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Abstract

Learning to make point-to-point reaching movementsin a curl force field was used as a
paradigm to explore the system architecture of the human motor adaptive controller. The
concept of internal model, a system for predicting behavior of the controlled movements,
isdivided into aforward and an inverse model. The existence and learning ability of the
inverse model in the brain is more straightforward than forward model. | try to ask
whether forward mode does play arole in the human control system and what happened
to the forward model during the adaptation of the controller? A forward model transforms
an efferent copy of descending commands into a prediction of the current state, position
and velocity of the arm. Our work has focused on aforward model of dynamicsasarole
of feedback control. We compute control force change caused by perturbation in the null
field and in the force field. From the control architecture we provided in thisthesis, the
control force change is only due to computation result of forward model and spinal reflex
feedback. In order to compare the control force change in the null field and in the force
field in the same state, a parameterized model was built for the null field to compute what
the control force change would be in the state of force field. We see the adaptation of
control force change to exactly compensate the expected the force field. This suggests

that forward model plays a dominant role in the motor control and learning.
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Chapter 1

Current Understanding of the Computational
Motor Control for Human Arm Movements

A current controversy in motor control is whether the CNS makes use of an internal
model of the motor apparatus in planning and executing goal-directed movements. A
number of investigators have suggested that an internal modelsis used either to predict
the movement consequences of motor commands (forward model) (Jordan and
Rumelhart, 1992; Miall et a., 1993; Jordan et a., 1994; Wolpert et a., 1995) or
determine the commands needed to achieve a desired movement trajectory (inverse
model) (Saltzman, 1979; Atkeson, 1989; Uno et al., 1989; Hollerbach, 1990). However,
other workers have proposed control theories that explicitly reject the notion of an
internal model (Bizz et a., 1984; Flash, 1987; Bullock and Grossberg, 1988; Feldman et
al., 1990; Flanagan et a., 1993). We introduce some of the computational approaches that
have been developed in the area of motor control. We focus on areas of motor control,
which have been enriched by control system models: motor planning, internal model,

motor prediction and motor learning.

1.1 Motor Planning



The computational problem of motor planning arises from a fundamental property of the
motor system; the reduction in the degrees of freedom from neural commands through
muscle activation to movement kinematics. Even for the simplest of tasks, such as
moving the hand to a target location, there are an infinite number of possible paths that
the hand could move along and for each of these paths there are an infinite number of
velocity profiles (trgectories) the hand could follow. Having specified the hand path and
velocity, each location of the hand aong the path can be achieved by multiple
combinations of joint angles and, due to the overlapping actions of muscles and the
ability to co-contract, each arm configuration can be achieved by many different muscle
activations. Motor planning can be considered as the computational process of selecting a
single solution or pattern of behavior at the levels in the motor hierarchy, from the many
alternatives, which are consistent with the task.

Optimal Control Approach and Kinematic Cost Function

One computational framework, which is natural for such a selection process, is optimal
control in which a cost function is chosen in order to evaluate quantitatively the
performance of the system under control. The cost function is usually defined as the
integral of an instantaneous cost, over a certain time interval, and the am is to minimize
the value of this cost function. Every possible solution, that is each possible movement,
has an associated cost and the solution with the lowest cost is selected as the plan. In this
framework the cost function is a mathematical means for specifying the plan. The
variables that appear in the cost function, and that are therefore planned, determine the

patterns of behavior observed.

While many possible cost-function have been examined there are two main classes of
model proposed for point-to-point movements: kinematics and dynamics based models.
Here only the kinematics based models are introduced and used for the computation of a
desired movement or trgectory for the arm. Kinematic cost function contain only

geometrical and time-based properties of motion and variables of interest are the



positions (e.g. joint angles or hand Cartesian coordinates) and their corresponding

velocities, acceleration and higher derivatives.

1.1.2 Minimum Jerk Trajectory

Based on the observation that point-to-point movements of the hand are smooth when
viewed in a Cartesian framework, it was proposed that the squared first derivative of
Cartesian hand acceleration or ‘jerk’ is minimized over the movement. The minimum
jerk hypothesis produces a unique solution given the movement duration and suitable
boundary conditions of initial and fina position and velocity. The model predicts
straight-line Cartesian hand paths with bell-shaped velocity profiles, which are consistent
with empirical datafor rapid movements made without accuracy constraints.

Assume that we know where our arm is currently, x,or d,, we know where we want our
arm to be at the end of movement, x, or g, , how should the arm/hand move from start to

final position? Infinite numbers of trgectories are possible. There is “regularity” in the

way people move.

Hypothesis: movements are planned so that hand path is minimum in jerk, i.e., maximally

smooth. Assume x(t) is position,

The trgjectory x(t),t =0..T that minimizes above function is a trajectory that is a
minimum jerk. If x, = X(0), x, = x(f) and given X, X=0 at start and end of movement,

we have
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1.2 Internal Models

The concept of an internal model, a system for predicting behavior of a controlled
process, is central to the current theories of motor control and learning. Theoretical
studies have proposed that internal models may be divided into two varieties: forward
models and inverse models. The forward model accomplishes the transformation from
motor variables to sensory variables by the environment and the muscul oskeletal system
(these physical systems transform efferent motor actions into reafferent sensory
feedback). It is also possible, however, to consider internal transformation, implemented
by neutral circuitry, that mimic the externa motor-to-sensory transformation. Such
internal transformations are known as internal forward models. Forward dynamic models
predict the next state (e.g. position and velocity) given the current state and the motor
command whereas forward output models predict the sensory feedback. This in contrast
to inverse model which invert the system by providing the motor command required to
achieve some desired result they have a natural use as a controller. Based on
computational principles, this classification is relevant for adaptive control of a nonlinear
system. The CNS appears to learn control of the arm through the formation of both
forward and inverse internal model of the environment’s mechanical dynamics. Memory
consolidation maybe related to transform of one kind of internal model into another
(Bhushan & Shadmehr, 1999). In this chapter, control methods based on inverse and

forward modalities that the brain can use for controlling arm movements are introduced.

1.2.1 Forward Model



The feedback forward model control is a method where the brain uses sensory feedback
information about the state of the arm from vision and proprioception to generate or
modify the motor commands sent to the arm based on error in the measured state and the
desired trajectory. This method places prime emphasis on the role of joint stiffness and
viscosity for the generation of movements by the central nervous system (CNS). The
forward dynamics model refersto a hypothetical computational network in the brain and
has been defined as an internal model that mimics the casual flow of a process by
predicting its next state given the current state and the motor commands (Miall and
Wolpert, 1996). The forward model is amodel of the input-output mapping of the human
arm from muscle activation to arm movement. It can be estimated as an estimate of the
forward dynamics of the human arm, which predicts hand acceleration from neural signa
and hand state (position and velocity).

The feedback forward model control of a system has the following advantage:

e [tisrobust to noisein the plant and changesin the plant
e With high feedback gainsit is possible to emulate the inverse dynamics of the system
with a simple linear controller and achieve close to exact tracking of the desired

trajectory.

Its disadvantage:

e Extremely sensitive to noise in sensory measurements and feedback
e Affected greatly by time delays in the feedback loop
e Theactual trgjectory can never track the desired trajectory exactly

In the human motor system, feedback control is very attractive, humans have to interact
with different environments that continualy alter the dynamics of the system they are
trying to control. And, visual control of movement is a form of feedback control that is
very useful. However, time delays in the feedback loop severely limit the scope of
feedback control and do not allow simple feedback control of the system. The reason is

that information about the outcome of a control action is not available instantly and has to



go through a delay before reaching the controller. By the time the control action is taken
it may no longer be appropriate for dealing with the current errors in the output of the
system. To overcome delays in the feedback, what is required is a method to obtain the
current state or output of the system without having to wait for it to feed back. For stable
feedback control the brain has to compute the state of the arm at current time t from a

delayed measurement of the state at time t—t,, where t, is the feedback delay, and a

history of motor commands sent out by the brain until the current time t. In control
literature, a computational unit that estimates or predicts current state is caled an
observer. Hence an observer has to be designed to solve the time-delay problem. In the
context of movements, the concept of a Forward Model has been proposed to construct
an observer and achieve feedback control in the presence of time delays in the system
(Miall and Wolpert, 1996).

1.2.2 Inverse Model

This refers to a control method by the brain that uses only the predetermined desired
trajectory to generate control signals for movement of the arm. It is a feedforward control
system and does not rely on feedback during the movement. Stability of the system is
achieved by the spinal reflex loop and equilibrium properties of the muscle. An important
distinction of this method to feedback methods discussed later is that desired trgectory
directly drives the system without the use of intermediate variables like muscle activation
or torque. The brain does not have independent control over torque or muscle activation
generated in the system and controls only the trgjectory. Muscle can be used as a
trgectory controller or as a torque generator. In the feedforward methods discussed here,

the controller relies on the trajectory control properties of the muscle.



1.2.3 State Estimation

Delaysin forward model feedback cause instability and uncertainty. Therefore, human

motor control produces its estimate of the current state by monitoring the stream of input

(motor neura signal) and sensory feedback at some earlier time. Based on the current

state estimate and the estimated error in trgectory, the desired trgectory is corrected

using alinear feedback controller.

1.3 An Example Model of Human Arm Control Using Forward-
Inverse Model Feedback Control
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Figure 1.1: Block diagram illustrating the control method using both feedforward and

feedback control

The collective system of “muscle’ and manipulated “Inertial Dynamics’ is often referred

as the “plant”, which is the controlled object. The plant transforms the neural motor

command into the trgectory (position and velocity) of the human arm. One of the

problems associated with feedback control is that of tracking the desired trgectory




exactly. With feedback gains that are not sufficiently high, the actual tragjectory only
approximates the desired tragjectory as was seen with only feedback control of movement
for neural activation and torque control methods. The other disadvantage with above
methods was that of adapting to altered dynamics by changing the forward model, which
improved performance but still caused errors in tracking the desired trgjectory. One way
to overcome this drawback is to combine inverse model feedforward control with
feedback control. In the new configuration, the feedforward signal controls the system
and the feedback signal corrects for unmodeled disturbance to the system, hence this
method integrates the advantage of both the feedforward and feedback techniques.

The properties of this control method are:

1. Useof aninverse model to generate the feedforward signals, and aforward model to
generate the estimates for feedback control. Hence the control on both the forward
and inverse plant models.

Exact tracking the desired trgjectory can be achieved.

Stable control of the arm in the presence of external force fields.

Adaptation to the altered dynamic environments through changes in the forward and
inverse models.

Greater sensitivity of performance of the system to changes or errors in the forward

model that to the inverse model.

1.4 Adaptive Motor Control using Internal Models

Adaptive control of a nonlinear system which has large sensory feedback delays, such as
the human arm, can be accomplished by using two different internal model architectures.
One method uses only an adaptive inverse dynamics model to control the system
(Shadmehr and Mussa-Ivaldi, 1994). The adaptive controller is feedforward in nature and
ignores delayed feedback during the movement. The control system is stable because it
relies on the equilibrium properties of the muscle and the spinal reflex to correct for any
deviations from the desired trgectory. The other uses a rapidly adapting forward



dynamics model and delayed sensory feedback in addition to an inverse dynamics model
to control arm movements (Mial and Wolpert, 1996). In this case, the corrections to
deviations from the desired trajectory are a result of a combination of supraspinal
feecback as well as spinal/muscular feedback. For reaching movements of the hand in
novel force fields, only the learning of the forward model results in key characteristics of
performance that match the kinematics of human subjects. In contrast, the adaptive
control system that relies only on the inverse model fails to produce the kinematic
patterns observed in the subjects, despite the fact that it is more stable (Bhushan N,
Shadmehr R, 1999).



Chapter 2

Modeling of the Human Motor Control

2.1 Kinematics of the Human Arm

Figure 2.1: Schematic picture of the arm model. The upper arm (angle g, ) and the
forearm (angle g, ). The hand with Cartesian coordinates (X, y) . An external force
(F,,F,) acting on the hand from the robot handle.



