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When we hold an object in our hand, the mass of the object alters the physics of our arm, changing the relationship between motor
commands that our brain sends to our arm muscles and the resulting motion of our hand. If the object is unfamiliar to us, our first
movement will exhibit an error, producing a trajectory that is different from the one we had intended. This experience of error initiates
learning in our brain, making it so that on the very next attempt our motor commands partially compensate for the unfamiliar physics,
resulting in smaller errors. With further practice, the compensation becomes more complete, and our brain forms a model that predicts
the physics of the object. This model is a motor memory that frees us from having to relearn the physics the next time that we encounter
the object. The mechanism by which the brain transforms sensory prediction errors into corrective motor commands is the basis for how
we learn the physics of objects with which we interact. The cerebellum and the motor cortex appear to be critical for our ability to learn
physics, allowing us to use tools that extend our capabilities, making us masters of our environment.

Perhaps nothing is so fraught with significance as the human hand,
this oldest tool with which man has dug his way from savagery, and
with which he is constantly groping forward. Jane Addams

Introduction

Our hands give us the ability to manipulate the environment, but
each time that we use them to hold an object, that object’s mass
alters the physics of our arm. This makes it so that, as we pick up
the object, the brain needs to predict and compensate for its
physics. Small errors in this prediction produce substantial dis-
turbances in our movement, as evidenced by when you try pick-
ing up a can of soda that you thought was full, but in fact is empty:
the arm makes a jerky movement. How does the brain learn to
predict and control the physics of our body and the objects that
we manipulate?

At Emilio Bizzi’s laboratory at the Massachusetts Institute of
Technology, we had three rooms. In one room, there was a frog
that had ones of its legs attached to a small robot while a student
stimulated the spinal cord. In a second room there was a monkey
that used its hand to hold a medium-sized robot while a student
recorded from its motor cortex. And in the third room, a human
volunteer held a bigger version of that same robot while a student
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recorded her reaching movements. Bizzi believed that we should
design experiments that not only produced a rich body of behav-
ioral data but could be studied in multiple species. That way, the
question would benefit from tools that were specialized for each
animal: spinal physiology in frogs (Giszter et al., 1993), cortical
neurophysiology in monkeys (Polit and Bizzi, 1979), and behav-
ioral neuroscience in humans (Mussa-Ivaldi et al., 1985; Shad-
mehr et al., 1993).

In my robotics class, I learned that, although a mechanical arm
was much simpler than a human arm, containing fewer degrees of
freedom, the robot still required many pages of equations to rep-
resent its physics. In Bizzi’s laboratory I experienced the reality: a
tiny error in one of those equations would cause havoc in the
computer’s ability to control the robot, making it act violently.
This experience of how bad the system could behave when I had
the wrong model of physics made it seem like a miracle that our
brain routinely and effortlessly controlled our much more com-
plicated biological arm, and did so while interacting with diverse
objects. I found the puzzle that I would spend the rest of my life
exploring.

The force field paradigm

With Sandro Mussa-Ivaldi, we came up with an experiment: use
the computer to control the physics of the robot, making it pro-
duce forces that depended on its state (position, velocity, or ac-
celeration). In this way, the robot behaved as a physical object.
People and other animals held that object in their hand and
learned to control it. If through experience the brain built a
model of the novel physics, then that “internal model” would
leave its signature in the descending motor commands to the
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arm, and one might be able to study the neural basis of this
learning process.

To find this signature, Richard Held showed me his prism
glasses and explained the concept of “after-effects,” movement
errors that occurred when there was a mismatch between the
physics that the brain predicted and the one that it actually expe-
rienced. Learning reduced this mismatch, but the experimenter
could behaviorally probe what had been learned by intentionally
forcing a mismatch through resetting the physics back to a null
condition. Held had explored this by having subjects wear prism
glasses. He had found that, when humans practiced movements
with the glasses and were then asked to remove them, their very
next movement had large errors, opposite in direction to the
errors that were induced by the glasses. That is, people knew that
the glasses were no longer on their eyes but still produced motor
commands that attempted to partially compensate for the errors
that they had experienced with the glasses (Held and Freedman,
1963).

Indeed, people produced after-effects as they experienced a
force field. Excitedly, we wrote the first draft of the paper and gave
a copy to Bizzi. Bizzi asked me to his office and then told me that
he thought that the paper “would make my career.” To help with
that, he asked that I remove his name from the author list. He
then sent a copy of the paper to key faculty in the department,
requesting their comments. With their help, we improved the
paper and then sent it to the Journal of Neuroscience (Shadmehr
and Mussa-Ivaldi, 1994).

