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Abstract 
 
 

Learning to make point-to-point reaching movements in a curl force field was used as a 

paradigm to explore the system architecture of the human motor adaptive controller. The 

concept of internal model, a system for predicting behavior of the controlled movements, 

is divided into a forward and an inverse model. The existence and learning ability of the 

inverse model in the brain is more straightforward than forward model. I try to ask 

whether forward mode does play a role in the human control system and what happened 

to the forward model during the adaptation of the controller? A forward model transforms 

an efferent copy of descending commands into a prediction of the current state, position 

and velocity of the arm. Our work has focused on a forward model of dynamics as a role 

of feedback control. We compute control force change caused by perturbation in the null 

field and in the force field. From the control architecture we provided in this thesis, the 

control force change is only due to computation result of forward model and spinal reflex 

feedback. In order to compare the control force change in the null field and in the force 

field in the same state, a parameterized model was built for the null field to compute what 

the control force change would be in the state of force field. We see the adaptation of 

control force change to exactly compensate the expected the force field. This suggests 

that forward model plays a dominant role in the motor control and learning.  
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Chapter 1 

 

Current Understanding of the Computational 
Motor Control for Human Arm Movements 
 

 

A current controversy in motor control is whether the CNS makes use of an internal 

model of the motor apparatus in planning and executing goal-directed movements. A 

number of investigators have suggested that an internal models is used either to predict 

the movement consequences of motor commands (forward model) (Jordan and 

Rumelhart, 1992; Miall et al., 1993; Jordan et al., 1994; Wolpert et al., 1995) or 

determine the commands needed to achieve a desired movement trajectory (inverse 

model) (Saltzman, 1979; Atkeson, 1989; Uno et al., 1989; Hollerbach, 1990). However, 

other workers have proposed control theories that explicitly reject the notion of an 

internal model (Bizz et al., 1984; Flash, 1987; Bullock and Grossberg, 1988; Feldman et 

al., 1990; Flanagan et al., 1993). We introduce some of the computational approaches that 

have been developed in the area of motor control. We focus on areas of motor control, 

which have been enriched by control system models: motor planning, internal model, 

motor prediction and motor learning.  

 

1.1 Motor Planning 
 



The computational problem of motor planning arises from a fundamental property of the 

motor system; the reduction in the degrees of freedom from neural commands through 

muscle activation to movement kinematics. Even for the simplest of tasks, such as 

moving the hand to a target location, there are an infinite number of possible paths that 

the hand could move along and for each of these paths there are an infinite number of 

velocity profiles (trajectories) the hand could follow. Having specified the hand path and 

velocity, each location of the hand along the path can be achieved by multiple 

combinations of joint angles and, due to the overlapping actions of muscles and the 

ability to co-contract, each arm configuration can be achieved by many different muscle 

activations. Motor planning can be considered as the computational process of selecting a 

single solution or pattern of behavior at the levels in the motor hierarchy, from the many 

alternatives, which are consistent with the task. 

 

Optimal Control Approach and Kinematic Cost Function 
 

One computational framework, which is natural for such a selection process, is optimal 

control in which a cost function is chosen in order to evaluate quantitatively the 

performance of the system under control. The cost function is usually defined as the 

integral of an instantaneous cost, over a certain time interval, and the aim is to minimize 

the value of this cost function. Every possible solution, that is each possible movement, 

has an associated cost and the solution with the lowest cost is selected as the plan. In this 

framework the cost function is a mathematical means for specifying the plan. The 

variables that appear in the cost function, and that are therefore planned, determine the 

patterns of behavior observed. 

 

While many possible cost-function have been examined there are two main classes of 

model proposed for point-to-point movements: kinematics and dynamics based models. 

Here only the kinematics based models are introduced and used for the computation of a 

desired movement or trajectory for the arm. Kinematic cost function contain only 

geometrical and time-based properties of motion and variables of interest are the 



positions (e.g. joint angles or hand Cartesian coordinates) and their corresponding 

velocities, acceleration and higher derivatives.  

 

1.1.2 Minimum Jerk Trajectory 
 

Based on the observation that point-to-point movements of the hand are smooth when 

viewed in a Cartesian framework, it was proposed that the squared first derivative of 

Cartesian hand acceleration or ‘jerk’ is minimized over the movement. The minimum 

jerk hypothesis produces a unique solution given the movement duration and suitable 

boundary conditions of initial and final position and velocity. The model predicts 

straight-line Cartesian hand paths with bell-shaped velocity profiles, which are consistent 

with empirical data for rapid movements made without accuracy constraints. 

