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From Equilibrium Point to Optimal Control
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In the mid sixties, Feldman (1966) reported on experiments on feedback control 
processes that stabilize the human arm. In a typical test, the elbow flexors (or 
extensors) would be loaded and the subject was asked to maintain a predetermined 
elbow angle. After a sudden decrease of the load, the forearm would settle at a 
new position. The experiments were repeated for the same initial elbow position 
and load, but each time the change in the load was different. The set of points that 
resulted consisted of two variables: elbow angle θ and force ƒ. These points formed 
an exponential-like curve 

 f a b= −( ) − ( )exp θ θλ 1  (1)

In the above expression, θλ is a threshold length beyond which the muscle 
will produce force. Feldman’s thesis was that the signals sent from the brain to 
the various motorneurons did not produce force, but rather produced a recruit-
ment threshold θλ by depolarizing α-motorneurons. This idea was a refinement of 
an earlier hypothesis put forth by Merton (1972) in which he had suggested that 
the descending system initially activated γ-motorneurons to drive the movement. 
However, as Feldman (1986) noted: “Both models nevertheless proceed[ed] from 
the basic idea that the nervous system uses the stretch reflex to control movements.” 
That is, the descending commands could not control force directly, but only control 
the set point of a local feedback circuit. 

To test this idea, Feldman and Orlovsky (Feldman and Orlovsky, 1972) stimu-
lated a motor center in the brainstem of cats, attempting to artificially produce 
activity that resembled a voluntary movement. They found that their stimulation 
did not produce force changes, but rather changes in the force-length relationship 
of the muscle. 

The model in Eq. (1) sits in sharp contrast to muscles models commonly used 
for description of movement (Stern, Jr., 1974; Hof and Van den, 1981; Zheng et al., 
1984; Hogan, 1984; Winters and Stark, 1985). All of these “other” models belong 
to a single class in which the nervous system specifies an input that generates force 
in the muscle by engaging a non-linear elastic element with an adjustable stiffness. 
How do these muscle models relate to the work of Feldman? 

Using data from Hoffer and Andreassen (1981) in which muscles were analyzed 
in both isolated and reflexive conditions (i.e., connected via Ia afferents to the spinal 
cord), Shadmehr and Arbib (1992) argued that whereas an isolated muscle indeed 
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behaved as a non-linear spring with an adjustable stiffness, under the control of 
spinal reflex circuitry it acted as a non-linear spring with an adjustable threshold 
length. We can summarize the argument as follows: Hoffer and Andreassen (Hoffer 
and Andreassen, 1981) had measured the rate of change in stiffness of muscles with 
respect to force. They had found that the relationship between force and stiffness 
in the intact muscle-reflex system was independent of muscle length

 
df
dx

k f= − − ( )1 exp α  (2)

We note that the solution to the above differential equation is of the form

 f k x= −( )  +( )1
1

α
α λln exp  (3)

Therefore, the intact muscle with its reflex system has a static behavior that 
resembles a non-linear spring with an adjustable threshold. 

Feldman’s idea was that brain could not control muscles independent of this reflex 
system, that is, the brain could not specify a set EMG pattern because that pattern 
was inherently dependent on the state of the sensory system that measured muscle 
length. This reflected a fundamental departure from the way robots are typically 
controlled, and a departure from models that used robotic inspirations to describe 
control of biological movements. To illustrate this difference, let us consider a simple 
example. For an inertial system like the human arm, the dynamics can be written as 

   θ θ θ θ θ= ( ) − ( )( )−I f u fc m
1

, , ,  (4)

In Eq. (4), Ι is the position dependent inertia matrix of the system, ƒc is the active 
forces imposed on the system due to the motor commands μ to the muscles, and 
ƒm is the passive forces produced by the motion of the inertial coordinate frame 
(Coriolis and centripetal). To move such a system along a desired trajectory specified 
by θd(t), a typical approach would be to use an “inverse model” (called a computed 
torque controller in the robotics literature) to cancel the passive dynamics

 f f Ic m d= +ˆ ˆθ  (5)

In Eq. (5), f̂m  is an internal model of ƒm. Note that when we put Eq. (5) in Eq. 
(4), we get the desired acceleration (if our internal model is accurate). To ensure 
stability, we add a simple feedback control law 

 f f I B Kc m d d d= + − −( ) − −( )ˆ ˆ θ θ θ θ θ  (6)

In Eq. (6), the terms ˆ ˆf Im d+ θ  imply that the controller can specify force indepen-
dent of state of the system (the last two terms). Such models have been extensively 
used in describing biological motor control in the last two decades (Shadmehr et 
al., 1995; Berniker and Kording, 2008).
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Feldman’s argument was that these models are flawed because they assume 
that the brain has the capability to specify muscle force independent of sensory 
feedback. Instead, the following scenario was described. In Eq. (3), muscle force 
is a result of a feedback control system that could be controlled through state 
variables (e.g., muscle length χ), and a gain function that depends on parameter λ. 
When this parameter is set for the various antagonist muscles of a limb, the result 
is an equilibrium point, that is, a position for which the various antagonist forces 
cancel. Movement results from a shift of this equilibrium position (Flash 1987).

A major assumption of the equilibrium point hypothesis was that state vari-
ables are described through spindle sensory afferents. That is, the EMG that one 
measured during voluntary movements came about not because of descending 
commands that could directly specify them, but because of interaction with sensory 
feedback from the muscles. Therefore, someone with sensory neuropathy affecting 
the muscle spindles should not be able to make normal movements. For example, 
the 3-burst EMG that one observes during rapid elbow movements should not be 
present without sensory feedback. In a crucial set of experiments, these predictions 
were shown to be false (Rothwell et al., 1982; Berardelli et al., 1996).