In Bizzi’s laboratory, I learned about science, but more impor-
tantly, from Bizzi I learned about mentorship.

Internal model of physics

Development of a new experimental tool, called an “error-
clamp,” allowed exquisite quantification of the process of learn-
ing physics by providing a means for probing the after-effects in
the absence of error (Scheidt et al., 2000). Measurements sug-
gested that, through experience, the brain learned a model that
predicted the motor commands that should be produced to com-
pensate for the novel physics. This “internal model” had interest-
ing properties: it produced an illusion regarding the sensory state
of the arm (Ostry et al., 2010); it allowed people to train in one
type of movement (straight line reaches), and generalize to an-
other type of movement (drawing ellipses) (Conditt et al., 1997);
following training in one part of the workspace, it generalized to
reaches in another workspace (Shadmehr and Moussavi, 2000;
Green and Labelle, 2015; but see Berniker et al., 2014); following
training with the dominant arm, it generalized to reaches with the
nondominant arm (Criscimagna-Hemminger et al., 2003). The
coordinate system of within arm generalization appeared to de-
pend largely on the neural representation of proprioception, with
strong sensitivity to velocity but poor encoding of acceleration
(Hwang and Shadmehr, 2005; Hwang et al., 2006). However, the
generalization between the two arms appeared to depend on an-
other coordinate system entirely, perhaps vision (Criscimagna-
Hemminger et al., 2003; Malfait and Ostry, 2004; Joiner et al.,
2013).

These diverse patterns of generalization suggested that the
internal model was unlikely to be a single neural entity, but rather
a combination of entities possibly involving distinct regions of
the brain. Together, various neural streams appeared to receive a
copy of the motor commands as the movement was executed,
then predicted in real-time the visual and proprioceptive sensory
consequences. That is, a critical element of learning physics was
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to predict the sensory consequences of the motor commands in
the coordinate system of the sensors.

The way biology had approached the problem of physics was
quite different from how a roboticist would go about doing the
same. If I wanted to build a robot that held objects in its gripper
and moved them, I would code an internal model based on Isaac
Newton’s insights: linearly separate velocity from acceleration in
the equations of motion. Indeed, we build robots with sensors
that separately measure acceleration and velocity. Biology, how-
ever, had sensors like muscle spindles that combined position,
velocity, and acceleration in a form not structurally optimized to
represent equations of motion of inertial objects. Although our
arms were inertial objects, our sensors had the evolutionary bag-
gage of muscle spindles, which could not measure acceleration
independent of velocity. Internal models that people learned ap-
peared consistent with entities that represented motion in the
coordinate system of the proprioceptive sensors (Hwang and
Shadmehr, 2005; Sing et al., 2009).

However, learning physics of an object required not just in-
ternal models that predicted the sensory consequences of the
motor commands that moved that object, but also the motor
commands that were required so that the object moved as one
intended. That is, to learn control of an object, one ultimately
needed to learn the motor commands that were necessary to
produce an intended sensory consequence. When a force field
altered the physics of the task, the motor commands produced
sensory prediction errors (the arm did not go where it was sup-
posed to go). To improve performance, the brain needed to
transform the sensory representation of error into better motor
commands. How did the transformation from sensory coordi-
nates of error to muscle coordinates of commands take place?

As a reaching movement unfolded, errors in performance en-
gaged sensorimotor feedback pathways, producing reflexive and
voluntary corrections after a delay. These corrections were too
late to compensate for the novel physics but represented a trans-
formation that took prediction errors in sensory coordinates and
produced a motor response in muscle coordinates. As theory had
predicted (Kawato et al., 1987), experiments demonstrated that
the feedback response acted as a template, teaching the brain the
motor commands that it should produce to reduce the error
(Thoroughman and Shadmehr, 1999; Franklin et al., 2003; Mil-
ner and Franklin, 2005; Albert and Shadmehr, 2016). That is, the
neural feedback response to error was co-opted by the internal
model and used as a template from which to learn. Individuals
who learned physics faster appeared to have a better teacher in
their existing feedback control system (Albert and Shadmehr,
2016).