The kinematics of the human arm refer to the configuration rel ationships between joint
positions and hand positions and the transformation between these two coordinates
system. Human arm movements in the horizontal plane are described by 2-dof arm model
which isdepicted in Fig. 2.1. The upper arm and forearm are presented by rigid links that
rotate in 1-dof joints, modeling the shoulder and elbow joint. The following are the
eguations that govern the forward kinematics of the arm and represent Cartesian or hand
state in terms of joint state. The transformation from joint angles to handle position (in
subject Cartesian coordinates) is given by

x =1, cosq, +1, cos(q, +q,)
y=I;sing, +1,sin(q, +a,)

X= _llqlsmql - |2(q1 + qz)sm(ql + qz)
y=1,¢, cosq, +1,(¢, +¢,) cos(q, + ;)

The last two equations can be represented in vector notation by:

x=J(a)q

X:[x]; q:[ql} j(q):dx_[—llsinql—lzsin(qlmz) —Izsin(q1+q2)}

y O dq | I, cosq, +1,c08(q, + ) I, c08(¢ + )

where,

X, y arethe Cartesian x-y hand (handle) position

X, y arethe Cartesian hand (handle) velocity

q,,q, aretherelative shoulder and elbow joint angles
,,q, aretherelative shoulder and elbow joint velocities

J isthe Jacobian of joint to Cartesian coordinate transform

l,,1, arethe upper and lower arm lengths respectively



It is possible to express the inverse kinematics relationship that represents the joint angles
as afunction of hand position for the human arm. A unique joint position q existsfor a
given hand position in the workspace, when planar movements are considered. The
uniqueness of the solution is ensured because of the constraint on the joint angle,

0<q, <x. Thesolution is given by the following equations,

x2+y2—lf—I22)

=cos*
a, ( 2,

. 4, l,8n
nl 2 q2

=09 (—m)
q=J"(a)x

where,
g, isthe angle made by the hand with respect to the x-axis and is equal to
arctan(x, y)

Jtistheinverseof 2x2 matrix J

J ™! exists except at the boundary of the workspace where g, = q, . This singularity is
ignored here because the movements of the arm considered in the current study are well
within the boundaries of the workspace, and it is assumed that J ™ exists at all points
during a movement of the arm. The equation relating hand acceleration % joint
acceleration ¢, is obtained by differentiating Eq. 1.1 that gives,

x=J(a)d+J(g,9)q
where,

G0 _ddg
dt  dq dt



2.2 Dynamics of the Human Arm

The dynamics of the arm refers to the interaction between forces in the system and
change of state of the system. A torque acting on the joints causes a change in the joint
position and velocity. For the two-link two-joint system in Fig 2.1, the dynamics can be
represented in terms of the link lengths and mass and inertia of the links with these
eguations. To estimate inertia parameters by shaking human arm, the following equations

can be utilized:
T(0,9,4) =H(q)d+C(aq.9)q

2]

Here, T = [ ] (r, and 7, arethe relative shoulder and elbow torque respectively). The

7;
subscript ‘1’ and ‘2’ represent shoulder and elbow respectively. 7, and 7, represent the
net torque produced by all the muscles about each joint. H(q) and C(q,q) denote the

inertial matrix (2x2) and coriolis-centrifugal force vector respectively.
H — |: H 11 H 12 :|
H 21 H 22
where,

H11 = i1c + i20 + rnllczl + m2(|1 + Ic22) + 2m2|1|02 cosq,
= a, +a, + 2a, cosq,

H12 = H21 = i20 + mzlczz + mzlllcz cos(qz)
=a, + a5 Cosq,

— 2 _
H22 _|2c+m2|02 _a2



[— mzlllczqz SinCIz - mzlllcz(q1 + qz)Sinq2:|
| mz|1|c2Q1SinQ2 0

- asqzsinqz _as(q1+q2)8inq2:|
__a3q15inQ2 0

Here, m and m, denote the masses of upper arm and lower arm (hand plus forearm)

links, 1., and |, denote the length from each joint to the center of gravity for each link,
I, andi,. denote theinertia of each link, and |, andl, denote the length of the upper arm
and forearm. These parameters can be merged into three parameters a;, a, and a,. It is

obvious that

o 2 2
al_llc+rnl|cl+rnzll
a, =i, +m|?
2~ '2c m202

a=mll,.
We call these parameters ‘ structural parameters since they are independent of arm

position, velocity, acceleration and torque. They are constant values under al conditions.

So we can pre-estimate a,i =1,2,3, theinertial models of human arms, and then use it to

compute the dynamics for reaching movement of the human arm.
It isalso possible to represent the torque in terms of hand velocities and accelerations as,
T = HI ™[ - J3*x]+ CI*x (1.1)

The forward dynamics of the arm is the functional relationship that gives changein state

of the hand in terms of the input joint torques. Thisis given by,



%= JH T — I %]+ JI % (1.2)
and can be expressed in asimpler form by a nonlinear function f,,
%= f,(T,X,X) (1.3

The relationship that gives the torque required for moving the arm from one point to

another along a certain trgjectory is called the inverse dynamics of thearm and is
represented by Equation (1.1) or simply as f *. If the hand position, velocity and
acceleration are given for any instant of time then torque can be computed using Equation
1.1

Note: The representation of kinematics and dynamics of the human arm isin relative joint
coordinate system throughout thisthesis. Thisimplies that the joint angles and joint
torques for the human arm are expressed in relative joint coordinates.

2.3 Mathematical Modeling of Human Arm Motor Control

It isclear from our simulation studies and those of others (Hollerbach and Flash 1982)
that the generation of coordinated multijoint arm movements requires the CNS to account
for joint interactional effects. Several different strategies for controlling multijoint
movements have been advanced in the literature. Proponents of the equilibrium point
hypothesis (Bizzi et al. 1984; Feldman 1966) believe that the CNS controls movement by
defining a sequence of equilibrium positions for the limb (the virtual trgectory).
According to this hypothesis, muscle torques arise from the interaction of limb stiffness
and differences between the actual and virtual trajectories, without explicit solution of the
inverse dynamics problem. Rule-based control schemes (Gottlieb et al. 1997; Karst and

Hasan 1991) also alow the CNS to circumvent the computation of inverse dynamics.



Alternatively, and more plausibly in our view, the CNS may utilize an internal model of
limb dynamics to transform the desired movement kinematics into appropriate torque or
muscle activation patterns (Atkeson 1989). Such a model, perhaps acquired through
"motor learning," would provide explicit predictive control of segmental interactions.
Severa recent studies have provided evidence that the CNS utilizes internal modelsin the
control of motor behavior (Flanagan and Wing 1997; Lackner and Dizio 1994; Lacquaniti
et al. 1992; Sainburg et a. 1999; Shadmehr and Mussa-lvaldi 1994; Wolpert et al. 1995).
In particular, the study of Sainburg et a. suggests that the anticipatory control of
intersegmental dynamicsis achieved using an internal model of the intrinsic dynamics of
the limb. The neural correlates of this model remain unclear. Schweighofer et al. (1998)
have proposed a distributed representation of limb dynamics in which the motor cortex
provides compensation for the inertial anisotropy of the limb and the cerebellum accounts
for segmental interactions. This representation is consistent with recent studies of patients
with cerebellar lesions that have linked trgjectory disturbances to an impaired control of
interaction torques (Bastian et a. 1996; Topka et a. 1998).

The purpose of the mathematical modeling was to help describe the concept of an
“internal model”. Let us start by considering the arm’s dynamics in generalized
coordinates: We indicate by q apoint in configuration space (e.g., an array of joint
angles) and by gand g itsfirst and second time derivatives. The dynamics of the motor
control system coupled (in parallel) with its environment can be described by the sum of
the following terms: atime-invariant component, ¥(q,q,4d) . 7., (t), represents forces
which depend on dynamics of the environment. M (q,q, ) represents the forces which

depend on the operation of the controller.

¥(0,9,6) = M (0, G, 1) + 7., (1) (1.4)

If we assume the arm to be rigid body serial link system, the forces represented by W is

itself asum of inertial, Coriolis, centripetal, and friction forces:



¥(g,q9,6) =H ()G +C(a,9)q (1.9)

Here, W(.) denotesatwo-link arm dynamics, and ¢, and ¢ are angular positions
(g= [21] , Where ¢, isshoulder angleand g, iselbow angle), velocity and acceleration
2

vector, respectively.

With respect to the function M (q,q, &), ssmulations have previously suggested a

reasonable lumped model of the subject’s biomechanical motor controller in the case of

point-to-point movements is as follows (Shadmehr and Brashers-Krug, 1997):
M = H(dy)d, +C(ay,d4)4, — E(dy) -K(a-0,) - B(d-4,) (1.6)

where H and C, which istheinverse model built by human motor controller for the

dynamic of human arm, are the approximationof H and C.

2.4 Impedance of the Human Arm Controller

The mathematical modeling of the two-link human arm dynamics on the horizontal plane
were modeled by the following second-order nonlinear differential equations:

¥(9,0,6) = M(q,q, 1) + 7o (1)

7., (t) denotes the external force acting on the hand from the robot handle. Considering

the length-tension and vel ocity-tension relationships of muscle force, the generated
torque, M(q,q,u), can be represented as a function of angular position, velocity, and
motor command, u, descending from the supraspinal central nervous system (CNS). Let

us consider the human arm controller is capable of guiding alimb along adesired



trgjectory q,(t) . When arm follows a particular trgjectory q,(t) , we assume that

T=17,(t) and 41 = p1,(t)
T(Qo:qmqo) = M(Qo’qm:uo)"'fo(t) (1-7)
If human arm is perturbed Aq(t) from the desired trajectory q,(t) by applying small and

smooth perturbations for a short duration, the following variational equations can be

utilized. Impose a perturb force At resultingin g, + Aq and u, + Au,

W(q, +Ad, ¢, +AG, G, + Ad) = M (0, + AQ, G, + A, 1y + Ap) + 7, (t) + Az(t) (18)

(1.8) = (1.7): (g, +Aq) —'¥(qy) = M(q, +AQ, G +AG, Uy + Au) = M (0, Gy, U) + AT

Using Fourier Expansion, we have

M(qO+Aq,q0+Aq,u0+Au)zM(qo,qo,uo)+—0"vI Aq+—d|\{I Aq+—dM Au+...
d dq |, du
Qo Qo Qo
‘P(qo+Aq)—‘P(qo)zd—M ag+ M Ags MY Ausar
dq dqg | . du |,
Qo o o

K and B represent muscle stiffness and viscosity matrix whose sizeis 2x 2, so we

have:

k., k
Stiffness: d—M K =[ H 12:|,
dq qo k21 k22
by, blz}
b, b,

Viscosity: —Z—M‘ = B:[
Gl



Y(q, + Aq) —'¥(q,) = —-KAgq—- BAQG + Z—M Au+ At
u
u0

We can measure external torque change acting on the human arm from the environment.

By measuring inertial dynamics of thearm: ¥(q,q,d) = H(g)d+ C(q,9)q and

predicting the path ¢, (t) that the human arm would follow if there were no perturbations,

we can estimate the torque or force — KAq— BAqQ + Z—I\S Au that was generated by the
l'IO

human motor to activate and control reaching movements of human arm

2.5 Curl Force Field

In some cases of the experiments, the mani pulandum was programmed to produce forces
on the hand of subject as the subject performed reaching movements. These forces,
indicated by the vector F , was computed as a function of the velocity of the hand:

F =Bx
where xwas the hand instant velocity and B was a constant matrix representing

viscosity of the imposed environment in subject Cartesian coordinates. The viscosity

matrix B we used in the experiment has the following format:

It isviscous (proportional in strength to the instantaneous hand velocity) and directed

orthogonal to the instantaneous hand velocity. This force field is considered here because



human motor behavior in thisfiled is used as the main source of data for understanding

human motor control and adaptation in this thesis.
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Figure 2.2: An environment as described by the curl force field with the viscosity matrix

0 -13
equalsto [13 0 ] N.sec/ m. Forces acting on the hand while making reaching center-

up movements. The movement here istypical subject averaged data with a period of 0.5
sec and amplitude of 10 cm.