 

Assume that we know where our arm is currently, 0x or 0q , we know where we want our 

arm to be at the end of movement, fx or fq , how should the arm/hand move from start to 

final position? Infinite numbers of trajectories are possible. There is “regularity” in the 

way people move. 

 

Hypothesis: movements are planned so that hand path is minimum in jerk, i.e., maximally 

smooth. Assume )(tx  is position, 
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1.2 Internal Models 
 

The concept of an internal model, a system for predicting behavior of a controlled 

process, is central to the current theories of motor control and learning. Theoretical 

studies have proposed that internal models may be divided into two varieties: forward 

models and inverse models. The forward model accomplishes the transformation from 

motor variables to sensory variables by the environment and the musculoskeletal system 

(these physical systems transform efferent motor actions into reafferent sensory 

feedback). It is also possible, however, to consider internal transformation, implemented 

by neutral circuitry, that mimic the external motor-to-sensory transformation. Such 

internal transformations are known as internal forward models. Forward dynamic models 

predict the next state (e.g. position and velocity) given the current state and the motor 

command whereas forward output models predict the sensory feedback. This in contrast 

to inverse model which invert the system by providing the motor command required to 

achieve some desired result they have a natural use as a controller. Based on 

computational principles, this classification is relevant for adaptive control of a nonlinear 

system. The CNS appears to learn control of the arm through the formation of both 

forward and inverse internal model of the environment’s mechanical dynamics. Memory 

consolidation maybe related to transform of one kind of internal model into another 

(Bhushan & Shadmehr, 1999). In this chapter, control methods based on inverse and 

forward modalities that the brain can use for controlling arm movements are introduced. 

 

 

1.2.1 Forward Model 
 



The feedback forward model control is a method where the brain uses sensory feedback 

information about the state of the arm from vision and proprioception to generate or 

modify the motor commands sent to the arm based on error in the measured state and the 

desired trajectory. This method places prime emphasis on the role of joint stiffness and 

viscosity for the generation of movements by the central nervous system (CNS). The 

forward dynamics model refers to a hypothetical computational network in the brain and 

has been defined as an internal model that mimics the casual flow of a process by 

predicting its next state given the current state and the motor commands (Miall and 

Wolpert, 1996). The forward model is a model of the input-output mapping of the human 

arm from muscle activation to arm movement. It can be estimated as an estimate of the 

forward dynamics of the human arm, which predicts hand acceleration from neural signal 

and hand state (position and velocity). 

The feedback forward model control of a system has the following advantage: 

 

• It is robust to noise in the plant and changes in the plant 

• With high feedback gains it is possible to emulate the inverse dynamics of the system 

with a simple linear controller and achieve close to exact tracking of the desired 

trajectory. 

 

Its disadvantage: 

 

• Extremely sensitive to noise in sensory measurements and feedback 

• Affected greatly by time delays in the feedback loop 

• The actual trajectory can never track the desired trajectory exactly 

 

In the human motor system, feedback control is very attractive, humans have to interact 

with different environments that continually alter the dynamics of the system they are 

trying to control. And, visual control of movement is a form of feedback control that is 

very useful. However, time delays in the feedback loop severely limit the scope of 

feedback control and do not allow simple feedback control of the system. The reason is 

that information about the outcome of a control action is not available instantly and has to 



go through a delay before reaching the controller. By the time the control action is taken 

it may no longer be appropriate for dealing with the current errors in the output of the 

system. To overcome delays in the feedback, what is required is a method to obtain the 

current state or output of the system without having to wait for it to feed back. For stable 

feedback control the brain has to compute the state of the arm at current time t  from a 

delayed measurement of the state at time 0tt − , where 0t  is the feedback delay, and a 

history of motor commands sent out by the brain until the current time t . In control 

literature, a computational unit that estimates or predicts current state is called an 

observer. Hence an observer has to be designed to solve the time-delay problem. In the 

context of movements, the concept of a Forward Model has been proposed to construct 

an observer and achieve feedback control in the presence of time delays in the system 

(Miall and Wolpert, 1996). 