However, the inverse model approach (Eq. 6) was equally flawed because it 
imagined descending commands to be driven by a desired trajectory that activated 
the muscles and produced force independent of their state. This kind of approach 
would make sense if our muscles were position independent direct-drive motors 
that one finds in robots. It made little sense in terms of actuators and the associated 
reflex system that we are born with.

In summary, by relying on physiological data suggesting that an intact muscle 
with its spinal reflex system behaved as a non-linear spring with an adjustable 
threshold length, equilibrium point hypothesis (EPH) built a model of motor control 
in which descending commands modulated spinal reflexes. A failing of this model 
was that it could not explain the ability of people with proprioceptive loss to make 
voluntary movements. Computational approaches that relied on inverse models 
could explain these data, but they were equally flawed because they ignored the 
state-dependent force characteristics of muscles.

An alternative idea was set forth in the framework of forward models. In this 
framework, the state upon which the nervous system acted was not simply due to 
the sensory system’s measurements, but also due to internal predictions made by 
the brain. For example, Ghez and Sainburg (1995) noted that the first time a deaf-
ferented patient was asked to make a rapid arm movement, the hand trajectory had 
significant errors. However, upon repeating the movements a few times with visual 
feedback, it became comparable to healthy controls and could be generalized to 
nearby movement directions. They argued that the reason why deafferented patients 
could make normal movements was because motor commands that acted on the 
muscles could be driven by internal predictions of state. These internal predictions, 
driven by forward models, improved with practice and visual feedback, forming 
a more accurate estimate of state. Muscles were state dependent force generators, 
but these states could be predicted even when proprioception was missing.

To expand this idea, consider that in the equilibrium point formulation of motor 
control, there are two key quantities: state, and gain. Motor commands arise from 
a feedback control law that applies a gain to the state, in which state is measured 
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by proprioceptive sensors. The forward model framework replaces the notion of 
sensory state with the estimate of that state, i.e., an estimate in which sensory 
information is combined with prior predictions (Kording and Wolpert, 2004). The 
prior predictions are the expected states that are produced by forward models. 
When we make a movement, the state of our arm can be measured by propriocep-
tive and visual sensors. If a person has no proprioception, movements can still be 
made because forward models can continue to predict visual and proprioceptive 
state of the limb, and produce motor commands based on the integration of these 
predictions with whatever sensory feedback is available. 

The next major step forward came when Todorov and Jordan (2002) used 
optimal feedback control (OFC) theory to link the concept of a gain with a feed-
back control law that depended on the properties of the task. In OFC, the gain of 
the feedback loop depends on a cost function that specifies why the task is being 
performed (i.e., what were the relevant states that produce reward), and what are 
the relevant costs (for a review, see Shadmehr and Krakauer, 2008). Therefore, 
in both equilibrium control and in OFC, one does not compute forces or motor 
commands. Rather, one computes the feedback gain. As a result, in both theories 
movements and reactions to perturbations arise from interactions of state with this 
feedback gain. The crucial differences, however, are that in OFC, the gain is task 
dependent, and the state depends on a forward model, i.e., the state is estimated 
through a combination of measurements and predictions.

The idea that the nervous system controls states that are relevant to the task 
is also called an uncontrolled manifold (Scholz and Schoner, 1999). The term 
“uncontrolled” refers to the gain function’s reduced response to state variables 
that have little or no relevance to the goal of the task. The idea has been used 
to account for complex movements that offer clear redundancies, like bimanual 
pointing (Domkin et al., 2005) and Frisbee throwing (Yang and Scholz, 2005). In 
OFC, the gain of states that are irrelevant to the goal is lower than states that are 
relevant. OFC states in mathematics the idea of an uncontrolled manifold, and has 
no fundamental differences with it in this respect. 

In the current formulation of OFC, there is no specific constraint due to spinal 
reflexes. That is, the “low-level” control system of the spinal reflexes play no spe-
cial role in the control system. As a result, when task properties change, the theory 
predicts that the brain should be able to alter the feedback response to optimize the 
task dependent cost function. In fact, there are numerous examples that this is not 
the case. For example, during maintenance of posture, the voluntary control of arm 
stiffness is possible but extremely limited (Selen et al., 2009). During voluntary 
movements, changes in response to perturbations are possible, but often much less 
than expected (Burdet et al., 2001; Diedrichsen, 2007). That is, when one closely 
examines the data, voluntary control of our body often appears less than glob-
ally optimal. The reason may be that low-level (spinal) control structures impose 
constraints on how the high-level processes can control behavior. As a result, a 
significant challenge will be to incorporate into OFC a more accurate description 
of low-level physiological constraints.

In summary, feedback control is at the heart of both equilibrium point and 
optimal feedback control theory. In any feedback control system, there are two 
crucial components, state variables and gain functions. In OFC, the concept of 
state is not limited to the proprioceptive information signaled by primary afferents, 



Equilibrium Point to Optimal Control    5

but rather an estimate of the limb’s state as produced by combining predictions of 
a forward model with sensory feedback. In OFC, the concept of feedback gain is 
task dependent and depends on a cost function that describes the rewarding states 
and nature of motor costs. Whereas in equilibrium point control the feedback 
controller was imagined at a spinal level acting on proprioceptive feedback, more 
recent developments of OFC envision a hierarchy of feedback controllers that act 
on estimates of sensory states at all levels of the central nervous system. Perhaps 
the greatest legacy of equilibrium point control will be its predictions regarding the 
apparent limitations in the central nervous system’s ability to modulate feedback, 
that is, the less than optimal change in the feedback gains when task properties 
change. These limitations may be related to the relative inflexibility of low level 
(spinal) vs. high level (supra-spinal) feedback controllers. 
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