The forcesfield is chosen because it provides a new dynamic environment that has not
been previously encountered by the subjects, and therefore their behavior and
performancein thisfiled is unaffected by previous learning of other every day tasks. A
wealth of data on human learning in this field has been collected in our laboratory and
will be used in subsequent chapters. Hence it isimportant the structure and nature of this

novel dynamic perturbation. The curl force field causes aforce on the hand that is



perpendicular and proportional to the hand velocity at any instant. The work done by the
field is dways zero; therefore it does not affect the energy of the system. The interaction
force acting on the arm due to the curl force field can be mathematically represented as,
In particular, we chose B to be:

B= [103 _;3] N.sec/m
The torque change required with the altered dynamics for reaching movement is
significant compared to the torque required for the unload arm. As a subject made
reaching movements center-up in this force field, the robot handle produced forces shown
in Figure 2.2 (the movement we used here are the average of reaching movements of a
typical subject).

2.6 Savitsky-Golay Smoothing and Derivative

The Savitsky-Golay algorithm is based on performing aleast squares linear regression fit
of apolynomial of degree k over at least k +1 data points around center point in the
spectrum to smooth the data. The derivative is then the derivative of the fitted polynomial
at the center point. Since the coefficients of the fitted polynomial are linear in the data
values, the filters can be precomputed. “ Order of thefilter k” isthe highest polynomial
power used in the fit. “Half-width of the filter” are the number of pointsto the right and
left of the center point (note: if the number of pointsto the right is not equal to the
number of points to the left, a non-symmetric filter will be generated; otherwise,
symmetry is assumed and the total width of the filter will be 2x halfwidth +1). Given

order and half-width of the filter, Outputs, we can precompute the coefficients of this
filter. We construct a coefficients matrix C whose each row represents the coefficients
used to calculate the corresponding derivative at the center point. For example, this

matrix has dimensions (order +1) x N, where N isthetotal width of the filter



N = 2x halfwidth+1.
To compute the smoothed estimate of the value at the center point, take the dot product of
thefirst row of C with the data around the center point. Similarly, for the first

derivative, use the second row of C, etc.
Note: When using the Savitsky-Golay filter to compute derivatives, dot product need to
be divided by the sampling interval raised to the power of the desired derivatives.

The calculation uses the matrix formalism described above to calculate 1st through d th

derivatives.

Legend:
d : the order of the derivative
k : the degree pf the polynomial
s: the number of points to be fitted by the polynomial
P: An s-element array with values [-m,...,0,...,m]
6 : A k-element array parameters

y : the array of actual data points

1 .. 0 .. 1

X = -m 0 m
0

(_m)k+1 0 mk+L

Then y=X§6 and the least squaresfit is given by minimizing

S=(y~-X8)' (y-X0)
L . das o
which is given by the condition: a0 =0. Thisyields

O=(X"X)*'XTy=Ty



where T = (X" X)X ". The d th derivative is then given by d! timesthe (d +1)th rows

if the T convolved with the trace data:
&Y @) Sy
- " i td+Li—j -
dXd e J

where m=(s—1)/2. Note that this convolution truncates the trace by m points on each

side.

2.7 Principal Component Analysis Methods

The basic concept of principle component isintroduced in this section. This statistics tool
isused in Chapter 3 to predict what the movement would be if there is no perturbation.

In real samples, there are usually many different variations that make up a spectrum: the
constituents in the sample mixture, inter-constituent interactions, instrument variations
such as detector noise, changing environmental conditions that affect the baseline and
absorbance, and differences in sample handling. Y et, even with all of these complex
changes occurring, there should be some finite number of independent variations
occurring in the spectral data. Hopefully, the largest variations in the calibration set
would be the changes in the spectrum due to the different concentrations of the
constituents of the mixtures. If it were possible to calculate a set of "variation spectra’
that represented the changes in the sample data at all the wavelengths in the spectra, then
this data could be used instead of the raw spectral data for building the calibration model.
There should be fewer common variations than the number of calibration spectra (in most
cases), and thus, the number of calculations for the calibration equations will be reduced

aswell.



Presumably, the "variation spectra’ could be used to reconstruct the spectrum of a sample
by multiplying each one by a different constant scaling factor and adding the results
together until the new spectrum closely matches the unknown spectrum. Obviously, each
spectrum in the calibration set would have a different set of scaling constants for each
variation since the concentrations of the constituents are all different. Therefore, the
fraction of each "spectrum™ that must be added to reconstruct the unknown data should be

related to the concentration of the constituents.

The "variation spectra’ are often called eigenvectors (a.k.a., spectral loadings, loading
vectors, principal components or factors), for the methods used to calculate them. The
scaling constants used to reconstruct the spectra are generally known as scores. This
method of breaking down a set spectroscopic data into its most basic variationsis called
Principal Components Analysis (PCA).

Since the calculated eigenvectors came from the original calibration data, they must
somehow relate to the concentrations of the constituents that make up the samples. The
same |oading vectors can be used to predict "unknown" samples; thus, the only difference
between the spectra of samples with different constituent concentrations is the fraction of

each loading vector added (scores).

Before PCA is applied to atraining set, the datais commonly mean centered. This means
that the mean spectrum (average spectrum) is calculated from all of the calibration
spectra and then subtracted from every calibration spectrum. Mean centering has the
effect of enhancing the subtle differences between the spectra. Remember, eigenvector
methods cal cul ate the principal components based on changes in the absorbance data, and
not the absolute absorbance. Therefore, anything that improves the ability of the
calculation to detect the differences between the calibration spectra, will improve the
model. This actually makes alot of sense when considered in the context of how PCA
calculates the eigenvectors. Since the eigenvectors represent the changes in the spectral
datathat are common to all the calibration spectra, removing the mean simply removes

the first most common variation before the datais even processed by the PCA algorithm.
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A = Original Spectral Data n = Number of spectra
S = PCA scores p = Number of data points
F = PCA Factors (Eigenvectors, f = Number of principal components
loadings)

Figure 2.3: PCA breaks apart the spectral data into the most common spectral variations
(factors, eigenvectors, loadings) and the corresponding scaling coefficients (scores). The
original spectral datamatrix A isjoint velocity data of point-to-point reaching
movements of atypical subject. The dimension of each matrix isindicated in the figure.

PCA is effectively a process of elimination. By iteratively eliminating each independent
variation from the calibration spectrain series, it is possible to create a set of eigenvectors
(principal components) that represent the changes in the sample data that are common to
al. When the training data has been fully processed by the PCA algorithm, it is reduced



to two main matrices. the eigenvectors (spectra) and the scores (the eigenvector
weighting values for all the calibration spectra). The matrix expression of the model
equation for the spectral datalooks something like:

A=SF +E,

where A isan n by p matrix of spectral sampledata, S isan n by f matrix of score
valuesfor all of the spectra, and F isan f by p matrix of eigenvectors. The E, matrix
isthe errorsin the model’ s ability to predict the calibration sample data and has the same
dimensionality asthe A matrix. In the case of eigenvector analysis, the E, matrix is

often called the matrix of residual spectra. The dimensions of the matrices are

representative of the datathey hold; n isthe number of samples (spectra), p isthe
number of data points (wavelengths) used for calibration, and f isthe number PCA

eigenvectors. Aswill be shown later, thisis actualy asimplification of the true model

equation.
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Figure 2.4: By multiplying PC1, PC2 and PC3 (Eigenvectors) by the set of
representative scalar fractions (Scores) and summing the results (along with the Mean
spectrum if the data was mean centered), the original joint velocity data can be recreated.
The "spectral residual” is the difference between this reconstruction and the original. The
difference (error) is because we not all principle components are used to recreate the real

data.



Chapter 3

Experimental Apparatus and Protocol

3.1 Introduction

People learn to move novel objects along desired trajectory, in any direction, by simply
practicing the task afew times. This adaptation is remarkable because of the
computational complexity inherent to learning dynamics (Atkeson, 1989). Previous
studies have hypothesized that adaptation of a neural internal model (IM), transforming
desired trgjectory of the hand into appropriate muscle activations, likely underlies this
ability (Jordan, 1995; Wolpert et al., 1995). Aftereffects, errors that people make when
learned dynamics are unexpectedly changed, suggest that IMs are built gradually with
practice (Shadmehr and Mussa-Ivaldi, 1994), that learning one IM can interfere with the
learning of a second IM (Brashers-Krug, 1996), and that the interference fades over the
courses of hours (Shadmehr and Brashers-Krug, 1997).

When subjects make reaching movements against a curl force instead of the normal null
field, the trgjectories would be quite different at the very beginning. But after 15 minutes
(more or less time would be needed for different subject) training and practice, the
trgectory (position, velocity and acceleration of human hand) of the movement remain
nearly unchanged compared with unloaded trials (See fig 3.2). The interaction force
acting on the hand from the robot handle is still quite different from the ones under the
normal null field and remains constant across movements. If we model the two-link



human arm dynamics on the horizontal plane by the following second-order nonlinear

differential equations:

¥(0,0,6) =M (0,G, 1) + 3T (A Feq (1)

So we have,

M(a, 4, 1) =¥(q,6,6) ~ 3" (a) Fer (1)

F.. (t) denotesthe external force acting on the hand from the robot handle. We can see
that since trgjectory q,q, ¢ remain nearly unchanged, ¥ (q, d,d) remain unchanged. Then
the change of F_,(t) reflects the change of M (q,q, 1) , the adaptation of descending

control commands, which use proprioceptive information to produce an error-feedback
action (Marsden et a., 1978). In computational studies, the changes in descending
commands are attributable to adaptation of an IM (Wada and Kawato, 1993; Miall and
Wolpert, 1996; Barto et a., 1998; Bhushan and Shadmehr, 1999). An elegant idea is that
adaptation may be driven by error-feedback motor responses generated by reflex circuits
(Kawato et a., 1987; Stroeve, 1997). In other words, the delayed, reflex-based error
feedback might serve as a*“blueprint” for how the CNS needs to change descending

commands. Here | wanted to quantify the changes of descending commands M (q,q, 1) ,

represented as control force or torque, after the subjects adapted to the novel dynamic
field.



Figure 3.1 The robot manipulandum and the experimental setup. The manipulandum isa
very low-friction, planar mechanism powered by two high-performance torque motors.
The subject grips the handle of the robot. The handle houses a force transducer. The
video monitor facing the subject displays a cursor corresponding to the position of the
handle. A target position is displayed, and the subject makes a reaching movement. With
practice, the subject learns to compensate for the forces produced by the robot.

Figure 3.2 Overhead view of a subject seated for experimental. The arm is supported in
the horizontal plane. Two Cartesian coordinate frames: the subject frame (right) with the

origin O, and the robot frame (left) with the origin O, in this experiment are also
sketched.

3.2 Material and Methods

The purpose of our experiment was to observe how a subject adapted to the changed
dynamics of areaching task by examining control force M (q,q, &) , which is solely



attributed to the feedback control strategy of the human motor controller. A robot
mani pulandum whose handle was grasped by the subject produced these variable
dynamics. A mathematical model was developed to compute the control force. Both the
experiments, data acquisition and processing, and some of the modeling procedures are
described in this chapter.

3.2.1 Experimental Setup

Two males and one female, atotal of 3 right-handed subjects (age range, 22-36 years
old), participated in these experiments after giving informed consent. None of the

subj ects reported sensorimotor or neurological problems, and all had correct-for-normal
vision. All of the subjects were naive with respect to the hypotheses under study. Subjects
were seated in front of the manipulandum, with the right elbow supported by along rope
(3m) attached to the ceiling, and the right, dominant hand grasped the end effector
(handle) of a2 degree-of-freedom (df) manipulandum mounted in the horizontal).
Subjects learned to make reaching movements while interacting with aforce producing
manipulandum. A schematic and photo of the measurement apparatus are shown in
Figure 3.1 and Figure 3.2.

The manipulandum is atwo degree of freedom, lightweight, low friction (0.02 and 0.06
N-m-sec viscous friction for shoulder and elbow joints) robot (Faye 1986) with a six-axis
force-torque transducer (Lord F/T sensor) mounted on its end-effector (the handle). Two
low inertia, DC torque motors (PMI Corp., model JR16M4cH), mounted on the base of
the robot, are connected independently to each joint via parallelogram configuration.
Position and velocity measurements are made using two optical encoders (Teledyne
Gureley) and tachometers (PM1), respectively, mounted on the axes of the mechanical
joints. An accelerometer mounted under the base of the handle. A video display monitor
mounted directly above the base of the robot (approximately at eye level with the
subject).