 

1.2.2 Inverse Model  
 

This refers to a control method by the brain that uses only the predetermined desired 

trajectory to generate control signals for movement of the arm. It is a feedforward control 

system and does not rely on feedback during the movement. Stability of the system is 

achieved by the spinal reflex loop and equilibrium properties of the muscle. An important 

distinction of this method to feedback methods discussed later is that desired trajectory 

directly drives the system without the use of intermediate variables like muscle activation 

or torque. The brain does not have independent control over torque or muscle activation 

generated in the system and controls only the trajectory. Muscle can be used as a 

trajectory controller or as a torque generator. In the feedforward methods discussed here, 

the controller relies on the trajectory control properties of the muscle. 

 

 

 

 



1.2.3 State Estimation  
 
Delays in forward model feedback cause instability and uncertainty. Therefore, human 

motor control produces its estimate of the current state by monitoring the stream of input 

(motor neural signal) and sensory feedback at some earlier time. Based on the current 

state estimate and the estimated error in trajectory, the desired trajectory is corrected 

using a linear feedback controller. 

1.3 An Example Model of Human Arm Control Using Forward-
Inverse Model Feedback Control 
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Figure 1.1: Block diagram illustrating the control method using both feedforward and 

feedback control 

 

The collective system of “muscle” and manipulated “Inertial Dynamics” is often referred 

as the “plant”, which is the controlled object. The plant transforms the neural motor 

command into the trajectory (position and velocity) of the human arm. One of the 

problems associated with feedback control is that of tracking the desired trajectory 



exactly. With feedback gains that are not sufficiently high, the actual trajectory only 

approximates the desired trajectory as was seen with only feedback control of movement 

for neural activation and torque control methods. The other disadvantage with above 

methods was that of adapting to altered dynamics by changing the forward model, which 

improved performance but still caused errors in tracking the desired trajectory. One way 

to overcome this drawback is to combine inverse model feedforward control with 

feedback control. In the new configuration, the feedforward signal controls the system 

and the feedback signal corrects for unmodeled disturbance to the system, hence this 

method integrates the advantage of both the feedforward and feedback techniques.  

 

The properties of this control method are: 

1. Use of an inverse model to generate the feedforward signals, and a forward model to 

generate the estimates for feedback control. Hence the control on both the forward 

and inverse plant models. 

2. Exact tracking the desired trajectory can be achieved. 

3. Stable control of the arm in the presence of external force fields. 

4. Adaptation to the altered dynamic environments through changes in the forward and 

inverse models. 

Greater sensitivity of performance of the system to changes or errors in the forward 

model that to the inverse model. 

 

1.4 Adaptive Motor Control using Internal Models 
 

Adaptive control of a nonlinear system which has large sensory feedback delays, such as 

the human arm, can be accomplished by using two different internal model architectures. 

One method uses only an adaptive inverse dynamics model to control the system 

(Shadmehr and Mussa-Ivaldi, 1994). The adaptive controller is feedforward in nature and 

ignores delayed feedback during the movement. The control system is stable because it 

relies on the equilibrium properties of the muscle and the spinal reflex to correct for any 

deviations from the desired trajectory. The other uses a rapidly adapting forward 



dynamics model and delayed sensory feedback in addition to an inverse dynamics model 

to control arm movements (Miall and Wolpert, 1996). In this case, the corrections to 

deviations from the desired trajectory are a result of a combination of supraspinal 

feecback as well as spinal/muscular feedback. For reaching movements of the hand in 

novel force fields, only the learning of the forward model results in key characteristics of 

performance that match the kinematics of human subjects. In contrast, the adaptive 

control system that relies only on the inverse model fails to produce the kinematic 

patterns observed in the subjects, despite the fact that it is more stable (Bhushan N, 

Shadmehr R, 1999). 



 
 
 
 

Chapter 2 

 

Modeling of the Human Motor Control 
 

 

2.1 Kinematics of the Human Arm 

 

 

 

 
Figure 2.1: Schematic picture of the arm model. The upper arm (angle 1q ) and the 

forearm (angle 2q ). The hand with Cartesian coordinates ),( yx . An external force 

),( yx FF  acting on the hand from the robot handle. 
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The kinematics of the human arm refer to the configuration relationships between joint 

positions and hand positions and the transformation between these two coordinates 

system. Human arm movements in the horizontal plane are described by 2-dof arm model 

which is depicted in Fig. 2.1.  The upper arm and forearm are presented by rigid links that 

rotate in 1-dof joints, modeling the shoulder and elbow joint. The following are the 

equations that govern the forward kinematics of the arm and represent Cartesian or hand 

state in terms of joint state. The transformation from joint angles to handle position (in 

subject Cartesian coordinates) is given by 
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The last two equations can be represented in vector notation by: 
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where, 