Neural correlates of internal models in humans

Suzanne Corkin invited us to try the force field task with Henry
Molaison, better known as H.M., the severely amnestic individual
who years earlier had regions of his medial temporal lobe bilat-
erally removed. We put our robot in my wife’s station wagon and
drove up to Boston to see H.M. He sat quietly in the experiment
chair and, like every other volunteer, did not touch the robotic
arm that was in front of him. I asked him to hold the robot’s
handle and move it around, and he did so while looking at his
hand. T asked him to look at the monitor that was suspended in
front of him, where there was a cursor that moved with the robot
handle. A target appeared, and I instructed him to move the
cursor to the target. He did so slowly, at which time the computer
produced a low tone, meaning “too slow.” I encouraged him to
reach faster, and after a few trials he reached the target in the
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appropriate amount of time, causing the target to “explode” —
our primitive animation. After a couple of more explosions, he
recalled a story: When he was a kid, he had two pistols and a rifle.
His back yard had rabbits and birds that he enjoyed hunting.
With pleasure he recalled the details of his hunting days and
repeated the story many times throughout the 2 day experiment.
In my notebook, I wrote this quote from him: “this is like target
shooting.”

The task became more difficult as the robot produced a force
field, but H.M. learned to compensate for the forces, frequently
experiencing those target explosions and producing after-effects
(Shadmehr et al., 1998). After some training, he left the room and
returned 4 h later. I asked him whether he had seen me or the
robot before, and he said “no.” Now something interesting hap-
pened: he sat in the chair and, without any instruction, grabbed
the robot handle, brought it toward him, and began moving it as
he looked up at the monitor. I engaged the force field and gave
him the first target. He reached while producing motor com-
mands that partially compensated for the field. He retrained in
the field for ~30 min, getting those explosions, during which he
joyfully repeated the story of his childhood hunting days. He left
for the night to return 18 h later. Upon his return, without in-
struction he once again grabbed the robot and sought out the
target. Now the robot was programmed to not produce a field.
However, H.M. produced motor commands that expected the
field, resulting in after-effects.

The observations in H.M. suggested that the ability to learn
physics could proceed despite profound damage to the medial
temporal lobe. The fact that the after-effects were present 1 d after
training suggested that the motor memory was stored and could
be recalled upon seeing and/or holding the object (the robot)
without conscious knowledge of having seen the object before.
That is, experiencing novel physics engaged an automatic process
of forming an internal model that could be recalled despite hav-
ing little or no accompanying declarative memory.

H.M.’s behavior also demonstrated that, despite lack of de-
clarative memory, he remembered the purpose of the robot and
its relationship with the motion of the cursor. In addition to
forming a model of the robot’s physics, the experience produced
a memory that associated the robot with the possibility of a re-
warding outcome (target explosions). These observations dem-
onstrated that, despite severe damage to the declarative memory
system, the remaining brain could do the following: (1) learn the
purpose of a novel tool (the robot’s purpose was to move a cursor
on the screen, so that targets could explode); and (2) learn to
control the physics of that tool (to acquire the target, produce
forces that compensated for the robot’s physics).

Tom Thach and colleagues had demonstrated that damage to
the cerebellum impaired the ability of people to adapt their
movements in response to donning of prism glasses (Martin et
al., 1996). It was soon discovered that people with cerebellar
damage were also impaired in the force field task (Maschke et al.,
2004; Smith and Shadmehr, 2005): whereas damage to the basal
ganglia through Huntington’s disease produced no significant
deficits in learning the field, damage to the cerebellum pro-
foundly impaired this ability.

We built an MRI-compatible robot that used pneumatic
valves that actuated the arm and produced force fields, and then
used that robot to look for regions of the cerebellum that were
activated when people experienced novel physics during reach-
ing. We found two distinct cerebellar regions: one in the anterior
cerebellum, lobule V, and another in the posterior cerebellum,
lobule VIII (Diedrichsen et al., 2005), both ipsilateral to the mov-
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ing arm. Studies of people with cerebellar damage that measured
learning deficits as a function of the location of damage in their
cerebellum largely confirmed the imaging results: the critical re-
gions inferred from lesion studies were in the anterior arm region
of the cerebellar cortex, lobules IV and V, and to a lesser extent
the lateral posterior lobe (Crus I), ipsilateral to the moving arm
(Rabe et al., 2009; Donchin et al., 2012; Burciu et al., 2014).
Imaging of the human brain using PET demonstrated that, dur-
ing weeks of training in a force field, anterior cerebellar cortex
ipsilateral to the moving arm showed consistent reductions in
regional blood flow (Nezafat et al., 2001).