The subject was instructed to move his or her right hand from the start to the end
position, both of which were displayed on the computer monitor. High-resolution sensors
mounted on the axes of the mechanical joints were used to accurately measure joint
position, velocity of the robot linkage. The position and velocity of the manipulandum in
Cartesian coordinate were computed by the kinematical equation for the manipulandum
linkage. Manipulandum accel eration and interaction force on it were monitored in
Cartesian coordinate by the accelerometer and force transducer mounted on the base of
the mani pulandum. Two motors, mounted on the base of the manipulandum, could
independently produce torgue on the proximal and distal joints of the robot arm. A
computer monitor mounted above the robot displayed a yellow cursor representing hand
position and a green box representing targets. Subjects were instructed to move the cursor
to a green plus on the monitor, which represented both the center of the manipulandum
working and center of the monitor. The subject was asked not to move until the target
box turned to green. We record hand position, hand velocity, and hand acceleration and
interaction force at 200 samples/s. Subjects were instructed to make 10 cm movements
in the horizontal plane “from point A (the starting target) to point B (the final target)” as
accurately as possible in 50 ms. The target is represented by a 8mm square on the
computer monitor. Subjects made movementsin the direction of north from the center of
the workspace and then back to the center. Movement duration (MD) was estimated as
the amount of time during which the hand’ s speed exceed 0.03 m/s. If the subject
completed the movement in 500+ 50 msec, the box ‘exploded,” and the computer
generated a pleasing sound; if the cursor reached the box too slow (in MD > 550 msec),
the target filled in blue; if the cursor reached the box too quickly (in MD < 450 msec), the
target filled in red. The only instruction provided was to explode as many targets as
possible. | provided no instructions regarding straightness of movements or smoothness

of trgjectories.

Each block of the experiment was composed of 96 forth and back reaching movements
(48 forth and 48 back). All subjects exploded most of the targets after two or three blocks
training. Movements were performed in two different dynamics environments. One,

termed the “null field”, is the normal condition in which the torque motors do not create



any forces; so in the null field the subjects encounter only the inertial dynamics of the
manipulandum. In the second environments, torque motors produce an additional force as

described by the equation:

F, = Bx

where IfM isthe force produced at the end of effector by the robot’s motor, xisthe

instantaneous velocity vector of the handle or hand in the robot frame which was

obtained online at 200Hz sample rate, and B is aviscosity matrix. Generaly, in the first
environment of the null field, viscosity matrix Bequals [0 0;0 O]Nsecm™. Inthe
second environment of forcefield, B isnot zero, equals for example

[0 —13;13 0O]Nsecm™. Thisforcefield exerted aforce by the robot handle

proportional in strength to the instantaneous speed of the hand, in the direction
perpendicular to the instantaneous velocity vector. Choosing different parameters for

B will design different force fields.

3.2.2 Experiment Procedures

Experiment 1. Movementsin the null field. The subject areinitialy trained to make
reaching movements with the robotic manipulandum for 2 or 3 blocks of 96 movements
each in the null field since the robot does not produce any active force on the hand.
Subjects were required to explode targets as many as possible. Thisisto train the subjects
thoroughly with the experimental paradigm, the visuomotor transformation from the
vertical plane visual coordinates to the horizontal plane hand coordinates, and the passive
dynamics of the robot manipulandum. A typical movement isshownin Fig. 3.2. It has
been shown previously (Flash and Hogan, 1985) that human plan reaching movementsin
order to follow aminimum jerk trgjectory. The results here are consistent with the
previous findings. The minimum jerk trajectory seemsto present the desired behavior for
subj ects when making reaching movements. In other words, it is their kinematic plan for

moving from one point to another. After the training, subjects will perform constantly



and explode most of the targets. We assume that the internal model was adapted to the
dynamic environment. Now a small, smooth and bell-shaped perturbation was given from
100 msec to approximately 200 msec into the movement. The frequency of
perturbations was approximately one out of three or four movements. Each block
consisted of 23 randomly selected perturbing directions. Three blocks of 96 movements
each were used in the experiments for a single perturbing magnitude. After 27 blocks, we
had perturbed movements with 9 different perturbing magnitudes and 23 directions.
Movements with the same perturbing direction and magnitude were averaged for future
computation and estimation. The typical perturbed movement with one kick magnitudeis
shownin Fig. 3.4.

Figure A is the shape of perturbing
force with the duration around 100
msec. Human arm is perturbed 100
msec after the beginning of movement.
o1 - o e T = o Movements are perturbed in 23
equally spaced directions as shown

in Figure B.
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90

Figure 3.3: Shape of the perturbation A and All perturbing directions B. Each
perturbation with the same kick magnitude and kick direction is repeated 3 times and data
with the same kick was averaged.

Experiment 2. All subjects performed movements in a consistently applied viscous force
field. After theinitia training and perturbation in the null field, the robot is programmed

to generate active forces on the hand of the subject as the subject performed reaching



movements. The forces, produced by the robot and indicated by the vector IfM , Simulate

afunction of the velocity of the hand F,, = Bx, where x was the hand vel ocity vector,

and B was a constant matrix respresenting viscosity of the imposed environment in

subject Cartesian coordinates, we chose B to be:

B:[O _13:|Nsec/m
13 0

This alters the dynamics of the environment, which is quite unfamiliar with the usual
natural environments. Subjects were also required to explode targets as many as possible.
Subjects’ training was divided into sets of 96 movements each in novel dynamic
environments. Thereisan initial deviation from the straight line desired path as the force
fields pushes the hand to the left when the subject move from the center to the target
above the center, followed by a quick corrective movement to the target. As subjects
trainsin the force field the performance shows a gradual improvement until it converge
back to the minimum trajectory and remained nearly unchanged compared with unloaded
trials (in the null field). Fig 3.3 show one of the typical movement after adaptation and
one can see that the hand paths are amost a straight line to the target with smooth bell
shaped speed profile. Having completed the adaptation phase of the environment, the
subject’ s arm movement was perturbed. The same perturbation asin the null field was
added to the force field and was imposed on the hand from the robot manipulandum. The
smaller kick magnitude was chosen here so the perturbed trgjectoriesin the force field
were in the same working space and easier to compare with the trgjectoriesin the null
field. The perturbation was applied from 100 msec to 200 msec into the movement. One
out of three or four movements was perturbed. 23 randomly selected perturbing
directionsin each block). We did two different methods here in the force field. For the
first 3 blocks, after the perturbing force the curl force field was turned off and the subject
came back to the target unloaded; For the second 3 blocks, the force fields were still there
after the perturbing force and the subject came back to the target loaded. Recorded data

was al so averaged for the same perturbing direction and magnitude.



3.3 Data Acquisition and Preprocessing

Subjects move the robot handle from a starting point to atarget at 10 cm in upward
direction with amovement time of 0.5 s. We consider two conditions. First, movements

inanull field, i.e., the subject’s arm is unloaded. Second, movementsin a curl force field
_ 0 -13
F\. = BX, with thefield described by B = [13 0 } N sec/m. A two-degree-of-freedom

model of the kinematic linkage of the human arm was used to analyze the data (See fig
3.1). Thismodel include elbow and shoulder joint rotations. The motion of the human

hand could be descried in two Cartesian coordinates: the subject’s frame O, and the
robot frame O, . The origin of the subject’s frame O, was the center of rotation of the

subject’ s shoulder, whereas the origin of the robot frame O, was the intersection of the

rotation axis of the motors with the horizontal plane. The X and Y axes of the two
systems where parallel to each other but were pointing in opposite directions. The
subject’s X axiswaslying in the frontal plane passing through the centers of rotation of
both shoulders. The transform from robot coordinates to subject coordinates is then given

by

T

X, =X — X,

Yn=Y: _YO

where X, and Y, are the coordinates of the robot origin in the subject’s frame; x,, and
y, arethe coordinates of a point (the manipulandum) in the subject’s frame; and x, and
y, arethe coordinates of the same point in the robot frame. The inverse transform from

subject coordinates to human coordinatesis straightforward. The transformation of
velocity, acceleration and force from one frame to the other are just inversing direction of

these vectors and keep the magnitudes same.



The rotation of the human arm was described in the subject joint coordinates with the

G

origin O, . qz[q :|,where g, is shoulder angle and g, is elbow angle. Here the relative

>
joint coordinates were used considering the configuration feature of the human arm. The
kinematics of the human arm refer to the configuration relationships between joint
positions and hand positions and the transformation between these two systems were
introduced in Chapter 2 in detall. The transformation from interaction force acting on the
human hand in the subject Cartesian coordinates to the rotational torque acting on the
jointsin the subject joint coordinates is given by

T=[3" (@)

The inverse transformation from torques to forces is given by

F=[T@'T

X 1

Fz[m$%umr_aﬂ%%4bm%ﬁl

l; l

F:{QM%+%)q_9M%%4hm%ﬂ4

y
L 1,

where F, and F, are the components of the corresponding force at the handle taken in

the subject Cartesian coordinates. g, isshoulder angle and g, is elbow anglein the

subject joint coordinates. J isthe Jacobian of joint to Cartesian coordinate transform.

We sampled hand position, velocity, acceleration and interaction force on the hand at 5
msec intervals as the subject reached to atarget at a distance of 10 cm. The hand
kinematic information was recorded online in the robot Cartesian coordinates by C + +

software at the sample rate 200 Hz . Data was collected in blocks of 96 trials each and



aligned using velocity threshold at the onset of movement. In order to reduce the effect of
small hand tremors or unintentional movements, the perturbed paths were averaged for
the same condition (kick magnitude, direction and dynamic force fields). We represent
each trajectory as atime series of vectors for position, velocity, acceleration and
interaction force on the hand. Raw data was converted into subject Cartesian coordinates
and subject joint coordinates by Matlab offline for future processing. Typical hand
trgjectories from the center of the monitor to the target 10 cm above it both in the null

field and force field were plotted in the following figures. (Figure 3.3 and Figure 3.4).
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Figure 3.4 Typical hand path, velocity and acceleration in the subject Cartesian
coordinates of movementsin the late training period. Top row is movementsin the null
field. Bottom row is movementsin the force field with the viscosity matrix B equalsto
[0 —13;13 O|Nsecm™. Left, Hand path of atypical subject in his movements toward a
target. Middle and Right are hand vel ocity and hand accel eration respectively. Units for
x-axisis sec and for y-axisis m hand path, m/s for hand velocity and m/s*2 for hand
acceleration.

Perturbed Trajectory in the Null field and Force Field
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Figure 3.5: Perturbed trgjectories in the null field (black) and perturbed trajectoriesin the
forcefield (gray). Tragectories are averaged over 3individual trialsin 23 different
perturbing directions. Force field trgjectories are the data with the force field on after the
perturbing force.



The recorded position and velocity of the human arm movements were noise free and
there is no time delay for the sample rate 200 Hz. But the measurements of accelerometer
and force traducer were noisier compared to position and velocity. 4 msec time delay for
the measurement of interaction force was also observed. We used the Savitsky-Golay
smoothing technique to delete the noise in the raw data. The order of thefilter (the
highest polynomial power used in the fit) we used hereis 3 and half-width of thefilter is
[4 4] (Haf-widthisgivenintheform [NL, NR], where NL and NR are the number of

points to the right and left of the point will be filtered. Savitsky-Golay filter can aso be
used to compute the derivatives. We can compute acceleration by filtering velocity and
compared it with the measured acceleration. Thisfilter added no time delay to the filtered
data. Spikes were also observed in the raw data. Spikes were removed simply by

replacing them with the average of the two points to the right and left.
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Figure 3.6: Comparing Savitsky-Golay (order is 3, haf-widthis [4 4]) filtered data

(gray) and raw data (black) of hand acceleration and interaction force acting on the
human hand in subject’ s Cartesian coordinate frame.
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Figure 3.7: Comparing computed data (gray) and measured data (black) of human joint
velocity and acceleration. The velocity and acceleration in gray were computed using
Savitsky-Golay filter (order is 3, half-widthis [4 4]) from raw position and velocity

respectively. The velocity and acceleration in black were raw data from measurements of
sensor and accelerometer.