 

 yx  ,  are the Cartesian x-y hand (handle) position 

 yx ��  ,  are the Cartesian hand (handle) velocity 

 21  , qq  are the relative shoulder and elbow joint angles 

 21  , qq ��  are the relative shoulder and elbow joint velocities 

 J  is the Jacobian of joint to Cartesian coordinate transform 

21  , ll  are the upper and lower arm lengths respectively 



It is possible to express the inverse kinematics relationship that represents the joint angles 

as a function of hand position for the human arm. A unique joint position q  exists for a 

given hand position in the workspace, when planar movements are considered. The 

uniqueness of the solution is ensured because of the constraint on the joint angle, 

π≤≤ 20 q . The solution is given by the following equations, 
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where, 

hq  is the angle made by the hand with respect to the x-axis and is equal to    

),arctan( yx  

   1−J  is the inverse of  22 ×  matrix J   

 

1−J  exists except at the boundary of the workspace where 21 qq = . This singularity is 

ignored here because the movements of the arm considered in the current study are well 

within the boundaries of the workspace, and it is assumed that 1−J  exists at all points 

during a movement of the arm. The equation relating hand acceleration x��  joint 

acceleration q�� , is obtained by differentiating Eq. 1.1 that gives, 
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2.2 Dynamics of the Human Arm  

 
The dynamics of the arm refers to the interaction between forces in the system and 

change of state of the system. A torque acting on the joints causes a change in the joint 

position and velocity. For the two-link two-joint system in Fig 2.1, the dynamics can be 

represented in terms of the link lengths and mass and inertia of the links with these 

equations. To estimate inertia parameters by shaking human arm, the following equations 

can be utilized: 
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inertial matrix )22( ×  and coriolis-centrifugal force vector respectively.  
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Here, 21  and mm  denote the masses of upper arm and lower arm (hand plus forearm) 

links, cc ll 21  and denote the length from each joint to the center of gravity for each link, 

cc ii 21  and denote the inertia of each link, and 21  and ll  denote the length of the upper arm 

and forearm. These parameters can be merged into three parameters 321  and  , aaa . It is 

obvious that  
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We call these parameters ‘structural parameters’ since they are independent of arm 

position, velocity, acceleration and torque. They are constant values under all conditions. 

So we can pre-estimate 3,2,1, =iai , the inertial models of human arms, and then use it to 

compute the dynamics for reaching movement of the human arm. 

 

It is also possible to represent the torque in terms of hand velocities and accelerations as, 

 

[ ] xCJxJJxHJT ����� 111 −−− +−=          (1.1) 

 

The forward dynamics of the arm is the functional relationship that gives change in state 

of the hand in terms of the input joint torques. This is given by, 

 



   [ ] xJJxCJTJHx ����� 111 −−− +−=          (1.2) 

 

and can be expressed in a simpler form by a nonlinear function Df , 

 

   ),,( xxTfx D ��� =           (1.3) 

 

The relationship that gives the torque required for moving the arm from one point to 

another along a certain trajectory is called the inverse dynamics of the arm and is 

represented by Equation (1.1) or simply as 1−
Df . If the hand position, velocity and 

acceleration are given for any instant of time then torque can be computed using Equation 

1.1. 

 

Note: The representation of kinematics and dynamics of the human arm is in relative joint 

coordinate system throughout this thesis. This implies that the joint angles and joint 

torques for the human arm are expressed in relative joint coordinates. 

 

2.3 Mathematical Modeling of Human Arm Motor Control 
 

It is clear from our simulation studies and those of others (Hollerbach and Flash 1982) 

that the generation of coordinated multijoint arm movements requires the CNS to account 

for joint interactional effects. Several different strategies for controlling multijoint 

movements have been advanced in the literature. Proponents of the equilibrium point 

hypothesis (Bizzi et al. 1984; Feldman 1966) believe that the CNS controls movement by 

defining a sequence of equilibrium positions for the limb (the virtual trajectory). 

According to this hypothesis, muscle torques arise from the interaction of limb stiffness 

and differences between the actual and virtual trajectories, without explicit solution of the 

inverse dynamics problem. Rule-based control schemes (Gottlieb et al. 1997; Karst and 

Hasan 1991) also allow the CNS to circumvent the computation of inverse dynamics.  

 



Alternatively, and more plausibly in our view, the CNS may utilize an internal model of 

limb dynamics to transform the desired movement kinematics into appropriate torque or 

muscle activation patterns (Atkeson 1989). Such a model, perhaps acquired through 

"motor learning," would provide explicit predictive control of segmental interactions. 