With development of noninvasive stimulation, it became pos-
sible to temporarily alter the function of the cerebellum in
healthy people. A study using transcranial direct current stimu-
lation observed that cathodal cerebellar stimulation impaired
learning, whereas anodal cerebellar stimulation made the sub-
jects superlearners, improving their ability to learn physics be-
yond those who received sham stimulation (Herzfeld et al.,
2014a).

If internal models of physics formed in the cerebellum, they
likely influenced reach motor commands through the cerebello-
thalamo-cortical pathway. One way to test this hypothesis was to
examine essential tremor patients that had undergone surgery
and implanted a deep brain stimulator in the thalamic region that
received inputs from the cerebellum. With the stimulator turned
on, the output of the cerebellum was disrupted. This produced an
immediate reduction in the symptoms of the disease (tremor).
However, the patients became impaired in learning of the force
field (Chen et al., 2006). That is, despite the fact that thalamic
stimulation improved tremor, it impaired the patient’s ability to
learn physics, providing further evidence that the human cerebel-
lum, and its projections to the motor cortex via the thalamus,
were critical for learning of physics.

Another region that appeared important was the primary mo-
tor cortex (M1). People who learned to reach in Field A formed
an internal model that helped them if they encountered Field A
again, but that same internal model impaired performance when
they encountered the opposite Field B (Brashers-Krug et al.,
1996). Remarkably, this impaired performance in Field B could
be rescued if M1 was disrupted via repetitive transcranial mag-
netic stimulation following learning of Field A (Cothros et al.,
2006). The results suggested that a component of the internal
model remained present in M1 after completion of training.

Because M1 is a recipient of inputs from the cerebellum (via
the thalamus), and the cerebellum is critical for learning physics,
it was possible that disruption of M1 produced learning deficits
because it blocked the ability of the cerebellum to express its
contributions. To consider this, a line of work attempted to excite
M1 during learning and measure its downstream effects. De-
pending on the location of stimulation, a single pulse of TMS to
M1 evoked an EMG response in specific arm muscles. This
evoked potential was a measure of excitability of the cortical net-
work engaged by the stimulation. During practice of reaching
movements that required forces perpendicular to the direction of
reach, the brain learned to activate muscles that produced those
forces (Thoroughman and Shadmehr, 1999). As training pro-
ceeded, excitability of M1 in the preparatory period before a
reach increased for the field-specific muscles (Orban de Xivry et
al., 2013). When the field was removed during a period labeled
“washout,” the brain no longer activated the field-specific mus-
cles. However, despite the fact that EMG had returned to base-
line, M1 measurements of excitability persisted and were now
joined by increased excitability of antagonist muscles. These re-
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sults appeared similar to neurophysiolog- A
ical measurements taken from single cells

in M1 of monkeys during force field learn-

ing: training in Field A coincided with

changes in the activity of many cells, but

these changes tended to persist during

washout and were joined by changes (of-

ten in the opposite direction) in another

group of cells (Li et al., 2001; Arce et al.,

2010b; Mandelblat-Cerf et al., 2011).

The idea that the human motor cortex
played an important role in learning of
physics gained further support by a series
of creative experiments pioneered by Paul
Gribble. When people watched other peo-
ple train in a force field, they learned from
the errors that they observed in the other
person’s movements (Mattar and Gribble,

Wrist movements B
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Eye saccades

2005; Brown etal., 2009), suggesting thata
sensory prediction error (in visual space)
could guide learning in both the person
that made the movement and the person
who observed that movement. While peo-
ple who practiced in Field A were im-
paired in subsequent exposure to Field B,
people who observed an actor learn Field
A were also impaired in their actual learn-

0-r

ing of Field B. However, repetitive trans- 0
cranial magnetic stimulation of M1 in
people who had observed an actor learn
Field A rescued their learning in Field B
(Brown et al., 2009), providing evidence
that learning of physics produced a mem-
ory that partially depended on the motor
cortex.

In summary, imaging, lesion, and
stimulation studies in humans suggested
that the cerebellum and the motor cortex
were two regions critical for learning of
physics. In the cerebellum, force field ad-
aptation engaged two distinct regions, one
in the anterior lobe and the other in the posterior lobe, both
ipsilateral to the moving arm. Following training, a component of
the memory of the internal model remained in the motor cortex,
acting as a prior that facilitated performance during reexposure
to the same field while impairing performance during exposure
to the opposite field.

o

Figure 1.

