subject in the null �eld is termed an after�e�ect as it

re�ects the e�ect of training in the force �eld� After�e�ect movements and late in training of the

force �eld are compared with early �elded movements in Fig� ����� The after�e�ect movements

appear to be a mirror image of the �elded movements� Previous results similar to this one� had

prompted �Shadmehr and Mussa�Ivaldi� ����� to suggest the gradual formation of an internal

model in the controller that predicted the force �eld and produced signals to overcome the force

�eld�

��� Movements in Force Field B�

After training for three sets in force �eld B� a subset of the �rst group of �� subjects was made

to perform two sets of reaching movements in force �eld B�� Figs� ��������	 show averaged and

typical movements for early and late training periods in �eld B�� B� being opposite in e�ect

	




Figure ���� Changes in key movement parameters for the three sets of training in �eld B��

Plot of average of �� movement groups with standard deviation for �� subjects�
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(A) (B)

Figure ����� Comparison of hand paths for early �elded movements �A� with late after�e�ect

trajectories �B� in force �eld B��
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to B�� pushes the arm in an anticlockwise direction� The deviations are much greater early

in B� than they are in B� because in addition to �eld B�� the subjects expecting clockwise

force �eld B� push in the anticlockwise direction� There is also a greater di�erence in the

expected and actual dynamics of the arm� which leads to greater instability and increased

oscillatory behaviour� Late in B�� the performance improves greatly� showing convergence to

the minimum jerk trajectory�

The remaining subjects from the group of �� come back after � hours to perform in force �eld

B�� The idea is to determine the changes that take place in the controller during a period of rest�

A comparison of the changes in key movement parameters during training in B� for the  and

� hour groups is shown in Fig� ���
� The performance for the � hour group is de�nitely better

than the  hour group for most movement parameters� This represents a reduced interference

from the previously learned �eld B�� In a recent work by �Shadmehr and Holcomb� ���	�� it

was found that � hours seemed to be a critical period for memory consolidation for �eld B��

Is it possible that the reduced interference from memory of �eld B� and the consolidation of

B� are due to related changes in the controller occuring during the period of rest� This will be

discussed in detail in a later section�
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Figure ���
� Changes in key movement parameters for the two sets of training in �eld B�� Zero

hour group �black line� Six hour group �gray line�� Plot of average of �� movement groups with

standard deviation�
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Chapter �

Methods for Adaptive Motor

Control using Internal Models

The experimental results from the last chapter establish that learning of the force �eld takes

place gradually over time� It has been proposed by �Shadmehr and Mussa�Ivaldi� ����� that

this process of learning occurs by adaptation of Internal Models that predict the dynamics

of the force �eld� After�e�ect movements provide evidence in support of this theory� Of the

various methods for human motor control described in Chapter �� there are only two methods

that support gradual and perfect adaptation to external dynamics� One is the inverse model

feedforward control where the inverse model gradually adapts to the external dynamics� The

other is the combination of forward model feedback and inverse model feedforward control�

where both the inverse and forward model exist and gradually adapt to the altered dynamics�

The behavior of the three di�erent modalities for the feedforward � feedback control was nearly

the same as shown in chapter �� Hence we look at only one of them in greater detail here� This

is the hand acceleration linear feedback method with both the forward and inverse models being

a part of the feedback loop� It is intuitively the most appropriate form of control for a visually

guided task that directly controls the acceleration of the hand� Therefore two types of control

and adaptive models are examined in this chapter�

�� Adaptive Inverse Model based Feedforward Control

�� Adaptive Forward�Inverse Model based Cartesian Feedback Control

��� Near�discontinuities and segmentation patterns in hand paths

An attempt is made to distinguish between the two cases based on their stability properties�

Then the two cases are compared to experimental results to determine if any of them can

reasonably explain the adaptation data collected from human experiments� For the purpose of
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Figure ���� Hand trajectories for two simulations using inverse model feedforward control �A�

left column� and forward�inverse model feedback control �C� right column�� and for a typical

subject �B� middle column�� ��� hand paths for 
 movement directions� ��� parallel �gray

line� and perpendicular �black line� hand velocity� ��� hand speed� ��� derivative of velocity

direction� ��� segmented hand path� for the downward movement direction� S� � S� represent

the movement segments
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Figure ���� Segmentation parameters for the two simulation methods and the typical subject�

The values are represented by three bars� inverse model feedforward control �white� left side��

forward�inverse feedback control model �black� right side�� typical subject �dark gray� middle��

The value of the highest bar is given at the top and the others are scaled proportionately

distinguishing between the two� the movement in force �eld B� when the forward and inverse

model are expecting �eld B� is examined� Since the two force �elds are anti�correlated� the

greatest error between the plant and the dynamics model occurs in this situation� and causes the

system to be maximally unstable� The simulations for 
 directions of movement are shown for

the inverse model feedforward control in Fig ����A� and for the forward�inverse mixed control

in Fig ����C�� There are clear di�erences in the stability and corrective behavior of the system�

The �rst method using only feedforward control is more stable and converges to the target

along a straight line after the initial deviation for directions ����	�
� The feedback method on

the other hand is more unstable and shows oscillatory behavior around the end�point� It also

produces curious kinematic patterns marked by near�discontinuities in the hand path during

the corrective phase of the movement� The �rst corrective movement does not point in the

direction of movement which constitutes a clear di�erence from the feedforward only case� This

is especially marked for the downward movement direction�

To compare the simulations with actual human behavior� arm trajectories generated by

the group of �� normal subjects are studied� when they make reaching movements under the

same force �eld condition� This is achieved by training the subjects in �eld B� until they have

converged to the desired behavior and have� presumably� perfectly adapted their internal model

to this �eld �including both inverse and forward model if it exist�� This is because atleast

within the framework of the two methods discussed here� desired behavior can be achieved only

when both the inverse and forward models have adapted to the dynamics of the plant� The
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Subj 5 Subj 6 Subj 7 Subj 8

Subj 9 Subj 10 Subj 11 Subj 12

Subj 13 Subj 14 Subj 15 Subj 16

Figure ���� Hand paths for �� subjects for �rst movement in each direction in the force �eld

B�� Circular dots represent segmentation points

1(a) 1(b) 1(c) 2(a) 2(b) 2(c) 3(a)

3(b) 3(c) 4(a) 4(b) 4(c) 5(a) 5(b)
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16(b) 16(c)

Figure ���� Hand paths for �� subjects for �rst three movements in ��o downward direction

in �eld B�� Circular dots represent segmentation points� The number on the side of the

movement represents subject number and the alphabet the movement number� eg� ��b� is the

second movement in the �eld for subject �







subjects are subsequently tested in �eld B�� and their �rst three movements in each direction

compared to the simulations� The trajectories for a typical subject are shown in Fig� ����B��

The subject has great di�culty in stabilizing the arm and stopping the hand at the target� The

subject�s trajectory shows qualitatively the same kinematic pattern of near discontinuities and

segmentation of movement as the forward�inverse mixed control�

Note� The experimental data presented in this chapter is from a group of �� subjects composed of

two subgroups � � subjects that performed in �eld B� immediately after training in �eld B� and �

other subjects that performed in �eld B� six hours after B� training� The segmentation behavior

of the two groups did not show a signi�cant di�erence in kinematic pattern of discontinuities

and hence are treated together as one group in this chapter�

The �near path�discontinuities or segmentation points� were de�ned in the previous chapter

as points on the trajectory where there is a sudden change in both the derivative of hand speed

and the direction of hand velocity� are used to quantify this kinematic pattern� The segmen�

tation points represent the start of corrections to the ongoing movement and relate directly

to feedback and equilibrium properties of the control model that cause corrections to external

perturbations� The two di�erent control methods di�er in their feedback and equilibrium prop�

erties and hence these points are very appropriate to describe the trajectory and segment the

movement to de�ne its kinematic behavior� Most of the movements studied have atleast three

segments� The �rst segment is a result of feedforward neural signal and external force �eld�

while the second and third segments are mainly due to feedback correction to the deviation�

Based on these three segments the following parameters were de�ned in the previous chapter�

��� angle between the �rst segment and the straight path to the target� d�� the distance covered

during the �rst segment� ��� angle between the second segment and straight path to the target

from the �rst segmentation point� t�� time duration of the second segment� ��� angle between

the second and third segments� NS � the number of segmentation points in the movement� We

also calculate the cumulative jerk CJ in the movements to get a measure of the instability in the

system� Fig� ����B������ shows how the segmentation points are de�ned based on speed pro�le

and direction of hand velocity pro�le� and characterize the kinematic pattern in the hand path

for the downward direction movement for the typical subject�

Fig� ��� plots the values of various segmentation parameters obtained for the three down�

ward direction movements in Fig� ���� They are represented as bars whose height is a factorized

value for the parameter� The inverse model feedforward control �light gray� left side� and the

forward�inverse feedback control model �black� right side� when compared to the typical subject

�dark gray� middle�� clearly establish that only the feedback control method can explain the

experimental data�

To show that this kinematic pattern of segmentation is present across most of the subjects�

the �rst movement in each direction in force �eld B� is presented in Fig� ��� for the �� subjects�
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Figure ���� Segmented hand paths for �� simulations of the forward�inverse model feedback

control in ��o downward direction in �eld B�� Inverse and Forward model expect �eld B��

Movement control parameters varied for the �� simulations
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Figure ���� Segmented hand paths for �� simulations of the inverse model feedforward control

in ��o downward direction in �eld B�� Inverse model expects �eld B�� Movement control

parameters varied for the �� simulations
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Figure ��	� Bar plot of average segmentation parameters with standard deviation for the �rst

�elded movement for �� subjects �dark gray� middle�� �� simulations of inverse model feedfor�

ward control �light gray� left side� and �� simulations of forward�inverse model feedback control

�black� right side� for the ��o downward movement

��



Fig� ��� shows the subjects �rst three movements �a�c� in the downward direction and is the

data used primarily for distinguishing between feedforward and feedback control� The hand

paths show the segmentation points as circular dots and establish that the characterization of

the discontinuities is achieved well by the segmentation points� One can clearly see from Figs�

��� and ��� that the kinematic pattern is present in the �rst movement of all subjects and to

a lesser extent in their later movements� In order to have a substantial number of movements

for quantitative analysis� the �rst three movements in each direction are considered� and it is

assumed that no adaptation of internal models takes place during this time� This group of

�
 ��� subjects x �� movements is compared to �� simulations of the forward�inverse model

feedback control and �� simulations of the inverse model feedforward control� The di�erent

simulations of the two control methods is obtained by varying the control parameters in the

two methods� feedback gains� desired movement time or peak speed� sti�ness or cocontraction

level� muscle viscosity� inertia and link lengths of the arm� These parameters are expected to

vary from one subject to another and also within a subject from one movement to another�

A ���� change is considered in muscle viscosity� inertia and link lengths � parameters that

vary only across subjects� A ��� change is considered in feedback gains and sti�ness because

exact knowledge of these parameters or how they can change across movements and subjects is

not known� A ��� is considered in the movement time based on peak speed measurements

for subjects� The movement in downward direction for the �� simulations of inverse model

feedforward control is given in Fig� ���� and for the �� simulations of forward�inverse feedback

control in Fig� ����

The average values with standard deviation of the segmentation parameters for the simula�

tions and the experimental data are presented in Fig� ��
� for three directions of movement that

show greatest di�erences in the two methods of control� �a� ��o downward��b� �o upward

and �c� ���o upward� It is interesting to observe that the performance of the three groups in

the �rst segment� as represented by �� and d�� is nearly the same as expected� Only in the

parameters of the second and third segment� as represented by ��� t�� ��� and t� does feedback

control perform very di�erently from feedforward control� The behavior of human subjects is

very well predicted by the forward�inverse model feedback control�

��� Modi�ed control method based on an Estimate Reliance

Factor

There are some subjects �������
���������������� whose second �b� or third �c� movements in

Fig� ��� do not show the kinematic pattern at all and cannot be explained by variation of

control parameters for the feedback control method� These movements appear very similar to

that predicted by the inverse model feedforward control and have similar stability properties�
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Figure ��
� Bar plot of average segmentation parameters with standard deviation for �rst three

�eld B� movements in each direction for �� subjects �dark gray� middle�� �� simulations of

inverse model feedforward control �light gray� left side� and �� simulations of forward�inverse

model feedback control �black� right side�� Three movement directions are shown �a� ��o

downward� �b� �o upward and �c� ���o upward�
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Figure ���� The new control con�guration that includes a �Estimate Reliance Factor� KERF �

The value of KERF can vary between  and ��

It is unlikely that the subject generates the �rst �elded movement with the forward�inverse

feedback control and hence causes the segmentation pattern� and then switches to a di�erent

control method� the inverse feedforward control� for subsequent methods� There is a way�

however� of explaining this behaviour within the framework of one control method� by making

a smooth transition in an additional control variable� Consider a new control method outlined

in Fig ���� The scheme is broadly the same as the forward�inverse feedback control� A new

variable called the �Estimate Reliance Factor� is introduced that determines the reliance on

feedback information and the forward model� This reliance factor KERF determines a new

estimated state of the arm �xnew� ��xnew as a combination of the estimates from the forward

model and the desired trajectory as follows�

�xnew � KERF �x� ���KERF �xd �����

��xnew � KERF
��x� ���KERF � �xd �����

The feedback gain is e�ectively KERF times the original gain�

�xd � Kp�xd � �xnew� �Kv� �xd � ��xnew� �����

� Kp�xd �KERF �x� ���KERF �xd� �Kv� �xd �KERF
��x� ���KERF � �xd� �����

� KERF �Kp�xd � �x� �Kv� �xd � ��x�� �����

��



When KERF � �� the new state estimates are equal to the forward model estimates and

there is maximum reliance on the state estimates of the forward model� The control is exactly

the same as forward�inverse feedback control� When KERF � � on the other hand� the new

estimates are equal to the desired trajectory and there is no reliance on state feedback or the

forward model� The feedback corrective acceleration is zero and the desired states govern the

action of the inverse plant model� which is precisely the same as the inverse model feedforward

control� The �rst reason behind it is that if the forward model is not updated by sensory

feedback and integrates only the motor commands� then it generates estimates that are equal

to the desired trajectory� This is a good method to overcome erraneous or noisy feedback� where

you stop paying attention to the feedback and rely only on the desired trajectory� The second

reason� and one that is more relevant in this case� is that if the forward model is erraneouss and

is generating wrong estimates� then for stabilizing the arm� it is much better to stop listening to

the forward model and rely only on the desired trajectory and the stable feedforward control�

��� Explanation for segmentation of movement based on forward�

inverse model feedback control

The results in this chapter are based on the unique pattern of near�discontinuities observed

in movements of subjects in �eld B� and the ability of only the forward�inverse model based

feedback method to mimic that behavior� We are able to rule out the inverse model feedfor�

ward control due to lack of this kinematic pattern� It is important to discuss here how the

segmentation pattern occurs in adaptive forward�inverse model based feedback control when

a movement is made in �eld B� and the expected �eld is B�� in order to establish that it is

only the presence of feedback and state estimation through an adaptive forward model that

causes this segmentation behavior� For the feedforward control method the explanation for

lack of deviations during the corrective movements is that muscles are programmed with the

desired trajectory� This sets the equilibrium position for the muscles at the end of �rst �� sec

as the target location and the straight corrective movement is a result of the equilibrium target

position pulling the hand directly towards it�

In the case of forward�inverse model feedback control the muscles are programmed with

the estimated trajectory instead of the desired trajectory and there is additional corrective

feedback� In this situation� there are three main causes for the deviation of the hand path

from the straight line to the target� during the corrective phase that could give rise to the

segmentation pattern�

�� The external force �eld B� that pushes the hand in an anticlockwise direction

�� The wrong forward model that anticipates a clockwise �eld B� and generates estimates

��
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Figure ���� Simulated trajectories for forward�inverse model control for movements in �eld

B� for three di�erent states of adapatation of the inverse model �IM� and the forward model

�FM�� �A� IM�FM�B� �B� IM�� FM�B�� �C� IM�B�� FM�� ���� hand paths for eight

movement directions represented as dots �big gray dots� actual� small black dots� desired� at

� ms intervals� ���� parallel �gray line� and perpendicular �black line� hand velocities for

downward movement direction

accordingly� The estimates might be shifted clockwise from the straight path to the target

and generate corrections that will further push the arm in anticlockwise direction

�� The wrong inverse model that generates additional torques in the anti�clockwise direction

to counteract the clockwise �eld B��

To assess the relative role of forward and inverse models� simulations in force �eld B�

after training in �eld B� for two cases� one� where only the forward model has adapted to

�eld B� �inverse model � null�� and the other� where only the inverse model has adapated

to �eld B� �forward model � null� are shown in Fig� ���� The movement in the �rst case

with adaptation of only the forward model �Fig� ����B� shows the segmentation pattern�

whereas� the movement with adaptation of only the inverse model �Fig� ����C� does not show

a signi�cant segmentation pattern� The pattern is observed only when the forward model is

expecting �eld B� and producing incorrect estimates for the state of the hand� This establishes

that the segmentation behavior is a result of adaptation of forward model to force �eld B� and

is not signi�cantly a�ected by the state of the inverse model�
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Figure ����� Simulation for forward�inverse model control for movements in �eld B� in down�

ward direction� The inverse model correctly expects B� while the forward model expects B��

�A���C� parallel and perpendicular hand velocities for actual trajectory �gray line�� estimated

trajectory �black line�� and desired trajectory �dotted line�� �B� hand paths for actual trajec�

tory �gray dots� and estimated trajectory �black dots�� �D���F� desired� estimated and actual

acceleration signals plotted as vectors at � ms time points on the actual hand trajectory� The

largest acceleration vector in the three plots has a magnitude of ���
 m�s� and all other vectors

are scaled relative to that�
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It is now a question of how the wrong state estimates are causing the segmentation pattern�

The state estimates are used as input to ��� the feedback controller and ��� the inverse plant

model� To test the in�uence of only the forward model and wrong estimates� we simulated

the behavior of the system in �eld B� with the forward model expecting �eld B� and the

inverse model correctly modeling �eld B�� The results of the simulation are plotted in Fig�

����� The estimated trajectories are shown along with the desired and actual trajectories in

�gures �A���C�� It is di�cult to visualize the control process through only these estimates�

therefore in plots �D���F�� the desired� corrective and actual acceleration signals are plotted

as vectors� It is immediately apparent from �E� that the cause of the kinematic pattern is

incorrect feedback correction that tries to accelerate the hand in an anticlockwise direction

away from the target direction� The feedback correction is a linear combination of di�erence

in estimated and desired position and velocity� and depends on incorrect estimates� We also

note that there is remarkable similarity in the acceleration vectors for the �rst and second

segments of movement� and therefore the corrective phase of the movement i�e the second

segment� is almost an independent submovement� This establishes that a wrong forward model

that generates incorrect estimates causes the unique pattern of near�discontinuities through

incorrect feedback action�

��� Conclusions

� The inverse model based feedforward control is found to be inadequte to explain the

unique segmentation pattern observed during arm movements in �eld B��

� A forward�inverse model based feedback control is able to produce a kinematic pattern

which is very similar to the one observed in movements of subjects�

� This constitutes evidence for feedback control through a forward model for rapid reaching

movements�

� The adaptation of forward model to �eld B� and wrong state estimation is required to

produce the segmentation pattern� This proves the existence and adaptation of a forward

model based estimation process in learning control of arm movements�
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Chapter �

Forward�Inverse Model Hand

Acceleration Feedback Controller

In the previous chapter it was shown how the inverse model feedforward control was unable

to explain the segmentation data� On the other hand� the forward�inverse model feedback

control was� on average� able to simulate the experimental segmentation results� This chapter

looks at the forward�inverse model control in greater detail and tries to establish the important

properties and characteristics of this control method� An attempt is also made to distinguish

between the forward and inverse model used in the control�

��� Sensitivity Analysis and Robustness of the Control Method

The forward�inverse model hand acceleration feedback control provides stable feedback control

of a time�delayed nonlinear system like the human arm and an adaptive control strategy that is

capable of learning novel dynamic interactions� In this section we try to identify and characterize

the control parameters in the model and test the behavior of the controller in the presence of

feedback noise in sensory measurements�

����� Sensitivity Analysis of Control Parmeters

The controller is shown as a block diagram in Fig� ���� There are a number of control parameters

that have to be speci�ed in the controller in order for it to function� The values of some of

these parameters are physiologically constant� while others can be modi�ed by the brain during

a movement or from one movement to another� It is useful to identify the parameters that the

brain has direct control over and can vary over a reasonable range� and then test the sensitivity

of movement behavior on these control parameters� This will give the extent to which the
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Factor � ���� �	�� ��� Data averaged for the eight movement directions�

brain can e�ectively vary the behavior of the system in a given control situation� The control

parameters are�

�� Feedback gains of the Supraspinal Controller Kp�Kv

�� Preplanned Movement Time or Peak Speed for the movement

�� Baseline activation or Cocontraction Force for muscles Nb�Fc

�� Feedback gains of the Spinal Re�ex loop Ks� Bs

�� Estimate Reliance Factor KERF

�� Contents of the Forward and Inverse Models and their parameters based on the level of

adapatation to plant dynamics

The movement parameters considered for analyzing movement characteristics are� move�

ment time� movement distance� jerk ratio� mean energy� movement area� correlation coe�cient�

perpendicular displacement and segmentation parameter ��� The simulations are performed in

force �eld B� when the forward and inverse models are expecting the null �eld� so that the ef�

fect of control parameters can be tested in the presence of unknown disturbances� Figs� �������

show the sensitivity of these movement parameters to the �rst �ve control parameters listed

above� The values for the movement parameters are averaged for all 
 movement directions�

The di�erent values of control parameters considered are speci�ed as a factor of the value used
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Figure ���� Simulated downward direction movement for a case with � Hz noise added to

velocity measurement� ��� actual hand path and velocity along x�axis�gray� and y�axis�black�

�	� measured hand path and velocity with noise added to actual velocity signal �
� estimated

hand path and velocity �output of the forward model�

for normal simulations� To obtain a better performance� the controller would want to reduce

jerk� increase the correlation coe�cient� reduce the movement area and reduce ��� The jerk for

the movement in the force eld can be reduced by lowering supraspinal feedback gain� increasing

preplanned movement time� increasing cocontraction� increasing spinal re�ex gain� and lowering