Several recent studies have provided evidence that the CNS utilizes internal models in the 

control of motor behavior (Flanagan and Wing 1997; Lackner and Dizio 1994; Lacquaniti 

et al. 1992; Sainburg et al. 1999; Shadmehr and Mussa-Ivaldi 1994; Wolpert et al. 1995). 

In particular, the study of Sainburg et al. suggests that the anticipatory control of 

intersegmental dynamics is achieved using an internal model of the intrinsic dynamics of 

the limb. The neural correlates of this model remain unclear. Schweighofer et al. (1998) 

have proposed a distributed representation of limb dynamics in which the motor cortex 

provides compensation for the inertial anisotropy of the limb and the cerebellum accounts 

for segmental interactions. This representation is consistent with recent studies of patients 

with cerebellar lesions that have linked trajectory disturbances to an impaired control of 

interaction torques (Bastian et al. 1996; Topka et al. 1998). 

 

The purpose of the mathematical modeling was to help describe the concept of an 

“internal model”. Let us start by considering the arm’s dynamics in generalized 

coordinates: We indicate by q  a point in configuration space (e.g., an array of joint 

angles) and by qq ���  and  its first and second time derivatives. The dynamics of the motor 

control system coupled (in parallel) with its environment can be described by the sum of 

the following terms: a time-invariant component, ),,( qqq ���Ψ . )(ext tτ , represents forces 

which depend on dynamics of the environment. ),,( µqqM �  represents the forces which 

depend on the operation of the controller. 

 

)(),,(),,( ext tqqMqqq τµ +=Ψ ����         (1.4) 

 

If we assume the arm to be rigid body serial link system, the forces represented by Ψ  is 

itself a sum of inertial, Coriolis, centripetal, and friction forces: 
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Here, (.) Ψ  denotes a two-link arm dynamics, and qqq ���  and  ,  are angular positions 
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q , where 1q  is shoulder angle and 2q  is elbow angle), velocity and acceleration 

vector, respectively. 

 

With respect to the function ),,( µqqM � , simulations have previously suggested a 

reasonable lumped model of the subject’s biomechanical motor controller in the case of 

point-to-point movements is as follows (Shadmehr and Brashers-Krug, 1997): 
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where Ĥ  and Ĉ , which is the inverse model built  by human motor controller for the 

dynamic of human arm, are the approximation of H  and C . 

 

2.4 Impedance of the Human Arm Controller 
 

The mathematical modeling of the two-link human arm dynamics on the horizontal plane 

were modeled by the following second-order nonlinear differential equations: 

 

)(),,(),,( tqqMqqq extτµ +=Ψ ����  

 

)(textτ  denotes the external force acting on the hand from the robot handle. Considering 

the length-tension and velocity-tension relationships of muscle force, the generated 

torque, ),,( uqqM � , can be represented as a function of angular position, velocity, and 

motor command, u , descending from the supraspinal central nervous system (CNS). Let 

us consider the human arm controller is capable of guiding a limb along a desired 



trajectory )(0 tq . When arm follows a particular trajectory )(0 tq , we assume that 

)(0 tττ =  and )(0 tµµ = , 
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If human arm is perturbed )(tq∆ from the desired trajectory )(0 tq  by applying small and 

smooth perturbations for a short duration, the following variational equations can be 

utilized. Impose a perturb force τ∆  resulting in qq ∆+0  and uu ∆+0 , 
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Using Fourier Expansion, we have 
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K  and B  represent muscle stiffness and viscosity matrix whose size is 22 × , so we 

have:  
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We can measure external torque change acting on the human arm from the environment. 

By measuring inertial dynamics of the arm: qqqCqqHqqq ������� ),()(),,( +=Ψ  and 

predicting the path )(0 tq  that the human arm would follow if there were no perturbations, 

we can estimate the torque or force u
du

dM

u
qBqK ∆+∆−∆−

0

 �  that was generated by the 

human motor to activate and control reaching movements of human arm  

 

 

2.5 Curl Force Field 
 

In some cases of the experiments, the manipulandum was programmed to produce forces 

on the hand of subject as the subject performed reaching movements. These forces, 

indicated by the vector F , was computed as a function of the velocity of the hand: 

 

xBF �=  

 

where x� was the hand instant velocity and  B  was a constant matrix representing 

viscosity of the imposed environment in subject Cartesian coordinates. The viscosity 

matrix B we used in the experiment has the following format: 
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It is viscous (proportional in strength to the instantaneous hand velocity) and directed 

orthogonal to the instantaneous hand velocity. This force field is considered here because 



human motor behavior in this filed is used as the main source of data for understanding 

human motor control and adaptation in this thesis. 
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Figure 2.2: An environment as described by the curl force field with the viscosity matrix 

equals to mN sec/. 
013

130





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 −
. Forces acting on the hand while making reaching center-

up movements. The movement here is typical subject averaged data with a period of 0.5 
sec and amplitude of 10 cm. 
 