Neural correlates of learning physics in the cerebellum

Purkinje cells (P-cells) are the principal cells in the cerebellar
cortex and are a key site of plasticity that may underlie cerebellar
contributions to motor learning. Tim Ebner and colleagues per-
formed a series of studies that focused on the activity of P-cells in
the lateral zones of lobules V and VI while monkeys held the
handle of a robotic arm and moved it along a random path (mov-
ing target) or a straight line (stationary target). In some studies,
they varied the speed of the moving target and its direction, fitting
P-cell simple spikes to kinematics of hand motion (Coltz et al.,
1999). They observed that speed scaled the depth of modulation
of firing with respect to position and direction of the movement
(Roitman etal., 2005, 2009). The simple spikes predicted position
and velocity in some cells but lagged these variables in other cells
(Hewitt et al., 2011). During reaching movements in the pre-
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Activity of Purkinje cells during wrist movements and saccadic eye movements display a diversity of patterns, with
some cells exhibiting a burst, some cells exhibiting a pause, and change in activity often outlasting the movement. Each row
represents activity in a single cell. Activity was measured as rate of discharge over a 10 ms period of time with respect to average
rate produced by the same cell in the baseline period. For example, 300 Hz implies that, over a 10 ms period, the cell produced 3
more spikes than baseline. 4, Activity of Purkinje cells (n = 76) in the lateral zone of lobules V and VI of the right cerebellum during
20° movements of the ipsilateral wrist. Bottom trace, Kinematics of a single movement. Vertical dashed lines indicate average
movement onset and offset for all trials. Data from Ishikawa et al. (2014). B, Activity of Purkinje cells (n = 72) in the oculomotor
vermis region of the cerebellum (midline regions of lobule VI and VII) during 10° saccades. Bottom trace, Average kinematics. Error
bars indicate SEM. Data reanalyzed from Herzfeld et al. (2015).

ferred direction of the cell (direction that produced biggest
change with respect to baseline), some cells showed a reduction in
their activity (with respect to a baseline period before movement
onset), whereas other cells showed an increase (Hewitt et al.,
2015). As the monkey trained in various force fields, more than
half of the task-related P-cells changed their discharge. However,
the patterns of change were diverse, with some cells increasing
their activity and others showing a decrease (Hewitt et al., 2015).
Regression analysis of simple spikes in individual P-cells demon-
strated a diverse encoding of various kinematic parameters of the
arm movements, at various time delays. Learning a force field
changed both the strength of how each movement parameter was
represented in the simple spikes of individual P-cells and the time
delay that related that activity to the movement parameter.
Modulation of P-cell simple spikes during force field learning
was also noted by Shigeru Kitazawa and colleagues. Monkeys
performed elbow flexion and extension while holding a robotic
arm and learned to compensate for either a resistive or an assis-
tive force field. Activity in P-cells began changing ~100 ms before
movement onset but often persisted long after movement had
ended (Yamamoto et al., 2007). The two fields produced diverse
patterns of change in the P-cells, further illustrating that, as the
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physics of the task changed, P-cells responded and changed their
activity during the period of adaptation.

Despite these important studies, we still did not know how
P-cells encoded the internal model that might represent the phys-
ics of the movement. The problem, in my view, was exacerbated
by the limited knowledge that we had on how the simple spikes of
P-cells related to control of movements during motion of the
arm. To illustrate this point, consider a point-to-point move-
ment performed by the wrist (Fig. 1A, bottom plot). Such a
movement coincided with a burst of activity in some P-cells (Fig.
1A) and a pause of activity in other P-cells (Mano and
Yamamoto, 1980; Ishikawa et al., 2014). Importantly, the period
of modulation for many cells persisted long after the movement
had completed. These bidirectional changes in P-cell activity, and
seemingly inappropriate durations of discharge, complicated our
attempts to develop a framework of how movements were en-
coded in the cerebellum.

To consider this problem, we turned our attention to cerebel-
lar control of a much simpler goal-directed movement, saccadic
eye movements. Like wrist movements, P-cell activity during sac-
cadic eye movements exhibited a bewildering assortment of re-
sponses, including cells that exhibited a burst, cells that produced
a pause, and cells that did a combination of the two, as illustrated
in Figure 1B (Soetedjo et al., 2008; Kojima et al., 2010). When we
divided the cells into two groups, we found that the activities of
both the burst and pause groups tended to outlast the saccade
(Fig. 2A). Therefore, similar to the activities present during arm
and wrist movements, during saccadic eye movements the dis-
charge of individual P-cells could not be easily decoded in terms
of the kinematics of the ongoing motion.