KERF � The correlation coe�ecient can be improved by increasing preplanned movement time�

increasing cocontraction and increasing spinal re�ex gain� Similar trends can be observed for

other control parameters� In summary� a good strategy to reduce the e�ect of perturbing force

eld is to increase movement time� increase cocontraction� increase spinal feedback gain� and

reduce KERF �

����� Robustness to Measurement Noise

An important control issue for any controller is its robustness to system noise� The response

of the controller to an unexpected force eld as shown earlier� is equivalent to noise from the

external environment� The controller has already been shown to be stable in that situation�

Through further simulations� several sources of noise� not only in the measurement system

but also in the controller are tested� It is found that the system is robust to noise in the

feedforward path of the controller because of the feedback loop that corrects for any errors in

the feedforward path� The major source of noise having the greatest in�uence on control of

most systems is feedback measurement noise because it directly a�ects the feedback loop and

��




0.2 0.4 0.6 0.8

−0.3

−0.2

−0.1

0

0.1

Time (s)

Ha
nd

 V
el

oc
ity

 (m
/s

)

(1)

0.2 0.4 0.6 0.8

−0.3

−0.2

−0.1

0

0.1

Time (s)

M
ea

su
re

d 
Ha

nd
 V

el
oc

ity
 (m

/s
)

(2)

0.2 0.4 0.6 0.8

−0.3

−0.2

−0.1

0

0.1

Time (s)

Es
tim

at
ed

 H
an

d 
Ve

lo
cit

y 
(m

/s
)

(3)

Figure ���� Simulated downward direction movement for a case with � Hz noise added to

position measurement� ��� actual hand path and velocity along x�axis�gray� and y�axis�black�

�	� measured hand path and velocity with noise added to actual position signal �
� estimated

hand path and velocity

can cause instability in the system� Recent research work in robotics has focussed on design of

observers that are robust to measurment noise ��Lohmiller and Slotine� ������� It is shown here

that the forward model is extremely robust to noise in velocity feedback from the periphery�

whereas it is robust to a lesser extent on position feedback� Two cases are considered in Fig�

������� � ��� random � Hz noise is injected into the velocity signal measured by the brain�

that can have a magnitude as large as the velocity signal itself� and �	� random � Hz noise in

the position signal that is proportional to the velocity and has a range of ���o in joint angle

coordinates� The hand paths and hand velocity signals are plotted for the actual movement

trajectory� the measured movement trajectory and the estimated movement trajectory� In both

cases the movement is along a straight line to the target and stable except at the very end of

movement� In the case of velocity noise� the estimated velocity prole is almost exactly the

same as the actual one� even though the measured velocity is greatly distorted by the noise�

In the case of position noise� the estimated position is e�ected and the system shows greater

instability�

The reason for robustness of the system to measurement noise is that the human arm is

primarily a visco�elastic system� the neural input to which species not only a desired torque

but also an equilibrium state for the arm� The forward model integrates the neural signals over

a 	�� ms period� so even when the initial states are incorrect due to noise� the output from

the forward model tends towards the actual estimate because of equilibrium properties of the
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Figure ���� Movement trajectories in eldB� � ��� hand paths and �	� parallel and perpendicular

velocity for downward movement direction� for three cases of adaptation of forward �FM� and

inverse �IM� models � �A� FM � B�� IM � �� �B� FM � �� IM � B�� �C� FM � B�� IM � B�

system that pull it towards the actual estimate�

��� The Role of Forward and Inverse Models

The forward�inverse feedback control method relies on both the inverse and forward model to

generate arm movements� What is the relative role of the two models in the control and is

there a way to distinguish between them in the brain� Is it possible that the two models are

represented in di�erent regions of the brain� The forward model generates the current state

estimates from the measured state information and the motor commands� These state estimates

are then used to compute the desired hand acceleration that drives the system� The inverse

model acts as a controller that inverts plant dynamics to generate motor commands appropriate

for achieving the desired acceleration� In a feedback control mothod� for high feedback gains�

the properties of the overall system are governed mainly by the transfer function of the feedback

pathway� and are insensitive to the transfer function of the feedforward path� Hence one would

expect the forward model to dominate the behavior of the system and the inverse model to

play a small role� However� the gains of the feedback pathway are limited due to unmodeled

changes in plant dynamics that can make the system unstable� Hence it is expected that both

the forward and inverse models play an important role in movement control�
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To assess the relative role of the two� simulations in force eldB� for two cases are performed�

First one is with only the inverse model adapted to the force eld� and the second one with only

the forward model adapted to the force eld� The simulations for the movements are shown

in Fig� ���� It can be seen from the simulations that adaptation of the forward model Fig�

����A�� causes a great improvement in the performance and the hand path is almost the desired

straight line path� On the other hand� the adaptation of only the inverse model in Fig� ����B�

does not e�ect the performance greatly� The hand path shows the same initial deviation from

the straight line path and then a corrective movement to the target� There is also oscillation in

the velocity prole� The performance does not improve with change in only the inverse model

because the forward model is erraneous and computes wrong state estimate that drives the

feedback action although none is desired� Fig� ����C� shows that exact tracking of the desired

trajectory is achieved only when both inverse and forward models adapt to the force eld� This

seems to indicate that although the forward model controls the movement behavior to a greater

extent and its adaptation is crucial for improving performance in the eld� the changes in the

inverse model cannot be neglected and play a role in the process of adaptation�

When subjects are trained in eldB�� they show a gradual improvement in their performance

that converges to the null eld behavior towards the end of training� This data was presented

in chapter 
� The exact convergence is only possible due to adaptation of both the inverse and

forward models� It may be possible to distinguish between the two models if they have di�erent

time course of adaptation to the force eld� For example� if the inverse model takes much longer

to adapt than the forward model� then it may be possible to observe di�erential brain activity

that persists for di�erent periods of time� To determine the time course of adaptation of the

two models� simulations with di�erent levels of adaptation of the models are performed� and

then compared to experimental movement data� Fig� ��� shows some important movement

parameters for simulated movements in force eld B� with di�erent levels of adaptation of the

forward and inverse model� The parameter values are averaged for the � movement directions�

� di�erent levels of adapatation of the two models are considered for a total of 
� combinations�

The level of adaptation is dened as the amount of the force eld learnt by the two models� It

is assumed that the two models linearly adapt to the external force eld as they change from

expecting null eld to force eld B�� The six levels correspond to modeling �� ��	� ���� ����

��� and ��� fraction of the force eld� The movement parameters for these 
� movements are

computed and interpolated in 	�D to obtain values of these parameters for any combination of

forward and inverse model adaptation�

There are two ways of determining the time course of adaptation of the two models using

the simulation results� The rst and easiest method is to nd movement parameters that are

in�uenced by adapatation of only one of the models� or to nd the movement characteristics

that depend almost exclusively on state of adaptation of one or the other model� When mapped

with the experimental data� this will directly give the rate of adaptation of the two models� The

���



0

0.2

0.4

0.6

0.8

1
Movement Time (s)

F
M

0.55

0.6

0.65

0.7

0.75

Movement Dist. (m)

0.105

0.11

0.115

0.12

Peak Speed (m/s)

0.391

0.392

0.393

0.394

0.395

Jerk Ratio

1.08

1.1

1.12

1.14

1.16

0

0.2

0.4

0.6

0.8

1
Mean Energy (Nm/s)

F
M

2

4

6

8

x 10
−3 Mvmt. Area(m2)

2

4

6

8

x 10
−4 Correlation Coeff.