 

The forces field is chosen because it provides a new dynamic environment that has not 

been previously encountered by the subjects, and therefore their behavior and 

performance in this filed is unaffected by previous learning of other every day tasks. A 

wealth of data on human learning in this field has been collected in our laboratory and 

will be used in subsequent chapters. Hence it is important the structure and nature of this 

novel dynamic perturbation. The curl force field causes a force on the hand that is 



perpendicular and proportional to the hand velocity at any instant. The work done by the 

field is always zero; therefore it does not affect the energy of the system. The interaction 

force acting on the arm due to the curl force field can be mathematically represented as, 

In particular, we chose B  to be: 
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The torque change required with the altered dynamics for reaching movement is 

significant compared to the torque required for the unload arm. As a subject made 

reaching movements center-up in this force field, the robot handle produced forces shown 

in Figure 2.2 (the movement we used here are the average of reaching movements of a 

typical subject). 

 

 

2.6 Savitsky-Golay Smoothing and Derivative 
 

The Savitsky-Golay algorithm is based on performing a least squares linear regression fit 

of a polynomial of degree k  over at least 1+k  data points around center point in the 

spectrum to smooth the data. The derivative is then the derivative of the fitted polynomial 

at the center point. Since the coefficients of the fitted polynomial are linear in the data 

values, the filters can be precomputed. “Order of the filter k ” is the highest polynomial 

power used in the fit. “Half-width of the filter” are the number of points to the right and 

left of the center point (note: if the number of points to the right is not equal to the 

number of points to the left, a non-symmetric filter will be generated; otherwise, 

symmetry is   assumed and the total width of the filter will be 12 +× halfwidth ). Given 

order and half-width of the filter, Outputs, we can precompute the coefficients of this 

filter. We construct a coefficients matrix C  whose each row represents the coefficients 

used to calculate the corresponding derivative at the center point.  For example, this 

matrix has dimensions Norder ×+ )1( , where N  is the total width of the filter 

 



12 +×= halfwidthN .   

To compute the smoothed estimate of the value at the center point, take the dot product of 

the first row of C  with the data around the center point.  Similarly, for the first 

derivative, use the second row of C , etc.  

Note: When using the Savitsky-Golay filter to compute derivatives, dot product need to 

be divided by the sampling interval raised to the power of the desired derivatives.  

 

The calculation uses the matrix formalism described above to calculate 1st through d th 

derivatives.   

 

Legend:  

d : the order of the derivative 

k : the degree pf the polynomial 

s :  the number of points to be fitted by the polynomial 

                 P : An s -element array with values m],...[-m,...,0,  

      θ : A k -element array parameters  

     y : the array of actual data points 
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Then θX y =  and the least squares fit is given by minimizing  

 

)()( θθ XyXyS T −−=   

 

which is given by the condition: 0=
θd

dS
. This yields  

 

TyyXXX TT == −1)(θ   



 

where TT XXXT 1)( −= . The d th derivative is then given by !d  times the thd )1( +  rows 

if the T convolved with the trace data: 
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where  2/)1( −= sm . Note that this convolution truncates the trace by m  points on each 

side. 

 

 

2.7 Principal Component Analysis Methods 
 

The basic concept of principle component is introduced in this section. This statistics tool 

is used in Chapter 3 to predict what the movement would be if there is no perturbation.  

In real samples, there are usually many different variations that make up a spectrum: the 

constituents in the sample mixture, inter-constituent interactions, instrument variations 

such as detector noise, changing environmental conditions that affect the baseline and 

absorbance, and differences in sample handling. Yet, even with all of these complex 

changes occurring, there should be some finite number of independent variations 

occurring in the spectral data. Hopefully, the largest variations in the calibration set 

would be the changes in the spectrum due to the different concentrations of the 

constituents of the mixtures. If it were possible to calculate a set of "variation spectra" 

that represented the changes in the sample data at all the wavelengths in the spectra, then 

this data could be used instead of the raw spectral data for building the calibration model. 