The key to unlocking this puzzle was the fact that the cerebel-
lum is anatomically organized in such a way that ~50 P-cells
project onto a single deep cerebellar nucleus neuron (Person and
Raman, 2011). Therefore, what mattered was the convergence of
the simple spikes that were produced by the population of P-cells
onto a nucleus neuron. Indeed, Peter Thier and colleagues had
earlier demonstrated that a population coding was often a better
predictor of eye motion during saccades than activity of individ-
ual P-cells (Thier et al., 2000). However, the critical problem was
to identify the membership of the P-cells in the micro-cluster that
projected onto a single nucleus neuron. That is, was there some-
thing in common among the 50 P-cells of the micro-cluster that
together projected onto a single nucleus neuron?

We considered the possibility that these P-cells within a
micro-cluster were not selected randomly but were organized by
their inputs from the inferior olive (Herzfeld et al., 2015). That is,
we imagined that the olive projections divided the P-cells where,
within a micro-cluster, all the P-cells shared a common input
from the olive (Fig. 2B). The inputs from the olive produced
complex spikes in the P-cells. Therefore, to compute the popula-
tion response of the hypothesized micro-cluster, we organized
the simple spikes of the P-cells based on a coordinate system that
depended on their complex spikes (CS).

Working with our colleagues Yoshiko Kojima and Robi Soet-
edjo who had collected P-cell data from many monkeys over the
course of a decade in the laboratory of Albert Fuchs, my student
David Herzfeld reanalyzed these data using the micro-cluster hy-
pothesis (Herzfeld et al., 2015). The approach required us to
initially ignore the simple spikes and instead focus on the com-
plex spikes of the P-cells. Kitazawa et al. (1998) had shown that,
for arm movements, reach errors produced complex spikes. Im-
portantly, each P-cell had a preference for a specific error direc-
tion. During saccades, Kojima et al. (2010) had quantified the
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Figure2.  Simple spikes of P-cells organized into a population based on their complex spike
properties predicted real-time motion of the eye during saccades via a gain field. 4, Change in
firing rates (with respect to baseline) in the bursting and pausing P-cells for two saccade speeds.
Gray bars represent onset and termination of the saccade (width is SEM). B, Hypothesized
organization of the P-cells into micro-clusters. Each micro-cluster houses P-cells that receive the
same error information, and is composed of approximately equal number of pause and burst
cells, all projecting to a single nucleus neuron. Open triangles represent excitatory synapses.
Filled triangles represent inhibitory synapses. €, Population response, as computed via the sum
of simple spikes generated by a micro-cluster of P-cells. To compute a population response, we
measured the simple spikes of each P-cell as a function of saccade direction with respect to the
(S-on direction of that cell. Saccade is in direction CS-off. Population response appears to pre-
dict in real-time the velocity of the eye. D, Encoding of direction. Peak population response
grows linearly with saccade peak velocity but has a higher gain for saccades in CS-off direction.
Data from Herzfeld et al. (2015).

direction of error that produced the maximum probability of
complex spikes in each P-cell, and then labeled that direction of
error as CS-on. We used this complex spike-based coordinate
system of sensory prediction error to organize the P-cells into
micro-clusters.
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When a saccade took place in some direction, we estimated the
population response (sum of simple spikes) by computing the
direction of movement with respect to CS-on of each P-cell.
We found that when the simple spikes of the P-cells were orga-
nized based on this hypothesized anatomy, a pattern was un-
masked: if the saccade was in the CS-off direction of a group of
P-cells, the collection of cells together produced a total number of
simple spikes that predicted in real-time the velocity of the eye
(Fig. 2C). When the saccade direction changed so it aligned with
the CS-on direction of the same group of P-cells, the population
still predicted eye velocity in real-time, but now with a lower gain
(Fig. 2D). Therefore, within each micro-cluster, the P-cells pro-
duced a population response that predicted real-time velocity of
the eye, with a gain that multiplicatively depended on direction of
motion (i.e., a type of encoding called “gain field”). Encoding via
again field in the cerebellum was intriguing because a similar type
of encoding had been found among the cells in the posterior
parietal cortex (Andersen et al., 1985) as well as the motor cortex
(Paninski et al., 2004).