3.4 Data analysis: Formation of the Internal Model

The experimental results from fig. 3.2. establish the learning of the force field as the
subjects trained over time. It has been proposed that this process of learning occurs by
adaptation of internal models that predict the dynamics of the force field (Shadmehr and

Mussa-lvaldi, 1994). After-effect movements provide evidence in support of this theory.



In the absence of external force field, the subjects’ hand trajectories displayed
approximately straight paths and smooth, bell shaped velocity profiles (Fig. 3.6).
However, when the robot manipulandum generated vel ocity-dependent forces that
interfered with the execution of the reaching movements, the hand trgjectories were
distorted. With training, movement error (integral of perpendicular velocity, that is,
displacement from a straight line) gradually decreases, and the subjects’ distorted hand
trajectories converged to the trajectories observed before the application of the force
field. This convergence was gradually but monotonic and consistent with an adaptive
process whose goal was to compensate for the forces imposed by the external field and

return the hand’ s trgjectory to the path produced in the null field.

Subjects’ training was divided into sets of 96 movements. Each two sets were followed
by a 3-minute rest period. We gathered quantitative evidence motor learning by recording
the path and the velocity of each subject’s movements and by computing a correlation
coefficient between the velocity of anideal, straight trgjectory and the velocity of the
actual trgjectories. The correlation coefficients allowed us to evaluate whether the

internal model has adapted to the new dynamic environment.

In the experiments described here, akey feature of the task to which the human subjects
were exposed involved a change in the mechanical environment with which their hand
interacted. Because of this change, the neural representation of the arm would have to
develop anew model to deal with the new dynamics of the environment. In this thesis,
we present psychophysical evidence for the formation of this new internal model and we
described the control force and torque changes observed by applying perturbations as the

new internal model was formed (see figure 3.4).



3.5 Estimating Inertial Model of the Human Arm

As described above, the model for the two-link human arm dynamics on the horizontal

plane is,

¥(0,0,6) =M (0,G, 1) + 3T (Q)Feq (1)

Our goal istrying to quantify the changes of descending commands M (q,q, 1) ,
represented as control force or torque, after the subjects adapted to the novel dynamic

field. In order to get M (q,q, 1) , we measure the interaction acting on the hand F_,(t),

the upper and lower arm lengths of the subject to compute J' (q) , and kinematic
information q,q,q for all the movementsfor ¥(q, d,d) . One more thing, we need to

estimate the inertial model of the human arm ¥(q,q, q) .

We described the theory derivation of human arm inertial model in Chapter 2. Here we
explained how we design the experiment to estimate this intertial model. We know that

because the three inertial parameters, a,, a, and a, for ‘¥(q,q, d), are independent of

posture and movement, their values can be fixed in any posture for each subject. This
reduces estimation errors caused by partially correlated data under some conditions. To
measure the inertial parameters, we use the same experimental apparatus and protocol as
explained in 2.2. A small box was displayed on the center of the computer monitor
representing the target. The cursor on the same monitor represented hand position of the
human arm. First we asked the subject to move his’/her hand to the target (the small box
on the center of monitor) by moving the cursor on top of the target. Right-handed
subjects sat straight in front of the monitor grasping the handle, with the right arm
supported by a sling. Then we shake subject’s arm by grasping and shaking the robot
arm. We asked subjects relax his arm when we shake his arm but keep their wrists stiff.
The cursor and target on the monitor help us not to move the hand too far away from the

target, the original position of right hand. Since the arm was shaken in asmall area, we



assumed that muscle stiffness and viscosity (2x2) matrix K and B remained constant

during the shaking experiment.

Asexplained on 2.2 and 2.3, the arm dynamics on the horizontal plane could be modeled

by the following second-order nonlinear differential equation,
¥(a,9,6) =M (q,6,4)+I"F,

Here, g,qand ¢ aretherelative joint position, velocity and acceleration in the subject

joint coordinates. [ q = [21

2

}, where ¢, is shoulder angle and g, iselbow angle. ‘P(.)

denotes atwo-link arm dynamics. M isthe joint torque generated by the muscles and it

can be represented as afunction of angular position, velocity and motor command
descending from the supraspinal central nervous system (CNS). J isthe Jacobian for

hand position and joint angle transform, and F, isthe external dynamic interaction force

on the hand. From Chapter 2, we knew that if we assume the arm to be rigid body two-
link system, we have

¥(0,9,6) = H(9)4+C(aq,9)q

H, H
H and C aretheinertiaand coriolis matrices of the arm. H :[ . le]
21 22

H,=a +a,+2a,cos q,
H12:H21:az+ascos%
H22:a2

C :|:_ asqzsinqz _a3(0u+q2)8inq2:|
_a3q13inQ2 0



a, +a, + 2a,cosdq,

vaan-| o rama]a] et

a, + 8, C0sQ, a, 0 — a4 sin 0,

where
a =i +ml2+m)l?
1c cl 1

: 2
a, =l t mzlcz
aszmzlllcz-

- aa(ql + qz)Sinq2:||:Q1:|
0 o}

We represent muscle stiffness and viscosity matrix (2x2) K and B such as:

stiffness - M _k :[kn Ky
dq % k21 kzz_

Viscosity: _a = B:[bll by,
dq % b21 bzz_

So, we have
M (ql qnu) = _|‘<dqq0 - quqO

where dq, =q-q, anddg, =dqg

\P(q,q,Q) = _K(q_ qo) - quqO + ‘JTFx

We suppose that K and B are constant for postural maintenance control. g,4,¢ and 7,

are measured whereq, = 9(0),¢, = 0,0, =0. To fix theinertial parameters, we have

quantified all these parameters a;, a,, a,,K;;, K;,, Ky, Ky, 05,0, 0, b, Using data from

different trials. We chose the inertia parameters that are nearly constant among different

trials.
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Figure 3.8: The comparison between inertia model output and the measured data for

subject A, B and C.

Table 3.1. Theinertial parameters estimated for each subject



Subject @, N m/(rad/s?) a, N m/(rad/s?) a, N m/(rad/s®)

A 0.2347+0.0034 0.0990+ 0.0014 0.0730+ 0.0014
B 0.2936+ 0.0041 0.0788=+ 0.0009 0.0882+ 0.0012
C 0.4296 + 0.0081 0.1433+0.0017 0.1323+ 0.0010

Table 3.2. The average of absolute fitting error and average of absolute measured torque
for each subject in Figure 3.8.

Subj ect Average Abs Err [Nm]/ Average Abs Average Abs Err [Nm]/ Average Abs
Torque [Nm] (Shoulder) Torque [Nm] (Elbow)

A 0.7000/2.7416 0.2803/1.0249

B 0.6737/4.3433 0.3128/1.4544

C 0.8992/5.0522 0.4028/1.8062

Model validation: The measured values of stiffness and viscosity parameters

K., K, Koy Koy, by, B, 0,0, 0, fOr one subject is not necessary same across different trials.
It depends on how subject relaxes his’her arm during each trial. Impedance of human
arm does have different value when the arm is posed in different state (position and
velocity, which is the property of human arm muscle). So when we use the robot to shake
subject’s arm in, we keeping the arm in a small working space. In this condition, we
assume that the value of stiffness and viscosity does not change during shaking. Thisis
the main reason that the modeled dynamic torque does not perfectly fit the measured
torque. The inertia parameters should be constant across different trials. To modify the
inertiamodel, for example, we measure the inertia parameters for subject A in 3 trials, the
inertiavalue we have for each trial is

Table 3.3: Theinertial parameters of subject A in three different trials
Subject A a, N m/(rad/s?) a, N m/(rad/s?) a, N m/(rad/s®)

Trial 1 0.2310 0.1003 0.0698
Trial 2 0.2354 0.0992 0.0703
Trial 3 0.2376 0.0976 0.0789

One can see that the inertia values we measured across different trials are very stable,
which testify that the inertial model we build for human arm can perfectly predict the
inertia torque during the arm movements.

3.6 Predicting the Un-perturbed Trajectory

When subjects learned the new dynamic environment and internal model has adapted to
the force field, small force perturbations of brief periods (about 0.11s), with randomly

selected perturbing directions, were given in one out of two or three movements. The



subject was also instructed to move his or her hand in as relaxed away as possible and
not to intervene voluntarily (not to correct his or her movements even if the target was
missed because of the perturbation). Trajectories are selected based on the recorded data
before the perturbation is given. Only the beginning trajectories (part of trajectories
before the perturbations) close to the normal sample trgectories were used for data
analysis. From Chapter 3, we described that when there was no perturbation, the hand

path followed a desired trajectory g, during reaching movements. When movements
were perturbed, it is deviated from the desired path g, by Aq. The perturbed resulting
trajectory was g = g, + Aq . We need to predict the path that the human arm system
would follow if there were no perturbations based on the data we measured qand the

sample data without perturbations recorded before giving perturbations for the same

subject.

For easy understanding the movement prediction method, a row vector was constructed
for each movement and was organized as arow for the data matrix. So we have adata
matrix with the matrix with the size equal to number of movements by duration of each

movement for position, velocity, acceleration and interaction force. We call this matrix

S. Thismatrix S can also be expressed by catenation of two small matrices S',S?.

S=[S' 7]

S' isall the unperturbed movements with the time interval from the beginning to

perturbations appear. S* is all the unperturbed movements with the interval from
perturbations appear to the end of movements. The goal of our prediction isgiven a

perturbed trgjectory gand the time point when this movement is perturbed (prtb__time) .
Vector gcan also be expressed by catenation of two small vectors q*, ¢° by the same
definition when using S, S*to describe S. Our goal isto estimate g, =[qg; ¢] for

this particular qwith the known information g* and sample data matrix S. Two methods

of prediction were used and compared here.



Note: g" =q .

3.4.1 Methods 1

Use all unperturbed sample movements as bases for prediction. The ideaisthat use dl the

raw data of movements as the base functions to predict the unknown movements.
s =k, xS
Assume if we know q3, it can be expressed by g =k, x S*. Cancel k,, we have

05 =Gq[SS°

3.4.2 Method 2

Theidea here is that instead of using the raw data of movements as the base functions, we
use the principal components of the raw data as the base functions to predict the unknown
movements. PCA isused to analyze the variability in trgjectory shape. To compute the
principle components, the mean vector is subtracted from each of aset of M movement

Vvectors m ¥ and the covariance matrix isformed:
M T
R= 2‘1 m,m,
J:

The eigenvector ¢ (principle components) are then calculated using Matlab (version 5.3,

Mathworks). Any movement vector anong M movement vectors m; can be exactly

reconstructed as a superposition of the full set of principle components ¢ according to:



(]

N
m=>Ya
i=1

where N isthe number of principle components. N equals the row dimension of the data
matrix which is used to calculate the principle components. If the movements are

approximated with a smaller number of components n < N, then we can write:

To decide what is the number of principle components n should be used to predict the
movements. All sample raw datawas divided into two data sets and two data matrix was
constructed. One was used as sample data based on which unknown movements were
predicted and the other was used as the test data. The test data was predicted using the
following method with different number of components and prediction errors were
computed. Using different number of components would have different errors though the
difference was not so big. The number of components with the smallest error was saved
for the real prediction.

Legend:

Spea » Qpea - Matrix for principal components of raw datamatrices S and Q repectively

Siean Qmean - Mean for raw datamatrices Sand Q respectively

S'=K, xS, Q' =K, xQk,
S* =K,xS%, Q* =K, xQ%,



From above equations we have,

Qg = (Qa — Qrean ) ([Spea) S )(S™ = Siean) (87 = Spean ) [Siea] ™ Spea) + Sheen
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Figure 3.9: Sample results of trgjectory prediction for 3 typical subjects. Black solid line:
predicted trgjectory. Gray dash line: measured trgjectory.