There should be fewer common variations than the number of calibration spectra (in most 

cases), and thus, the number of calculations for the calibration equations will be reduced 

as well. 

 



Presumably, the "variation spectra" could be used to reconstruct the spectrum of a sample 

by multiplying each one by a different constant scaling factor and adding the results 

together until the new spectrum closely matches the unknown spectrum. Obviously, each 

spectrum in the calibration set would have a different set of scaling constants for each 

variation since the concentrations of the constituents are all different. Therefore, the 

fraction of each "spectrum" that must be added to reconstruct the unknown data should be 

related to the concentration of the constituents. 

 

The "variation spectra" are often called eigenvectors (a.k.a., spectral loadings, loading 

vectors, principal components or factors), for the methods used to calculate them. The 

scaling constants used to reconstruct the spectra are generally known as scores. This 

method of breaking down a set spectroscopic data into its most basic variations is called 

Principal Components Analysis (PCA). 

 

Since the calculated eigenvectors came from the original calibration data, they must 

somehow relate to the concentrations of the constituents that make up the samples. The 

same loading vectors can be used to predict "unknown" samples; thus, the only difference 

between the spectra of samples with different constituent concentrations is the fraction of 

each loading vector added (scores). 

 

Before PCA is applied to a training set, the data is commonly mean centered. This means 

that the mean spectrum (average spectrum) is calculated from all of the calibration 

spectra and then subtracted from every calibration spectrum. Mean centering has the 

effect of enhancing the subtle differences between the spectra. Remember, eigenvector 

methods calculate the principal components based on changes in the absorbance data, and 

not the absolute absorbance. Therefore, anything that improves the ability of the 

calculation to detect the differences between the calibration spectra, will improve the 

model. This actually makes a lot of sense when considered in the context of how PCA 

calculates the eigenvectors. Since the eigenvectors represent the changes in the spectral 

data that are common to all the calibration spectra, removing the mean simply removes 

the first most common variation before the data is even processed by the PCA algorithm. 
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Figure 2.3: PCA breaks apart the spectral data into the most common spectral variations 
(factors, eigenvectors, loadings) and the corresponding scaling coefficients (scores). The 
original spectral data matrix A  is joint velocity data of point-to-point reaching 
movements of a typical subject. The dimension of each matrix is indicated in the figure. 
 
 

PCA is effectively a process of elimination. By iteratively eliminating each independent 

variation from the calibration spectra in series, it is possible to create a set of eigenvectors 

(principal components) that represent the changes in the sample data that are common to 

all. When the training data has been fully processed by the PCA algorithm, it is reduced 



to two main matrices: the eigenvectors (spectra) and the scores (the eigenvector 

weighting values for all the calibration spectra). The matrix expression of the model 

equation for the spectral data looks something like: 

 

AESFA +=  

 

where A  is an n  by p  matrix of spectral sample data, S  is an n  by f  matrix of score 

values for all of the spectra, and F  is an f  by p  matrix of eigenvectors. The AE  matrix 

is the errors in the model’s ability to predict the calibration sample data and has the same 

dimensionality as the A  matrix. In the case of eigenvector analysis, the AE  matrix is 

often called the matrix of residual spectra. The dimensions of the matrices are 

representative of the data they hold; n  is the number of samples (spectra), p  is the 

number of data points (wavelengths) used for calibration, and f  is the number PCA 

eigenvectors. As will be shown later, this is actually a simplification of the true model 

equation. 
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Figure 2.4:  By multiplying PC1, PC2 and PC3 (Eigenvectors) by the set of 
representative scalar fractions (Scores) and summing the results (along with the Mean 
spectrum if the data was mean centered), the original joint velocity data can be recreated. 
The "spectral residual" is the difference between this reconstruction and the original. The 
difference (error)  is because we not all principle components are used to recreate the real 
data. 



 

 

 
 

Chapter 3 

 

Experimental Apparatus and Protocol 
 
 

3.1 Introduction 
 

People learn to move novel objects along desired trajectory, in any direction, by simply 

practicing the task a few times. This adaptation is remarkable because of the 

computational complexity inherent to learning dynamics (Atkeson, 1989). Previous 

studies have hypothesized that adaptation of a neural internal model (IM), transforming 

desired trajectory of the hand into appropriate muscle activations, likely underlies this 

ability (Jordan, 1995; Wolpert et al., 1995). Aftereffects, errors that people make when 

learned dynamics are unexpectedly changed, suggest that IMs are built gradually with 

practice (Shadmehr and Mussa-Ivaldi, 1994), that learning one IM can interfere with the 

learning of a second IM (Brashers-Krug, 1996), and that the interference fades over the 

courses of hours (Shadmehr and Brashers-Krug, 1997).  