The new idea was that the fundamental computational ele-
ment of the cerebellum was a micro-cluster of P-cells, all sharing
the same preferred direction of error (Fig. 2B). This anatomical
prediction provided a clue regarding an important question: how
were motor memories protected from erasure?

Consider a typical experiment in which a perturbation is im-
posed on movements, resulting in behavioral adaptation. For
example, Kojima et al. (2004) trained a monkey to make saccadic
eye movements, and using perturbations produced an increase in
the gain of the saccade (Fig. 3A). Following this gain-up period of
training, they reversed the perturbation direction, resulting in a
return of behavior back to baseline. However, despite the behav-
ioral washout, the reexposure to the previous perturbation re-
sulted in faster learning than before, a phenomenon called
“savings.” Savings is a fundamental property of motor memory,
illustrating that washout training does not erase the previously
acquired memory.

The idea that P-cells may be organized based on their pre-
ference for error suggested one way with which cerebellar-
dependent memories were protected from erasure. Suppose that
the perturbations are imposed on only rightward saccades. As
training begins, the perturbations are always positive (Fig. 3A),
which means that, when the primary saccade ends, the visual
stimulus is to the right of the fovea. This visual input activates the
left superior colliculus, which excites the right inferior olive, pro-
ducing complex spikes in the left cerebellum in a few micro-
clusters of P-cells, resulting in plasticity. When the perturbation
reverses direction, so do the errors. The new errors engage the
opposite side of the inferior olive, resulting in complex spikes on
the right cerebellum. Therefore, washout does not erase the
memory. Rather, washout encourages new learning because the
errors engage a new group of P-cells, those that have a preference
for leftward errors. Learning followed by washout lays down two
anatomically distinct memories, not one. Behavioral experiments
in humans provided evidence that supported some of the predic-
tions of this “memory of errors” model (Herzfeld et al., 2014b).

It remains to be seen whether the anatomy described in Figure
2Bisindeed present in the cerebellum. If so, organizing the P-cell
simple spikes based on their complex spikes might shed light on
how the cerebellum encodes movements of the wrist and the arm.
Given the similarities in the patterns of discharge during wrist
movements and saccadic eye movements (Fig. 1), it is plausible
that the encoding present for eye movements may be shared by
other types of movements. It also remains to be seen whether this
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Figure3. A possible neural basis for the phenomenon of savings in the cerebellum. 4, Sac-
cadic adaptation. The monkey’s rightward saccades are perturbed via intrasaccadic movement
of the target. Positive perturbations produce rightward errors, resulting in an increase in sacca-
dic gain. Negative perturbations produce leftward errors, resulting in a decrease in saccadic
gain. After gain-up, gain-down training, the animal exhibits savings in the gain-up period,
demonstrating that reversal of errors did not erase the memory. The lines and the numbers
indicate the slope of the behavioral data. Data from Kojima et al. (2004). B, Hypothesized model
of the oculomotor vermis region of the cerebellum. Rightward errors during gain-up training
engage the right inferior olive, producing complex spikes in the left cerebellum. Gain-down
training reverses the direction of error, producing complex spikes in the right cerebellum. Per-
turbation reversal changes the direction of error. If P-cells are organized based on their prefer-
ence for error, reversal of error engages a new micro-cluster of P-cells, laying down a competing
memory. As a result, training followed by “washout” produces two anatomically distinct mem-
ories: one for the errors experienced during training and one for the errors experienced during
washout. Unfilled triangles represent excitatory synapses. Filled triangles represent inhibitory
synapses.

hypothesis can shed light on the neural process of cerebellar ad-
aptation. Because behavior during adaptation exhibits numerous
characteristics that are shared in both arm and eye movements,
including multiple time-scales of learning, spontaneous recovery
(Kojima et al., 2004; Smith et al., 2006; Ethier et al., 2008), and
modulation of error sensitivity (Hanajima et al., 2015), these
steps, if successful, may put our field in a position to better un-
derstand how the P-cells of the cerebellum participate in the
problem of learning physics.