Model validation: We have measured 264 unperturbed movements for each subject. The
beginning of movements is decided when hand velocity is equal or bigger that 0.03
m/sec. We a'so record the data 0.1 sec before the beginning of movements. We index this
data with the time from —0.1 sec to 0 sec. We use the movement information from —0.1
sec to 0.1 sec to predict the information afterwards. We divide the recorded 264
movements into three sets A (132 movements), B (64 movements) and C (64
movements). We use set A as the base data for prediction. Our principal component
analysis models are trained on B and then used to predict movementsin C to for model

validation.
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Figure 3.10: Average of absolute error on top of average of absolute measured value for
4 timeintervals after perturbations for three subjects A, B and C. Interval 1: [0.1 0.2]
sec, Interval 2: [0.2 0.3] sec, Interval 3: [0.3 0.4] sec and Interval 4: [0.4 0.5] sec.
Perturbations are about 0.1 sec long and are imposed on the arm 0.1 sec after movements

begin.

One can see from Figure 3.10 that the angle, velocity, acceleration and interaction force
on the hand can be predicted quite well at least until 300 msec after the beginning of
perturbations. Actually, we are interested in the change of the angle, velocity, and
acceleration and interaction force caused by perturbations compared to the data if
movements were not perturbed. So if for some perturbed movements we can not predict
the unperturbed ones well, the predication errors are still acceptable compared to the
difference caused by perturbations.



Chapter 4

Data Analysis and Results

4.1 Introduction

The experimental results from the last chapter, the human motor learning of novel
dynamic force fields, indicates that human subject can adapt their internal models to
predict the dynamics of the force field (Shadmehr and Mussa-Ivaldi, 1994). While there
isno experimental evidence for thisideain the central nervous system, substantial
evidence indicates that learning the control of arm movementsinvolves formation of an
internal model. By observing the behavior of “after-effects’ after the force field was
removed, investigators provided evidence in support of this theory. Internal models have
been divided into two varieties: forward models and inverse models. The computational
nature of such internal models, whether an inverse model or a combination of both
forward inverse models, was examined by simulation (Bhushan and Shadmehr, 1999).
Though forward model alone is effective for stable feedback control of movement, it is
not able to exactly produce the desired trgjectory. The reason for thisinability is that
dynamics of the plant are completely ignored in the controller, and feedback gains are not
infinitely high. Remarkable similaritiesin instability and near path-discontinuities in the
kinematics of arm movements between simulations and human behavior were observed.
These results suggest that learning control of novel dynamicsis accomplished with an
adaptive forward model of the system. By measuring the neural activation to muscles,

represented by force or torque, we tried to find more evidence for the existence of



forward models in the human motor controller and its learning and adaptation to the

novel dynamic environments.

4.2 Mathematical Modeling of Human Motor Control

RICEPL m

q

N
9 Forward Dynamics |°
- + Model 120 msec

Long-loop Y (t-120) - (t+60)

Gain

q Ug l l

Desired Inverse Dynamics u » L Inertial
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Figure 4.1: Block diagram illustrating the current understanding of the human motor
control structure with both feedforward and feedback control. A control system that
provides feedback control with the use of aforward and an inverse model.

The purpose of the mathematical modeling was to describe the concept and function of
internal models and to understand how the adaptive controller learns an internal model of
the force field produced by the robot. The adaptive controller was modeled to reasonably
estimate the biomechanical behavior of the human arm. We built on ideas introduced in
our previous work (Bhushan and Shadmehr, 1999). Figure 4.1 shows the diagram for the

computing structure of the human motor controller.

The control system represents the arm’ s dynamics in the subject’ sjoint coordinates. The
variable q(t) represents apoint in configuration space (e.g., an array of joint angles).

g(t) and ¢(t) represent itsfirst and second time derivatives respectively. q(t), ¢(t) and



t
g(t) arejoint trgjectory, velocity and accel eration vector respectively (q(t) = [ql( ):| ,

0,(t)
where q,(t) isshoulder angleand g, (t) iselbow angle). In figure 4.1, the box labeled

“Inverse Dynamics Model” is a feedforward adaptive controller. Adaptation to novel
external dynamics occurs through learning of a new inverse model of the altered external
environment. When the inverse model is an exact inverse of the forward plant dynamics,
given the task of point-to-point reaching movements the arm can exactly track the desired

trajectory ¢, (input of the inverse model). We assume the desired trajectory, q,,isa

minimum jerk trajectory of the hand to the target (Flash and Hogan, 1985) with a
movement period of 0.5 sec. We represent the part of neural command, output of the

inverse model u; as

1= £, (0 Gy, ) (4.2)

where f p’l isthe estimated inverse of the forward plant dynamics. It maps the desired
position g, , velocity ¢, and acceleration ¢, of joint angle into descending neural
commands g . When the inverse model perfect models the dynamics of the arm,

f p’l f, =1, and there is exact tracking of the desired trgjectory. However, when the

inverse model is not accurate, the correct torque values are not generated which in turn

causes deviation from the desired trajectory q, . The box labeled “ Spinal Feedback”
corrects for errors between the desired and the actual muscle state q, by producing a
corrective neural activation u, based on alinear feedback controller with constants
K,and B,. If the gain for a zero-delay feedback loop isinfinity, then it can be easily

shown that the output of the two-joint system is equal to the set-point at all times.
However, the gain of the spinal reflex islimited by A =30 msec plus muscle activation
delay in the feedback loop. The equation that relates these variablesis:

py =K (G- q(t—A))+B,(d—g(t—A)) (4.2)



The “Forward Dynamics Model” box provides this control architecture with feedback
control of arm movements in addition to forward control. The feedback signal corrects
for unmodeled disturbances to the system. Delays in the feedback cause instability. The
forward model aso estimates the state of the arm at the current time, given the delayed

state at some earlier time t— A and a history of descending motor command g (t) from

t—A uptothecurrenttimet (A isthetimedelay in the long-loop feedback control).

We forward model designis asfollows:

¥, 6= folu©.a0.40)

t=A+ity

qt-A+it) =qt-A+G{-Dt)+  [q(t)t

t-A+(i-1)t,

t=A+ity

qt-A+it) =qt-A+{-Dt)+  [q()t

t-A+(i-1)t,

i—1.2
tO

q(t)=q(t) 4(t)=q()

where gand q the output of the forward model, G and q are intermediate variables
used by the forward model. The above equations represent the interactive solution of a

A

non-linear differential equation f at timet, giveninitia state of the system q(t —A) and

g(t—A) andtheinput g during thetimeinterval t—A to t. t; isthe discretized

interation time interval which should be infinitely small. We represent the neural

command which is from the feedback of forward model by y; ,

My :Kf(q_in)"‘Bf(a_Qd) (4.3)



where § isestimated current state and K, and B, arethelongloop gain. This controller

requires computation of muscle state through the forward model and then uses alinear
controller to vary the neural activation to the muscle based on the error. The net

activation u going to the plant muscles is the sum of the activations from the brain

4 + i _and activation from the spinal reflex ;.

M= (C=T)+ pg (t=7) + g (4.4)

. and u, islimited by 7 =60 sec delay. The motor neural command g, which is sent
to from supraspinal central nervous system (CNS) to activate human muscles, relies on
both forward and inverse model. These neural signals are then programmed to produce
control force or torque, which allow for exact tracking of the desired trajectory g,. To
guantify u , we can examine the control force or torque during arm movements, which
are generated by the neural signal 1 . We models the dynamics of the human motor

control system coupled (in parallel) with its environment:

¥(a,9,6) = M(q,6, 4) + E(9) (4.5)

where Y¥(q,q,() , atime-invariant component, denotes atwo-link arm dynamics. E(q)
denotes joint torque which depend on dynamics of the environment. M (q, ¢, &)

represents joint torque generated by the motor neural commands, was an adaptive
controller implemented by the motor system of the subject. It relies on both the inverse
and forward model controls. Considering the length-tension and vel ocity-tension

relationships of muscle force, the generated torque, M (q, g, i) , can be represented as a

function of joint trgjectory, velocity, and motor command, u , descending from the CNS.

So the neural activation, output of human motor controller, the control torque, can be

represented by joint torque in joint coordinates as:



M(a,q, 1) = '¥(9,6,6) - E(Q) (4.6)

Note: We model the human arm as atwo joint revolute arm. To determine control force

which isrepresented by M, | multiplied the control torque M (q, g, ) around joints by

J T (q) *',theinverse of transposed subject’s hand Jacobian.

Mg =J7(9)"(¥(a,q,8) - E(4)

The torque represented by W isitself asum of inertial, coriolis/centripetal, and friction
forces, which isthe inertiamodel of human arm. For movementsin the null field,

E(qg) =0, we know that the torque required to move along the desired tragjectory

expressed in terms of joint angle, is given by:
Ty =H(qy)dy +C(ay,G4) Y 4.7)

where H and C wereinertial and coriolis/centripetal matrix functions. With respect to
the function M (q,q, 1), simulations have previously suggested a reasonable lumped

model of the subject’s biomechanical motor controller in the case of point-to-point
movementsis as follows (Shadmehr and Brashers-Krug, 1997):

te =K (G- a(t—A) + B, (G- q(t-A))

M = I:l(qzi)qd +é(qd’qd)qd - E(qd)_ K (q_qd)_ B, (a_qu) (4.8)
~K,(G-q(t-4)) - B,(d-¢(t-4))
where H and C, which isthe inverse model built by human motor controller for the
dynamic of human arm, are the approximationof H and C. gand d are the output of
the forward model, the estimate of current state. g, isthe reference trajectory planned by

the motor control system of the subject. q(t—A) and ¢(t —A) are delayed sensory



feedback. K; and B, arethelongloop gainand K and B, arethe short loop gain. This
controller relies on an inverse model of dynamics of the subject’ s arm, represented by

H (94)64 + é(qd,qd)qd. H (94)dy +CAZ(qd,q0,)('qeI is the feedforward component of
controller. It maps the desired position g, , velocity ¢, and acceleration ¢, of thearm

joint, into descending neural commands to generate the required torque or force to move

thearm. K(q—-q,)+B(g—4q,) isthefeedback component of controller. K and B are

linear estimates of subject’sjoint stiffness and viscosity. The dynamic environment of the

force field represented by E(q,). E(q,) equals zero when movements are performed in

the null field.

The purpose of the computational modeling was to predict the change in the pattern of
control torques or forces M that should result if adaptive control system learned to
completely compensate for the dynamics of the force field. M isasum of the desired
torque (feedforward control) and corrective terms (feedback control). The corrective
terms are the converging control force about the desired state of the system at time. They
have zero forces only when the actual paths exactly track the desired paths. We assume
that the short-loop feedback plays no role in the learning task of the human motor control.
So the change in the pattern of corrective terms due to learning of the force field will
mainly attribute to the forward model feedback controller. So by examining the
corrective terms, we can get some knowledge the existence and characteristics of the

forward model controller of CNS.

How to isolate the corrective terms (feedback control terms) from the sum of control
force M (both feedforward and feedback)? We designed experiment with perturbing
technique to quantify the control force only attribute to the feedback part of the human
controller (See chapter 3). The assumption for the perturbed movementsis that since the
direction of perturbing force is randomly selected, it can not be learned by the subject. So
the desired trajectory remains same for unperturbed and perturbed movementsin the

same force field environment.



When subject adapted to the passive dynamics of the robot manipulandum (in the null

field), movements are constant and remain nearly unchanged across trials. For normal

movementsin the null field (E(q,) =0) without perturbation, trajectories exactly track
the desired trajectory q,,d, . In other terms, q=q,, =@, and the corrective terms of

the controller are zero. The control force in thissituation is represented by M, :

M, = H (04)G, + é(qd 104y 4.9

For the movements, which are perturbed, and also in the null field, the resulted

trajectories were deviated from the desired tragjectory. We represent the deviation by Aq.
Notethat g, remains unchanged when movements are perturbed. We name the resulting

control force M 0

M, = H(dy)s +C(dy,6,)ds — KAG—BAq (4.10)
The difference between M, and M, isrepresented by AM :
AM, (Ag,AQ) =M, — M, =-KAq-BAq (4.11)

AM is evaluated along the desired trajectory by the small deviation of Agand Ag. One
can see that the control force change AM, (Ag,Aq) only attributes to the feedback terms

of the human motor controller and has no relation with the feedforward terms (inverse

model) of the controller.