0.94

0.96

0.98

Perp.Disp.(m) at .15 s

−6

−4

−2

0

x 10
−3

0

0.2

0.4

0.6

0.8

1
Perp. Velocity Power

F
M

0.02

0.03

0.04

0.05

λ
1
 (rad)

0.05

0.1

0.15

d
1
 (m)

0.1002

0.1004

0.1006

0.1008

t
1
 (s)

0.48

0.49

0.5

0

0.2

0.4

0.6

0.8

1

λ
2
 (rad)

F
M

0

0.02

0.04

0.06

d
2
 (m)

5

10

15

x 10
−3 t

2
 (s)

0

0.1

0.2

λ
3
 (rad)

−0.4

−0.3

−0.2

−0.1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

d
3
 (m)

IM

F
M

5

10

15

x 10
−4

0 0.2 0.4 0.6 0.8 1

t
3
 (s)

IM

0

0.02

0.04

0.06

0 0.2 0.4 0.6 0.8 1

N
S

IM

1

1.5

2

0 0.2 0.4 0.6 0.8 1

|v|
SP1

(m/s)

IM

0.02

0.04

0.06

0.08

Figure ���� 	�D conotur plot of key movement parameters represented by a gray scale value for

six di�erent levels of adaptation of the forward and inverse models �FM�IM � �� ��	� ���� ����

���� ��� B��

���



second method is to best t adaptation curves of movement characteristics for di�erent rates

of adaptation of the two models with experimental data� In Fig� ���� none of the movement

parameters show dependence on only the inverse model� Most of the parameters clearly have

a greater dependence on the forward model� The relative pattern of dependence on the two

models is also similar across parameters� Therefore the rst method for distinguishing between

the rates of the two models is not e�ective�

A second method is illustrated in Fig� ���� and shows the discrimination power of this

method by considering two extreme cases� Two adapatation curves for each movement param�

eter are generated� The rst one corresponds to a decaying exponential change in only the

forward model that initially expects null eld and gradually adapts to B� �black line�� while

there is no change in the state of the inverse model� The second curve corresponds to a change in

only the inverse model from null to B� �gray line�� Both the exponentials have a decay constant

of ���	 per movement� which implies that the by the ��th movement the models have adapted

to ��� of the force eld� The two cases predict di�erent adaptation curves for most movement

parameters� The rst case where only the forward model adapts� shows signicant improve�

ment in movement parameters and looks much closer to reality �Fig 
�F� than the second case

where only the inverse model adapts� Quite clearly� the adaptation of the forward model is

necessary for improvement in performance� as occurs when subjects practice in the force eld�

This method seems to be capable of distinguishing between di�erent rates of adaptation of the

inverse and forward model�

Now consider a case where both the inverse and forward models are adapting exponentially

with di�erent decay rates given by rFM and rIM �

FM�n� � FM��� ��fFMg�� � e�nrFM �

IM�n� � IM��� � �fIMg�� � e�nrIM �

FM�n� and IM�n� are the adaptation states of the two models at movement number n in

the force eld and represent the time course of adaptation for the two models� FM��� and

IM��� are the initial states of the forward and inverse models at the beginning of the force

eld training� �fFMg��fIMg are the di�erence in the initial state of the models and the

force eld being learnt� The equations are obtained by considering a rate of learning of the

models that is proportional to the di�erence in the model and the eld at any instant of time�

When subjects begin the training in eld B�� they initially expect the null eld� Hence the

initial states of both the forward and inverse models are set to �� FM��� � IM��� � �� Also

�fFMg � �fIMg � B�� Six values for rIM � �����
� ����
� ����� ���
� ���� ��
� and ve values

for rFM � ����
� ����� ���
� ���� ��
� are considered for a total of 
� combinations�

To exactly simulate experimental conditions� we used the same set structure of movement

directions that was experienced by our subjects� Therefore in eld B� training� a total of ��	x
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Figure ����� Learning curves for inverse and forward models for six di�erent rate constants

of adaptation �r � �����
� ����
� ����� ���
� ���� ��
� plotted against movement number� The

curves with higher r shift leftward indicating faster adaptation�
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� ��� movements is taken with one�eight of the movements in each direction in the exact

sequence as they occured in the experiments� The value of movement number n goes from �

to ��� and this gives the levels of FM and IM adaptation for each movement from Eqn� E�

The level of adaptation of the internal model is plotted agaist movement number for � di�erent

adaptation rate constants r � �����
� ����
� ����� ���
� ���� ��
 in Fig� ����� The 	�D map of

movement parameter values for di�erent adaptation levels of IM and FM� as shown in Fig�

���� is then used for the approriate movement direction and for the given adaptation levels

of the two models� to give the value of each parameter for the nth movement� Since we are

interested in the change in parameters from null eld� the parameter values of a simulation

in the null eld for this direction are subtracted from the value obtained from the map� An

adaptation or learning curve for movement parameters is obtained with n varying from � to ���

for each combination of rIM and rFM � The next step is to nd the adaptation curve that best

ts the data� The corresponding rIM and rFM will give the time course of adapataion of the

two models� An error measure e is dened for each parameter p and all 
� adaptation curves

q � ���
��

epq �

P
n � �����jypqn � �pn j� �pn�

P
q � �
�

P
n � �����jypqn � �pn j� �pn�

where� ypqn is the value of the simulated movement parameter p at the nth movement in the

adapataion curve for FM and IM adaptation rate q� �pn is the mean of the parameter value for

�� subjects at movement n and �pn is the corresponding standard deviation� The numerator

in the equation is almost equal to the average area between the simulated and experimental

adaptation curves� This error is normalized by the denominator that is the sum of the errors

for the 
� di�erent rates of IM and FM adaptation to make it independent of parameter units

and values� The errors are plotted in Fig� ���	 for all movement parameters� A low value of the

error implies a better t for that particular rIM and rFM compared to other rates� To combine

the information from the di�erent parameters� the errors are summed together to give a net

error E�

Eq �

P
p � �pnepq

pn

This net error is plotted as a function of rFM and rIM in Fig ���
� The region surrounded

by the thick line outlines the minima� Two regions are obtained� The error is clearly at its

lowest for values of the forward model in the range� rFM � ����� For the inverse model the rate

of adaptation can lie within a much broader range of values and is not signicantly di�erent for

���
 � rIM � ����
� The reason for lower sensitivity to rIM is the much weaker dependence of

movement parameters on inverse model� So there is denite evidence for a fast learning forward

and inverse model� although it cannot be determined whether the rate of learning of the inverse

model is greater or lesser than that of the forward model� For a particular combination of
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Figure ���
� Net normalized error E represented by a gray scale value plotted as a 
�D surface

and 	�D contour image� for ve di�erent rates of adaptation of the forward model �rFM �

����
� ����� ���
� ���� ��
� and six rates of inverse model �rIM � �����
� ����
� ����� ���
� ���� ��
��

The region of minimum error value is highlighted by the thick black line�

adaptation rates in the minimum error region� rFM � ����� rIM � ����� the adapatation curves

for 	� parameters are plotted in Fig� ����� We nd an excellent t with values of all movement

parameters for the experimental data� The simulated curves even mimic the set structure due

to the sequence of movement directions for experimental data� This indicates a great deal of

condence in the simulations using this control method and in the adapatation rates obtained

for changes in forward and inverse models�

A similar procedure can be independently adopted for determining adaptation of the two

models in eld B� after having trained in eld B�� We assume that at the end of training in

B� both forward and inverse models have adapted to eld B�� As training proceeds in eld B��

the models gradually change to B�� �� states for each of the forward and inverse model are

considered as they make a transition from eld B� to B�� These are ����� ����� ����� ����� ���	�

�� ��	� ���� ���� ��� and ��� times B�� Since the two elds are opposite each other� ���� B� is

actually equal to B�� so that the �� states go from expecting B� to B�� The map of movement

parameters for these di�erent levels of adaptation to eld B� are shown in Fig ����� Again�

most of the parameters show a strong dependence on the forward model� Adaptation curves

based on the same principle as devised for training in B� are considered here for six values of

rIM and � values of rFM � Initial states for the learning curves are FM��� � IM��� � B��

and the change is �fFMg � �fIMg � B��B�� For comparison� data from the experimental

group of � subjects who performed in eld B� immediately after B� �zero hour group� is taken�

Since they performed two sets of ��	 movements each� the value of n goes from � to 
���

The error measure E is again determined for the 
� adaptation curves� by nding the

summed normalized error for �� movement parameters� To visually describe the goodness of t

��	
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Figure ����� 	�D conotur plot of key movement parameters represented by a gray

scale value for eleven di�erent levels of adaptation of the forward and inverse models
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Figure ����� Adaptation curves for movement time for ve di�erent rates of adaptation of

the forward model �rFM � ����
� ����� ���
� ���� ��
� represented by rows and six rates of

inverse model �rIM � �����
� ����
� ����� ���
� ���� ��
� represented as columns� compared to

mean experimental movement time in eld B�� The simulated curve is in black and the

experimental data in gray� The box indicates the curves with closest match� In this case�

rFM � ���
� rIM � ����
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Figure ����� Adaptation curves for movement distance

Figure ����� Adaptation curves for peak speed
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Figure ����� Adaptation curves for movement jerk ratio

Figure ��	�� Adaptation curves for correlation coe�cient
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Figure ��	�� Adaptation curves for perpendicular displacement at ��� ms

Figure ��		� Adaptation curve for perpendicular velocity power
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Figure ��	
� Adaptation curve for d�

Figure ��	�� Adaptation curve for d�
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Figure ��	�� Adaptation curve for speed at rst discontinuity jvjSP�

of the di�erent adaptation rates for the �� parameters� mean experimental adaptation curve is

plotted with adapatation curves for the 
� combinations from Figs� �������	� for the di�erent

movement parameters� The errors for each of the parameters is plotted in Fig� ��	� and the

summed error in Fig� ��	�� The region of minimum error is highlighted by the dark line and

corresponds to a value of rFM � ���� and ����
 � rIM � ���
� These values are almost

identical to those obtained for training in eld B�� hence it supports the view of fast learning

of both the forward and inverse models� The adaptation curves for 	� movement parameters

are plotted in Fig� ��	�� for the experimental and simulated movements for rates that show the

best t� rFM � ���� and rIM � ����
� Again� a very close t is obtained for most movement

parameters�

Note� Null subtracted values for movement parameters are used for all the simulated and

experimental results shown here� For the simulations this is achieved by simulating a movement

in the null eld for all � movement directions with the same control parameter set as the elded

movements and then subtracting the value of the movement parameter of the null eld from

force eld� Movement time and correspondingly the peak movement speed� were the only

control parameters that were varied between null eld and elded simulations to account for

and match the di�erences seen in experimental data�

From these results it is concretely established that fast adapting internal models are involved
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in the learning of novel dynamics as presented by force elds� The rate of learning for the forward

model is determined with a high certainty� although for the inverse model the rate of lerning

cannot be pin�pointed exactly� There is an open possibility that the inverse model may be

learnt at a lower rate than the forward model� The possibility that the inverse model is trained

during an o�ine or rest period until after training is over� is ruled out� because adaptation of

the inverse model occurs during the course of practice in the eld� It however does not rule out

the possibilty that a forward model is used to supervise learning of the inverse model which can

occur during the course of practice in the force eld and during the period in between successive

movements�

��� Explanation for di�erence in behavior between zero�hour

and six�hour groups

One of the primary objectives of this thesis was to provide a framework to explain the di�erence

observed when subjects returned to perform in the force eld after a period of rest� The data

is presented from two di�erent groups of subjects when they perform eld B� after � or � hours

of having trained in eld B� in chapter 
� It is found that the six hour group of subjects has a

better performance in eld B� than the zero�hour group for most movement parameters� In the

previous section the time course of adaptation of the forward and inverse models was determined

for all the subjects in eld B� and the zero hour group in B� and showed a reasonably good

match with the experimental data� Hence the same analysis can be extended to explain the

di�erence between � and � hour groups� There are two possible changes that can occur in the

internal representation of the models and in the process of adaptation during the period of �

hours in between the two elds�

The rst possibility is a change in the level of internal model adaptation to the rst eld

B�� so that for the six hour group the initial state of the models is not B� exactly� but has

shifted from that value� For an improvement in performance� the only change can be a decay

in the representation of the force eld B� towards null eld� As an example� consider that both

forward and inverse models have decayed by 	�� over the period of � hours� so that at the

beginning of eld B�� the initial states are FM � IM � ���B� instead of FM � IM � B��

The adaptation rate is assumed to be the same as that computed for the simulated zero hour

group� The predicted adaptation curve for this possibility is shown in Fig� ��	� �gray line�

and compared to the simulated adaptation curve for the zero hour group �black line� where

FM � IM � B�� The performance is better as seen in experimental data and shows roughly the

same change in movement parameters� However� there is a small di�erence in the experimental

and simulated data� Whereas the experimental data shows a shift in the movement parameters

towards the null and a faster rate of adaptation �given by the slope of the curve� during the
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Figure ��	�� Adaptation curve for movement parameters in eld B� for simulated movements

with two di�erent initial levels of forward and inverse models � ��� black� zero hour group with

FM����IM����B�� �	� gray� six hour group with FM����IM������� B�� Adaptation constants

are rFM � ������ rIM � ����	� for both cases
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�� Net normalized error E� for ve di�erent rates of adaptation of the

forward model �rFM � ������ ����� ������ ���	�� ����� and of inverse model �rIM �

������ ����
� ������ ������ ������ The region of minimum error value is highlighted by the thick

black line� The error is computed using data from zero hour group�

rst 
	 movements for six�hour group� the simulated data shows the correct shift towards null

but a slower rate of adaptation�

This leads to the second possibility� that the shift in performance occurs not due to a

change in the state of the model� but a change in the rate of adaptation of the models to the

new eld� To test this hypothesis� the same procedure as the previous section is followed to

nd the adapatation rates that best t the experimental data for now the six�hour group when

subjects perform in eld B�� The best t adaptation rates for the zero�hour and six�hour group

are shown in Figs� ��	����
� and do show a shift in the rate of adaptation of the two models�

Whereas values of rFM � ������ and rIM � ����	� are obtained for the zero hour group� higher

values of rFM � ���	� and rIM � ����� are obtained for the six�hour group� This implies that

there is an increase in the rate of adaptation for the six�hour group� The adaptation curves for

movement parameters for these two rates of adaptation are shown in Fig� ��
�� and seem to

indicate the correct shifts in the values of parameters and the faster rate of adaptation observed

in experimental data�

The segmenataion data presented in chapter � included both the zero�hour and six�hour

subjects for the analysis� The two groups did not have signicant di�erences in their segmen�

tation characteristics for the rst three movements in the downward direction as shown in Fig�

���� This also seems to indicate that the level of internal models has not shifted during the

period of rest beacuse the initial behaviour is same for the two groups� Hence the di�erence is

quite likely the result of a faster rate of learning of the new eld after � hours of rest� This seems

to be consistent with the idea of motor interference in the learning of two opposite force elds

seperated temporally as proposed by �Shadmehr et al�� ������ The longer the time seperation�
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Figure ��
�� Net normalized error E� for ve di�erent rates of adaptation of the

forward model �rFM � ������ ����� ������ ���	�� ����� and of inverse model �rIM �

������ ����
� ������ ������ ������ The region of minimum error value is highlighted by the thick

black line� The error is computed using data from six hour group�

the lesser is the interference from a previously learnt task and faster is the rate of adapta�

tion� The process could have something to do with the concept of memory consolidation of the

models� a shift from short�term memory to long�term memory over the period of rest� and the

possibility that long�term memory has reduced interference when compared to the short�term

memory�
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Figure ��
	� Adaptation curve for movement parameters in eld B� for simulated movements

with two di�erent adaptation constants for forward and inverse models � ��� black� zero hour

group with rFM � ������� rIM � ����	�� �	� gray� six hour group with rFM � ���	�� rIM �

������ The initial states for both are FM����IM����B��
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Chapter �

Discussion and Conclusions

The forward�inverse model hand acceleration feedback control seems to achieve the thesis ob�

jective of providing a comprehensive framework for study of human motor control and compu�

tational processes in the brain� It solves the control problems addressed in the introduction�

It provides stable feedback control method for a time�delayed nonlinear system like the human

arm and an adaptive control strategy capable of learning novel dynamic interactions� It is

also immune to measurement noise in the sensors� particularly so� for velocity signals� In the

last two chapters it is shown that simulations with this controller strongly match real human

motor behavior in an adaptive control task� This provides validatation for the controller and a

strong support for its existence in the brain� By comparing simulated behavior with real human

behavior� an insight is also gained into the process of motor adaptation and learning during

practice in a novel dynamic environment and during a period of rest after initial training�

Methods for Human Motor Control � Revisited

Let us brie�y reconsider the current theories in human motor control� For fast arm movements

two feedforward control schemes have been proposed� the equilibrium�point control hypothesis

and the inverse dynamics model hypothesis� The equilibrium point hypothesis as proposed by

Feldman seeks to get around the problem of nonlinear dynamics of the system by programming

a fast feedback loop through the spinal re�ex path with positional signals for the muscles� The

idea is that if the gain of the feedback is su�ciently high then exact tracking of any desired

trajectory is obtained� It su�ers from two major drawbacks � delays in the spinal re�ex loop

that limit the gain of the spinal re�ex and the inability to adapt gradually in a novel dynamic

environment�

The equilibrium�point hypothesis as proposed by Bizzi� Hogan and Flash is based on pro�

gramming the activation to muscles using equilibrium properties of a joint connected by several
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muscles� Activation to the muscles species a particular equilibrium position for the arm� The

force�length and force�velocity relations for the muscle provide a zero delay feedback loop� This

method also su�ers from several disadvantages� It is shown in Sec� ��
 that the computation in�

volved for determining the activation to the muscles requires knowledge of nonlinear properties

of muscles and hence is non�trivial� The feedback gains are limited by physiological limitations

on the sti�ness of the arm� Infact� as shown by Kawato� the sti�ness in human arm movements

is much lower than that required for equilibrium�point control� Proof of this is presented in

Sec� 	�� where it is shown that simulation with this control fail to produce desired movements

using the measuerd sti�ness values� To overcome dynamics of the arm� one requires a virtual

equilibrium trajectory �Hogan� that is di�erent from the desired trajectory� This therefore re�

quires existence of two di�erent trajectories� Also the computation of virtual trajectory and its

adapatation to novel dynamics is not a trivial problem�

An inverse dynamics model based control seems to overcome the drawbacks of these two

methods� It can accurately track any desired trajectory� it is stable and retains equilibrium

properties of the arm� and it can adapt to novel dynamics� The computations required for

control are inverting the arm dynamics� which is shown to be very simple for unloaded arm

movements �Sec� ����� and inverting the nonlinear muscle properties� It has been pointed out by

Jordan and Kawato that acquiring an inverse model through motor learning is computationallly

di�cult because the necessary teaching signal for the desired motor command� which is the

output of the inverse model� is not available� Kawato has proposed a feedback�error learning

model to resolve this di�culty� This feedback is available in the human system from the spinal

re�ex loop and hence the output of the spinal re�ex can be used to adapt the inverse model�

The inverse model feedforward control seems to provide an excellent method for control of

arm movements� However its major drawback� as with any feedforward system� is that the

control signals are determined only by the desired trajectory� The actual trajectory of the

arm is ignored and there is no feedback other than limited feedback through spinal re�ex and

equilibriummuscle properties� This implies that cortical feedback actions like visual corrections

to movement are not possible during online control of movement� This is contradictory to atleast

two recent observations during visually guided tasks � the segmentation pattern in chapter �

and an experiment on altered visual feedback by Conditt�

This is the main reason for consideration of feedback methods for control of arm movements�

The major problem in the design of a feedback controller is the delay in the feedback loop that

tends to destabilize the system� The forward model based Smith predictor method proposed by

Miall and Wolpert seeks to overcome the feedback delay� However simulations with the Smith

predictor method reveal that this method can be used only for linear systems� The method

fails to give stable behavior of the arm for a nonlinear system and for any unmodeled changes

in the dynamics of the arm�
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The forward�inverse model based feedback control method developed in the current study

uses a nonlinear observer based on the forward model to provide stable feedback control� In

addition to the forward model it uses the inverse model as the controller in the feedforward

path that receives both the desired trajectory and feedback corrections as input� This novel

combination of forward and inverse models has several advantages over the methods proposed

previously as a result of the following feaures�

� Ability to track any desired trajectory in hand� joint or muscle coordinates

� Compensation for dynamics of arm and muscles through the use of an inverse arm model

and an inverse muscle model � this provides the system with a capability to move along

a desired trajectory in any dynamic environment once the inverse model adapts to the

external dynamics

� A forward model based nonlinear observer that generates current estimates of arm state

from delayed visual and proprioceptive feedback and motor commands issued by the

inverse model � the state estimates are then used for corrective feedback and as state

input to the controller� This provides stable feedback control of a nonlinear dynamic

system�

� Correction for errors in the inverse model by a good forward model through feedback

action � if the forward model is accurate then the feedbacks gains can be made very high

and the system can rely only on feedback to mimic the inverse model and not require an

explicit inverse model at all� Therefore a good forward model with high feedback gains

allows close to exact tracking of the desired trajectory�

� Cortical feedback gains that are close to ve times higher than maximum spinal re�ex

gains � this allows faster recovery for deviations from desired trajectory caused by external

perturbations�

� Visual feedback control of movement � the forward model provides a means of making

the feedback current and the inverse model allows the transformation from desired hand

trajectory to joint torque that can then be generated by the muscles

� Ability to generate arbitrary static forces and joint torques as an independent variable

along with trajectory control

Two advantages of a forward model� other than feedback control� have been hypothesized

by Miall and Wolpert� A forward model can be used to in a system that uses motor out�ow

to cancel the sensory consequences of self�generated movement and by subtraction from actual

sensory signals enables the detection of external perturbations� It can also be used for mental
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rehersal and to predict the outcome of a series of actions thereby allowing motor learning in the

absence of action� It has additionally been shown by Narendra that the training of the forward

model is easier than the inverse model because it requires conventional backpropogation whereas

training of an inverse model requires dynamic backpropogation� Along with Jordan�s hypothesis

about distal supervised learning where the forward model is used to train the inverse model�

it appears that the existence of a forward model is very useful� One of the other advantages

that is brought out in the current study is that a fast training of the forward model in an

altered external environment allows fast adaptation to that environment and allows the inverse

model to be trained more gradually� Although evidence for a slower adapting inverse model is

presented in the last chapter� the data is not very strong because of extremely weak reliance

of movement parameters on the inverse model� The rate of adaptation of the inverse model

cannot be identied very accurately�

While reconsidering the methods of control it is important to mention another approach to

human motor control that is di�erent from the ones described above and has been proposed

recently by Slotine� This method relies on wave variables to transmit the signals between the

master controller and a remote slave� By transforming the motor out�ow and the sensory feed�

back into wave variables before transmitting them� it is shown that stability of the closed loop

control is maintained in the presence of time delays in the system� This technique has not been

applied for consideration of two�joint arm movements or for adaptation to external dynamics

and it will be interesting to nd whether or not this method can result in the segmentation

pattern observed in the current study�

Open issues in design of the controller

There are a number of open issues in design of the forward�inverse model feedback controller�

The rst one relates to the control parameters in the controller� The values for feedback gains

and muscular co�activation are assumed to be constant through training and within a movement

in the current study� It is likely that these control parameters can be modulated by the brain in

order to achieve optimal control of the human arm� For instance� co�activation provides greater

stability to movements in the presence of unknown perturbations but results in greater energy

expenditure by the muscles� Therefore� it is expected that co�activation would be optimized

based on a trade�o� between stability and energy usage� When a novel dynamic perturbation is

introduced� initially the co�activation might be high and then gradually reduce as the internal

models adapt to the novel dynamics� Similarly� feedback gains could be optimized based on

external perturbations in order to maintain stability and allow maximum gain magnitudes� The

other control parameters in the controller are also assumed xed because a basis for change

in their values is not known� It would be interesting to investigate the e�ect of these control
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parameters in di�erent control situations and determine the basis for change in their values�

The other issue relates to the coordinate system of the internal models and the computations

in the controller� As formulated in chapter 	� there are atleast three distinct possibilities � carte�

sian hand coordinates� joint coordinates and muscle coordinates� The behavioral performance

of the three methods is very similar in a new dynamic environment and hence identication

on the basis of behavior is not possible� However� the computations and the corresponding

signals in the controller in the three coordinates are completely di�erent� The coordinates also

e�ect the signals used for learning of the internal models� The muscle coordinates are highly

redundant or overspecied because the number of muscles far exceed the degrees of freedom for

the arm� However the muscles lengths and forces are directly measured by the sensors and can

be directly used in the controller for control and learning� The joint coordinates get rid of the

redundancy and allow for coordinated activation of muscles but require transformation from

muscle coordinates to joint coordinates� Hand coordinate information is directly available from

vision� These three coordinates have to be assessed further in order to establish the di�erences

between them�

A distinction is also not made between proprioceptive and visual feedback and they are

both assumed to convey the same information to the brain� In reality� this is certainly not

true as evidenced from tasks where a visuomotor transform is introduced��� The question is

how proprioceptive and visual feedback interact with each other and what are the relative

roles of the two in control of movement� The experiment by Conditt described in Sec� ����	�

where restricting the vision of cursor to a straight line to the target altered the behavior of

the movement� could be simulated if the feedback action depended on visually estimated state

and the state input to the inverse model depended on proprioceptively estimated state� This

either requires two seperate forward models� one in visual space and the other in proprioceptive

space� or some transformation from muscle coordinates to hand coordinates or vice versa that

incorporates both visual and proprioceptive feedback� This also requires further study�

In the current study� the forward model computes the change in state given the motor com�

mand and the current state� It is also possible to use the desired torque or desired acceleration

command to compute the change in state� Infact the use of desired acceleration reduces the

forward model to an integrator and greatly simplies the computation involved in state esti�

mation� However� simulations with this method �data not presented� reveal that this form of

control can produce the unique kinematic pattern of discontinuities but is much more unstable

compared to the forward model using motor commands� The reason is that the observer is

not as robust to unmodeled dynamics in the forward model� If a method could be found to

stabilize the system in the case of a forward model based on desired acceleration� then the

compuatations involved in the controller could be greatly reduced� A possibility is the use of

intermittent feedback control hypothesized by �Ronco et al�� ����� where the system is under

�
	



open loop control and only intermittently corrected by feedback to maintain stability� It is

possible that this intermittent feedback is the cause of segmentation behavior observed in our

subjects and needs further investigation�

Implementation of the controller in the brain

In the current study the controllers have been implemented as mathematical equations and

relations with certain predetermined structures� During adaptation� for example� the change

is assumed to take place in one parameter of such a structure� In the brain however� it is

unlikely that the controller exists in a mathematically pre�structured manner� It is much

more likely that as children grow and learn to move their arms and legs� they build neural

connections in the brain from input�output signals for di�erent functions in the controller� and

later modify or adapt these connections to di�erent environments� There are at present a

number of unanswered questions� How are the internal models expressed in terms of neural

networks� What is the size of such a network� What are the actual signals used for training

of the internal models� A greater insight into the processes involved in the controller can be

gained by actually implementing the forward and inverse models as neural networks and then

studying the adaptation of the neural networks for the two models based on error signals�

It has been hypothesized that these internal models could reside in the cerebellum �Shidara

et al�� ���
� Miall et al�� ���
�� Two other brain structures � the basal ganglia and the motor

cortex are involved in movement contol� What part of the controller is represented in these

regions� A knowlege of the regions of the brain where di�erent components of the controller

exist� might help explain decits seen in certain neural diseases and disorders� In recent work

in our lab� it has been shown by �Smith et al�� ����� that Huntingdon�s disease could be related

to decits in feedback control of the human arm and clinically it is believed that HD patients

su�er from damage to the basal ganglia� Therefore if a link can be made between the a�ected

regions of the brain and components of the controller� then it would provide a much better

understanding of the neural disorder itself�

Conclusion

Several avenues for research can arise through the use of the controller developed in this thesis

as mentioned in the preceding sections� This control method is developed and tested in the

specic context of point�to�point reaching movements of the arm� but can also be applied to a

much broader range of motor control situations� But before that� the evidence for control of

human arm with this controller needs to be veried further and the issues related to its design

resolved�

�





In conclusion� a method of control of the human arm is developed that uses a combination

of feedforward control through an inverse model and feedback control through a forward model�

This method provides a means for stable adaptive feedback control of a time�delayed nonlinear

system� Evidence for the existence of this control comes from comparison of simulations using

this controller and the performance of human subjects in a novel force eld� The simulations

are able to mimic a unique pattern of near�discontinuities observed in the hand path of our

subjects� It is further established that this can occur only with an adaptive forward model�

The adapatation data from the subjects ts an exponentially�decaying learning curve for the

forward and inverse models as they gradually adapt to the force eld� The best t curve

to experimental data points to fast adapting forward and inverse models� The rate constant

for the exponential curve of adaptation of the forward model is further established as ����

per movement� implying that the forward model learns �
� of the novel force eld in ���

movements� The rate of adaptation for the inverse model is determined to be close to ����
 per

movement� but not with great accuracy and hence can lie anywhere in the range from ����� to

���
� Although the rate of adaptation for the inverse model is found to be 
 times slower than

the forward model� this result cannot be concretely established� Within the framework of this

controller� the discrepancy in behavior between the zero�hour and six�hour group of subjects

can be explained by a change in the rate of adaptation of the internal models� For the six�hour

group� the adaptation rates are found to be close to ��� higher than the zero�hour group for

both the forward and inverse models� This change in the adaptation rate can be attributed to a

reduced interference in learning by temporal seperation between learning of two anti�correlated

force elds�

Future work on the forward�inverse model feedback controller can provide an even bet�

ter understanding of the computational processes involved in the brain during control of arm

movements and adaptation to novel dynamic environments� as well as the changes in adaptive

representation of tasks after active practice�
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