Neural correlates of learning physics in the motor cortex

Teams led by Emilio Bizzi and Eilon Vaadi systematically studied
the events that took place in the frontal motor regions of the
cerebral cortex during force field training. Both teams character-
ized activity of cortical cells by computing discharge as a function
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of direction of movement. Recordings from muscles during force
field learning had demonstrated that, when activity was repre-
sented as a function of movement direction, the preferred direc-
tion of muscles rotated with training (Thoroughman and
Shadmehr, 1999). Bizzi and colleagues trained monkeys to reach
and place a cursor at a target in an 8-direction task that involved
a baseline period, a force field period, and then a washout period
(Li et al., 2001). In the force epoch, many cells in M1 showed a
shift of preferred direction in the direction of the applied force.
The magnitude of change in the cell preferred direction was sim-
ilar to change in muscle preferred direction. Interestingly, in the
washout period, some cells maintained their change in preferred
direction, whereas others rotated in the direction opposite to the
field. This provided the first neural evidence that behavioral
washout in force field learning was not erasure of the changes that
had taken place during training, but addition of new learning that
masked the older changes.

Arce et al. (2010a) extended these results by showing that
during training in a force field, M1 and premotor cells increased
their activity if their preferred direction was opposite to the di-
rection of field. In contrast, M1 and premotor cells decreased
their activity if the preferred direction was parallel to the direc-
tion of the field. These results demonstrated that, with training in
Field A, two groups of cortical cells with preferred directions
opposite or parallel to the field altered their activities to counter
the field. They tracked these cells as the animal first trained in
Field A, and then washout, and observed that cells that had in-
creased or decreased their activities during Field A training did
not return to baseline during washout trials (Arce et al., 2010b).
That is, training produced changes that depended on the direc-
tion of error with respect to the preferred direction of the cortical
cell: errors opposite to the preferred direction produced an in-
crease in discharge, and errors parallel to the preferred direction
produced a decrease in discharge.

As a result, when training transitioned from Field A to wash-
out, errors changed in direction, and the group of motor cortical
cells that had changed their activity during Field A largely main-
tained their activity, and were now joined by a new group of cells.
Because cortical changes were dependent on the coincidence of
error direction and preferred direction of the cell, a change in
error direction did not erase the previous training, but rather
recruited additional cells into the internal model. These results
suggested that understanding the neural coding of sensory pre-
diction errors by individual cells might be a critical factor in
decoding activity of cells in the cerebellum (Herzfeld et al., 2015)
as well as the motor cortex (Inoue et al., 2016).

Overview

When we move an object that has novel physics, we experience
asensory prediction error. The coordinate system of that error
is that of the primary sensors, vision and proprioception.
These sensors are anatomically linked to reflex pathways that
can produce corrective motor commands. Learning physics
appears to be in part a process of transforming reflex-
generated corrective motor commands into models with
which the brain predicts physics: the delayed reflex-dependent
responses become predictions.

Sensory prediction errors engage the cortical motor regions as
well as the cerebellum. For example, motor cortical neurons re-
spond to errors that are visually sensed at the end of a reaching
movement, and stimulation of these cortical neurons produces
trial-to-trial reach adaptation (Inoue et al., 2016). In a similar
fashion, neurons in the superior colliculus respond to errors that
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are visually sensed at the end of a saccadic eye movement, and
stimulation of these collicular neurons produces trial-to-trial
saccade adaptation (Kaku et al., 2009; Soetedjo et al., 2009). For
saccadic eye movements, the visual errors are transmitted from
the colliculus to the inferior olive, which then produce complex
spikes in the P-cells of the cerebellum, resulting in plasticity. It
seems likely that a similar anatomy connects the motor cortex to
the inferior olive, and then to the cerebellum, transforming reach
errors into cerebellar-dependent motor memories.

Computational models suggest that control of movements
may be represented as a process in which the sensory goal forms a
utility that depends on reward and effort (Rigoux and Guigon,
2012; Shadmehr et al., 2016). The problem of movement control
may be viewed as one in which the utility associated with the goal
is transformed into a policy that maximizes that utility via a feed-
back controller (Todorov and Jordan, 2002). For saccades, the
superior colliculus appears to be critical for implementing this
feedback controller (Goossens and Van Opstal, 2006), whereas
for reaching, the motor cortex may play the role of the feedback
controller (Pruszynski et al., 2011). In this framework, the role of
the cerebellar cortex may be to transform a copy of the motor
commands into a prediction regarding sensory consequences.
The output of the cerebellum, however, is not what the P-cells are
predicting, but an interaction between the P-cell predictions and
mossy fiber inputs to the deep nucleus neurons. Unfortunately,
we currently know very little about the mossy fiber inputs to the
deep nucleus, which makes it very difficult to understand this
final step of computation in the cerebellum. Once this has been
worked out, our field should be poised to decipher the seemingly
alien language used by the brain to predict and control the physics
of our body.
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