For the learned movementsin the force field, we have q=q,, d=4¢,. E(q,) #0. For
movements in the force field which are not perturbed, we represent the control force

during movements as MO,

I\’Zo = l:l(qd)qd +é(qd’Qd)qd - E(d,) (4.12)



H and C aretheinertiamodel of human arm in the force field. For movements, which

are perturbed in the force field, we represent the control force during movements as M o

M, = H(dy)d +C(a, 6)0 ~ E(d) ~K(a-y) -B(4-¢,)  (4.13)
(13)-(12), we have the control force change caused by perturbations in the force field,
AM (AG,AG) =M , — M, =—KAq- BAq (4.14)

Note: The control force AM ;, AM,, and control force change AM, (Aqg,Aq) inthe null

field was adapted to AM ,, AM,, and AM , (AG, AG) , respectively after the learning of
force field. However, after subjects learned the force field, the hand trgjectory in the force
field converged to a path very similar to those observed in the null field. So we assume
that the desired trajectories g, in both conditions are quite similar since human motor
controller builds correct internal models for the environments by practice and learning.
The deviation AG and Ag from the desired trajectory caused by perturbationsin the
force field would be different with the ones (Agq and Aq) in the null field since the

change of dynamic environment. With the learning of novel dynamic environment and
adaptation of internal model of human motor controller, subjects will use quite different
stiffness and viscosity strategy to perform the point-to-point movements. By examining
the control force change, we can extract the part of control force change only due to
forward model

4.3 Calculation of Control Force Produced by the Human
Controller

When movements are perturbed, we recorded the datafor q(t), g(t), ¢(t) and the

interaction force at the manipulandum (F, (t), F, (t)) . Then the prediction that what the



movements would be if there were no perturbation was made for these perturbed
movements. We name these predicted movements unperturbed movements. We have two

groups of movements. One, perturbed movements described by q(t), (t), §(t) and the
other, unperturbed movements described by q,(t), ¢,(t), G, (t) . | used the structure and

parameters of the model of the human-robot interaction to estimate the amount of force
subj ects create during movements, which we named control force here. Using estimates
of the human arm configuration and inertia dynamic parameters, | first transformed
individual subject’s hand position, velocity and acceleration into the arm joint

coordinates. From Chapter 3.3, | have discussed that we pre-estimate a,i =1,2,3, the
inertial dynamics of the arm of each subject. Thejointsinformation g, ¢ and ¢§were
transformed into estimated dynamic torque W(q, q,§) using inertial model of the
subject’sarm. W(q, g, ) was the net torque that moved the human arm (including both

the torgque produced by the subject’s muscles and the interaction torque from the robot

manipulandum) .

¥(0,9,6) = H(9)4+C(aq,9)q

| then multiplied the interaction force F,, onthe hand by J"(q), the transposed of the

subject’ s hand Jacobian, to determine the joint torques attributable to the interaction
force. The interaction force will compensate both the passive dynamics of the robot

manipulandum and the dynamics of the force field environment.

Too(t) = 37 (0)Fyq (4.15)

In the null field, the robot does not produce any active force on the hand. The interaction
force isthe force used to only compensate the passive dynamics of the robot
manipulandum. In the force field, the robot is programmed to generate active forces on
the hand while a movement is being made. From the model of two-link human arm

dynamics on the horizontal plane, the control forceis



M (0, q, 1) =¥(Q, 6, G) — 7o (1) (4.16)

F.. (t) denotesthe external force acting on the hand from the robot handle. We name

M (q, q, 1) ascontrol force for easy understanding. J was the Jacobian matrix

describing the differential transformation of coordinates from end point to joints.

Now we have the following control force from computation, M , for perturbed trajectory
inthe null field, M, for unperturbed trajectory in the null field, M » for perturbed

trgectory in the force field and Mo unperturbed trgjectory in the force field. Note: When

computing control force for the perturbed trajectory, trajectory information and force

were measurement data

4.4 Control Force Change Caused by Perturbations

The experiments we describe probed the relative contribution of feedback and “adaptive
feedback” mechanismsin the generation of planar, voluntary reaching movements by

examining the change of control torque when the perturbed trgjectory q is deviated by
Aq from the desired trajectory q,. The current hypotheses of motor control provide a

structure with both inverse and forward model for human arm movement control. It
predicts that the input of inverse internal model is the desired trgjectory, which only
depends on the movement task and remains the same after perturbation since the
perturbing direction is randomly selected. If we subtract the unperturbed control torque
from the perturbed control torque, which we called control toque change here, isonly
related with the forward feedback control part (long loop and short loop) of the human

arm motor control system.

When the hand is displaced from an equilibrium trajectory by an external perturbation, a
force is generated to restore the original position. We developed an experimental method

to measure and represent the field of elastic forces associated with movement trajectories



of the hand in the horizontal plane. When subjects conducted constant movementsin a
given direction, torque motors of the robot delivered small perturbations of the hand
along different directions at a constant time point. WWe measured the corresponding

restoring torque or forces AM, (Ag,Ad) before the hand finally reached the targets.

Since the inverse model remained unchanged when there is perturbation in the null field

environment or force field environment, we assumed that the changes of control torquein
AM (Ag,Aq) the null field or Al\ﬁqd (AG, AQ) in the force field were only dueto the
long loop delay sensory feedback through cortical structures (forward model). Restoring

torque or forces AM, (Ag,Aq) and AI\'/TGId (AG,Aq) were output of the forward model.

Wetried to quantify the difference between AM, (Ag, Aq) and Al\ﬁOld (AG, AQ) and find

the evidence for the adaptation of the forward model.

Note: From observation, the @, in force field is nearly comparable with the g, in the null
field. When we try to predict what the path would be if the movements were not

perturbed, using the sample data ¢, in force field or using the sample data g, in the null

field did not make much difference. So AM isnot very sensitiveto g, .

After the experiment both in the null field and in the force field, we have two control

force changes. Oneis AM, (Ag,Aq) , the control torque change in the null field and the

other is AM N (AG, AQ) , the control toque change in the force field. . We considered a

+ 30% changein inertia of the arm and estimate control force with the varied inertia. We
found that, the control force change caused by perturbation is not very sensitive to arm
inertia because the effect of perturbing force is stronger than inertiafor change of control

force between perturbed and unperturbed movements.
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Figure 4.2: Perturbed control force, unperturbed control force and control force change
with inaccurate inertial modelsin the null field. Inertia parameters are increased 10% ,
20% and 30%, respectively(solid green, blue and red) and decreased 10% , 20% and
30%, respectively(dashed green, blue and red). Solid line: control force and change with
accurate model.

One can see that the change force is not sensitive to the inertia model.

4.5 Modeling the Control Force Change in the Null Field

By using perturbing techniques and predicting what the movements would be if they are
not perturbed, we measured the control force change caused by perturbation both in the

null field AM, (Ag,Aq) and intheforcefield AM, (AQ,AQ). We want to compare

AM, with Aqu to see what human have learned from the new dynamic environment

and whether or not the learning is performed through the forward model of human motor
controller. We know that the control force change is the function of deviation from the
desired trgjectory. Since there is no way to express the functions in mathematical closed

form, we try to quantify the change of functions (the model of human motor controller)



by comparing output of these two functions. The problem is that how can we give the

same input to the two functions to compare the output signal? We solve this problem by

building the model for AM, (Ag,Aq) to compute AM (AG,Aq), and then compare

AM (AG,AG) with AM, (AT, AG).

Modeling of human data can be done in many different ways. Most of them are not
explicit mathematical models in closed form, but some useful function approximators
(FA). Two of the most popular FAs are Neural Networks and Fuzzy A pproximators.
Having in mind repetitiveness of the task with some explicitly defined parameters
modifying it, we chose not to use either of these two, but one other, nonlinear FA
particularly suited for parametric modeling. Named Successive A pproximations
(Dordevic et al., 2000) it is essentialy a procedure of successive (non-linear) Least
Squares fitting of fitting coefficients. The model, in the form of an ordered set of
coefficients, which are function of parameters used in modeling, generalizes well inside
but also outside of learning domain. The other, very important, property is that these
models can be addressed randomly, giving the output along some trajectories experienced

never before.

This approximating procedure is successfully applied in robotics, particularly in
kinematic redundancy modeling tasks (Dordevic et a., 2000). With only minor changes it
is applied here. First step was a choice of parameters. According to the task definition, we
adopted two parameters: kick direction p,, and kick magnitude p,,.

The typical data acquired from target-reaching experiment with parameterized kick
direction and kick magnitude are shown on following figures. These data are used for
subsequent modeling.



0.06 0.12

0.04 01
0.08
E 002 E
> S 006
0
0.04
0.02 0.02
0.04 0
0 0.2 0.4 06 0.8 0 02 0.4 0.6 08
Time [s] Time [s]
0.4 06
0.4
o
£
x 0.2
S
0
02
0.05 0 0.05 0.1 0.15

Figure 4.3: Measured perturbed hand trajectories in subject Cartesian coordinates in the
null field. Movements were perturbed in 23 angle-equally-spaced directions with the
same kick magnitude. We aso measured the data for other 8 different kick magnitudes all
of which are used to model the control force change in the null field. B: Perturbed
trajectories were presented as the time series (top) and velocity-position space (bottom).
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Figure 4.4: The data used for modeling. Measured control force with perturbation and
predicted control forceif not perturbed for one kick magnitude. Top row: Measured

control force when movements were perturbed in the null field. We name thisforce M .

Middle row: Predicted control force (What the control force would be if the trgjectories
were not perturbed in the null field). We name thisforce M ,. Bottom row: Control force

change M, — M.

Figure A is the shape of perturbing
force with the duration around 100
msec. Human arm is perturbed 100
msec after the beginning of movement.
o1 o ¥ T o = o Movements are perturbed in 23
equally spaced directions as shown

in Figure B.
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Figure 4.5: Measured control force change with the same kick magnitude in 23 different
kick directions AM =M ; — M, on the top of hand trgjectoriesin the null field caused by

perturbations.
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Figure 4.6: Measured control force change with the same kick magnitude in 23 angle-
equally-spaced kick directions for three subjects A, B and C.
Hand trgjectory, hand velocity and control force due to adaptation of human motor

controller are independently modeled, giving models: Mod, (t, Py, Pn) »

Mod,, (t, P Pin) » Mod,, (t, Py Pin) » Mod,, (8, Pugs Pin) » Mod,y (L, Pyy» Pin) @nd
Mod, (. Pg» Pun) - The model based on these two parameters, enables reproduction of

hand trajectory, along with force exerted at the handle of manipulandum, for arbitrary
values of the parameters that belong to the learning domain. Furthermore, random
addressing of the model (Dordevic et a., 1999) enables addressing of a single point only,

specified by aset of timeingtant t*, p,, and p,,,, which lead to addressing of arbitrary

traectory.

Verification of the model is done stepwise. First, we evaluate approximation of time
histories of hand positions, velocities and forces in the experiment, by keeping
approximation error defined by normalized mean-squared error within 95% confidence
limits. A typical trgectory of approximated motion along Ox coordinate is shown on
Figure 4.8, along with 95% confidence limits. For all other kick directions, the degrees of



approximating polynomials are chosen with respect to the criteriato tighten confidence
limits along the change of independent variable. In other words we tried to keep a balance
between overfiting and underfiting underlaying data. Approximation in time finished for
all variation of trgjectories due to varied kick direction and varied kick magnitude, gives
three dimensional set of coefficients of approximating polynomials that can be taken as

functions of kick direction and kick magnitude variables.

Again, we performed least squares fitting with respect to the kick direction variable p,,,

maintaining the same balance between overfiting and underfiting which will result in
acceptable confidence limits. Finally, the same is done with respect to the kick magnitude
variable p,., (Dordevic et a., 1999).

Finally, we take awhole set of all possible trgectories from the model for kick directions
asin experiment. By bootstraping, we took trajectories randomly for large number of
times, and evaluated how each of trgjectory correlates to the rest of them. Next six
box-plots, Figure 4.7. give an information how good models of positions, velocities and
forces are with respect to the change of kick direction. General conclusion is that
positions are easiest to approximate, comparing to velocities and forces. Also, the quality
of the model isafunction of kick direction parameter, showing slight decrease of model
quality within aregion of kicks that produces minor motion perpendicular to the target
direction. Based on this and former evaluation of modeling procedure, we take these
models as a good basis for further understanding of forward model adaptation during

motor learning task.
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Figure 4.8: Final bootstrap testing of model quality for positions, velocites, and forces.

Having modeling done, we can use it to match arbitrary hand trgjectory, assuming that it
belongs to the state space regions visited by trgjectories for modeling. Essentialy,
matching problem is a procedure of finding a nearest neighbor defined by time instant,

P, and p,,, tothe desired point of new trajectory

Tnew E{Xnew’vxnew’ ynewivynew} :



N [, —MOd, (8, Pl Pin) 2 WX, ~ MGy, (1, Pl Pl

min [{yr., ~Mod, (t, Pl Pien) }A W = Md (4, Bl Pl

£+ Pid + P

Now, for all points of anew trajectory T ,i =1,---,n, assuming that we have the same
number of pointsfor all trajectories used in modeling, the result of matching are two

vectors p,, and p,, . Thesetwo vectors simultaneously with time-respective addressing

of points can be used in addressing the two force models: Mod,,, (7, Py Pum) -

AM ., = Mod,,, (t, Piys Piy)s 1 =L-+-,N

All models are three-dimensional sets of functional coefficients. Each dimension
corresponds to one parameter, taking time, kick direction, and kick magnitude as

parameters. Specifically, models of positions and velocities (x, VX, y,vy) are of the same

size, taking 11 coefficients for approximation in time, 10 coefficients in approximation in
kick direction, and 4 coefficients for approximation in kick magnitude. It practically
means that approximation in time is done with polynomials of 10th degree,
approximation in kick direction as a variable with polynomials of 9th degree and finally
approximation in kick magnitude as variable with polynomials of 3rd degree. Slightly
higher degrees of polynomials are used for force signals modeling. Also, we have

modeled the force signals with two models, later blended for smoother transition.

The output of models, after addressing by desired values of time instant, kick direction
and kick magnitude, is apolynomial, different for different signals (positions, velocities

and forces). For example, model output for x(t) isapolynomial of 10 th degree.
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Figure 4.10: Modeled control force change with the same kick magnitude in 50 angle-

equally-spaced kick directions.
4.6 Adaptation of the Control Force Change after Learning the

Novel Dynamics Environment



Previous simulation indicates that human motor controller where aforward model was
used in conjunction with an inverse model resultsin remarkable kinematic similarities to
the observed human behavior. Thereis no doubt about motor adaptation within the
changed mechanical environment. It is pretty straightforward to understand that human
motor controller adapts the inverse model to predict the changed dynamic environment.
For the unperturbed normal movements in two quite different dynamic environments, in
this situation the deviation from the desired trajectories (which are quite similar for
movements within null field and force filed) is so small that error feedback from forward
model nearly plays no role in controlling movements, human motor adapts very well to
both of them. But the stiffness and viscosity of human motor controller, which is adapted
to one specific dynamic environment always remains same whether or not thereis error
in movements. The problem isthat it is hard to see when error is so small. Our goal in
thisthesisisto go one step further. We try to find more evidence of dynamic information
from arm movements, which supports the theory that human motor controller does use
forward model to control movements. However, the main question is, whether or not the
forward model is adapted and how the forward model contributes to the motor learning of

subjects.

The reasonable lumped model of the subject’ s biomechanical motor controller in the case

of point-to-point movementsis as follows:
M =H(d,)d, +C(dy, )8 — E(ds) - K(a—0,) - B4 -¢,)

For normal movements without disturbance from outside environment, subject performs
so well (deviation from the desired tragjectory AQ=q—-0q, and Aq=q—q, arevery
small) that the error feedback terms, which attribute to forward model and spinal reflex,
are not quite obvious. By perturbing movements in randomly selected directions, which
give more deviation from the desired trgjectory, we can easily measure the control force
due to the feedback terms. (Note: Since perturbations cannot be learned, they have no

effect to human motor controller. In other words, controller and desired trgjectory are the



same for the movement perturbed and unperturbed). First, we compute the control force

change AM, caused by perturbationsin the null field,
AM, (Ag,AQ) =M, — M, =-KAQ - BAg

where M, and M, are control force during the perturbed and unperturbed movementsin

the null field respectively. K and B arelinear estimate of subject’sjoint stiffness and

viscosity. One can see AM, isthe force that only attributes the feedback control box. In

Figure 4.4 control force change are plotted as arrows on top of the perturbed trgectories
in the null field and one can see that the correcting force push the movements come to the
desired trgjectory, which is nearly a straight line upward towards the target. To provide
the same state input to the forward model, we next build parameterized model for the
control force change in the null field using al the movements we measured in the null
field, which are perturbed in 23 directions with 9 different kick magnitudes. We can
estimate the control force change for an arbitrary movement in the null field with this
model.

Then, we compute the control force change Aqu caused by perturbationsin the force
field. The torque motors of robot produce an additional force at the handle as described

by the equation, F = BX, where xis the instantaneous velocity vector of the handle and

B=[0 -13;13 O]Nsecm™.

AM,, (AG,AQ) =M, — M, = —KAG - BAg
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Figure 4.11: Measured control force change AM o (AG,AQ) = Mp — MO with the same

kick magnitude on the top of perturbed hand trgjectoriesin the force field caused by
perturbations.
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of the perturbed trajectory @, in the force field.



where M , and MO are control force during the perturbed and unperturbed movementsin
the force field respectively. By adapting K and B to K and B, control forcein the
force field are adapted to predict the new dynamic environment. Using the parameterized

model build for the null field, we estimate the control force change AM (AG, AQ) for
the trajectory G, where § =q, + Ag,J = ¢, + AQ are perturbed trajectoriesin the force
field. The difference between AM,, (AG,AG) and AM (A, AQ) is represented as

M, (AG,AD),
M, (AG,AG) = AM_ (AG, AG) — AM , (AT, AT)

Figure 4.7 shows oM @ (AG,AQ) on top of the perturbed force field trajectories. It is easy

to see from the force field equation that the effect of the force field isto push your arm to
the left when arm is moving upward towards the target. Though, theinitial responsesto
the unanticipated force field were driven-off-course from the straight line to the left.
After practice and learning, subject’s hand tragjectories became straight and quite similar
to those observed in the null field (straight line). This adaptive behavior shows that

subject adjust internal models of motor controller to predict and compensate the external

force presented in the forces field. One can see from the plotting oM @ (AG,AQ) that

forward model of human motor controller also adapted to the force fields. oM (AT, AQ)

represents the force generated by the forward model feedback controller, which converge
the perturbed trajectory back to the desired trajectory. After practicein the force field,
forward model knows thereisforce field always pushing the arm to the left if moving
upwards. So when movement is disturbed, forward model will aways expect the pushing
left force and generate neural command not only push movements back to the straight
desired trgjectory but also push the arm to the right harder to compensate the expected
forces. That is what we see from our results. The differences of control force change

oM o (A, Aq) for our 3 subjects are pointing to the right due to the adaptation of the

force field, which supports the theory that |earning and adaptation of the new dynamic



environment are also performed through the forward model of human motor controller.
Results suggest that the adaptation of the forward model played a dominant rolein the

motor learning of subjects.

Here, we approached the system architecture of the human adaptive motor controller. The
task that we considered was reaching movementsin novel force field. The feature of
movements we examined here are control force change, which will be only effected if the
forward model has adapted to a new dynamic environment. We demonstrate that the
obvious adaptation of control force change is used to compensate for the novel force
field, as shown in Figure 4.7. This constant compensation of force fields could not be
accounted for if the supra-spinal controller was only an open loop system composed of an
inverse model and learning is only viaformation of an inverse model. These
characteristics point to support the architecture where descending commands were
influenced by an adaptive forward model in conjunction with an inverse model. The
accurate prediction of force fields provides the evidence for an adaptive forward model in

the control of human arm movements in novel dynamic environments.

We next do a control experiment to testify that the control force change does have
relationship the stiffness or viscosity of the human arm. Subjects performed the same
movementsin the null field with 23 equally spaced kicking directions. We instruct the
subject to try her/his best to stiff her/his arm but still reach the target with the same time
as before (500 msec). We measure the control force change in this situation. For these
stiffed trajectories, we use the model built before to estimate what the control force
change would be in the relaxed condition (All the movements we measured before this

control experiment are performed in a natural and relaxed condition).
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Figure 4.14: Difference between the control force changes between the stiffed
movements and relaxed movements. The force difference is plotted by arrows on top of
the perturbed tragjectory in the stiffed situation.

Figure 4.11 shows that the change of control force change when subjects stiff their arms

during the movements. One can see the change of control force change is pointing



towards the target. This means that increasing stiffness and viscosity while performing
reaching movements would give more control force change toward the target. This
support the idea that control force change has strong relations with feedback control
strategy of human motor control, which is represented by stiffness and viscosity of the

human arm.



Chapter 5

Discussion and Conclusion

In thisthesis, learning to make point-to-point reaching movementsin a curl force field
was used as a paradigm to explore the system architecture of the human motor adaptive
controller. The concept of internal model, a system for predicting behavior of the
controlled movements, is divided into aforward and an inverse model. Simulation results
show that the forward-inverse model feedback control seemsto provide a comprehensive
framework for study of computational processin the brain and adaptive human motor
control. By estimating the current state on the basis of delayed information and the
history neural commands through the forward model, this method provides a stable
feedback control strategy for atime delayed nonlinear control system. The ability of the
internal model’ s adaptation to the new force field provides an adaptive controller capable
of learning novel dynamic environment. Simulation results provide a strong support for
the existence of internal model in the brain by comparing simulated kinematic
information and real human behavior. Now, in thisthesis, an insight of the existence of
the internal modelsis gained through measuring the control force, which is generated by

the neural control signal to active the movement of human arm.

The existence and learning ability of the inverse model in the brain is more

straightforward than forward model. With practice, the hand trajectoriesin the force field,
though grossly distorted during the initial movements, converged to a path very similar to
that observed in the null field. We assume the kinematic design, the desired movement, is

independent of dynamical conditions. When subjects perform constant in the force field,



it means the desired trgjectory is nearly same as the resulted trgjectory and the error
feedback control term is negligible in this condition. This suggested that the adaptation of
the inverse model plays a dominant role in this condition. When we see the control force
for unperturbed movement in the force field, alot of control force was generated to
compensate for the force field. The recovery of performance within changed mechanical
environment supports the adaptation ability of the inverse model. | try to ask whether
forward mode does play arole in the human control system and what happened to the
forward model during the adaptation of the controller?

During trained unperturbed movements of human arm, it is hard to see the effect of
forward model. Perturbing will caused more error during the otherwise stable
movements. This technique gives us atoll to investigate the role of forward model in the
control and adaptation process. A forward model calculates the forward process of the
plant. A forward model transforms an efferent copy of descending commandsinto a
prediction of the current state, position and velocity of the arm. Then the estimated state
is compared with the desired state and the error feedback is used to modulate the
demanding neural signal. Since our work has focused on an forward model of dynamics
as arole of feedback control, we subtract the control force during the unperturbed
movement from the control force during the perturbed movement and name it control
force change (Note: The unperturbed movement we name here is actually the prediction
for each perturbed movement if the movement was not perturbed). From the control
architecture we provided in this thesis, the control force changeis only dueto
computation result of forward model and spinal reflex feedback. In order to compare the
control force change in the null field and in the force field in the same state (position and
velocity), a parameterized model was built in the null field to compute what the control
force change would be in the state of force field. We subtract the control force changein
the null field from the control force change in the force field (the two control force arein
the same state) to see how the control force change with respect the new dynamic
environment. Results show that control force change is increased in the opposite direction
of force field. This supports the idea that |earning of the novel dynamic environment is

also viathe forward model of human motor controller. With training, the forward model



can exactly predict the force field in the mechanical environment and adapt to give more
control force to compensate the force field. Control experiment is also done to support
that control force change has a strong relation with forward model feedback control.
Results suggested that the adaptation of the forward also played a dominant role in the
motor learning of subjects. Further studies on the behavior of humans are necessary to
determine the role of internal models on the full repertoire of human motor control

strategy and learning of new task.
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