 

When subjects make reaching movements against a curl force instead of the normal null 

field, the trajectories would be quite different at the very beginning. But after 15 minutes 

(more or less time would be needed for different subject) training and practice, the 

trajectory (position, velocity and acceleration of human hand) of the movement remain 

nearly unchanged compared with unloaded trials (See fig 3.2). The interaction force 

acting on the hand from the robot handle is still quite different from the ones under the 

normal null field and remains constant across movements. If we model the two-link 



human arm dynamics on the horizontal plane by the following second-order nonlinear 

differential equations: 

 

)()(),,(),,( tFqJqqMqqq ext
T+=Ψ µ����  

 

So we have, 

 

)()(),,(),,( tFqJqqqqqM ext
T−Ψ= ���� µ  

 

)(tFext  denotes the external force acting on the hand from the robot handle. We can see 

that since trajectory qqq ���,,  remain nearly unchanged, ),,( qqq ���Ψ  remain unchanged. Then 

the change of )(tFext  reflects the change of ),,( µqqM � , the adaptation of descending 

control commands, which use proprioceptive information to produce an error-feedback 

action (Marsden et al., 1978). In computational studies, the changes in descending 

commands are attributable to adaptation of an IM (Wada and Kawato, 1993; Miall and 

Wolpert, 1996; Barto et al., 1998; Bhushan and Shadmehr, 1999). An elegant idea is that 

adaptation may be driven by error-feedback motor responses generated by reflex circuits 

(Kawato et al., 1987; Stroeve, 1997). In other words, the delayed, reflex-based error 

feedback might serve as a “blueprint” for how the CNS needs to change descending 

commands. Here I wanted to quantify the changes of descending commands ),,( µqqM � , 

represented as control force or torque, after the subjects adapted to the novel dynamic 

field. 

 

 

 

 

 



 
 

Figure 3.1 The robot manipulandum and the experimental setup. The manipulandum is a 
very low-friction, planar mechanism powered by two high-performance torque motors. 
The subject grips the handle of the robot. The handle houses a force transducer. The 
video monitor facing the subject displays a cursor corresponding to the position of the 
handle. A target position is displayed, and the subject makes a reaching movement. With 
practice, the subject learns to compensate for the forces produced by the robot. 
 
 
 

 
 

Figure 3.2 Overhead view of a subject seated for experimental. The arm is supported in 
the horizontal plane. Two Cartesian coordinate frames: the subject frame (right) with the 
origin hO  and the robot frame (left) with the origin rO  in this experiment are also 

sketched. 

3.2 Material and Methods 
 
The purpose of our experiment was to observe how a subject adapted to the changed 

dynamics of a reaching task by examining control force ),,( µqqM � , which is solely 



attributed to the feedback control strategy of the human motor controller.   A robot 

manipulandum whose handle was grasped by the subject produced these variable 

dynamics. A mathematical model was developed to compute the control force. Both the 

experiments, data acquisition and processing, and some of the modeling procedures are 

described in this chapter. 

 

3.2.1 Experimental Setup 
 
Two males and one female, a total of 3 right-handed subjects (age range, 22-36 years 

old), participated in these experiments after giving informed consent. None of the 

subjects reported sensorimotor or neurological problems, and all had correct-for-normal 

vision. All of the subjects were naïve with respect to the hypotheses under study. Subjects 

were seated in front of the manipulandum, with the right elbow supported by a long rope 

(3m) attached to the ceiling, and the right, dominant hand grasped the end effector 

(handle) of a 2 degree-of-freedom (df) manipulandum mounted in the horizontal). 

Subjects learned to make reaching movements while interacting with a force producing 

manipulandum. A schematic and photo of the measurement apparatus are shown in 

Figure 3.1 and Figure 3.2. 

 

The manipulandum is a two degree of freedom, lightweight, low friction (0.02 and 0.06 

N·m·sec viscous friction for shoulder and elbow joints) robot (Faye 1986) with a six-axis 

force-torque transducer (Lord F/T sensor) mounted on its end-effector (the handle). Two 

low inertia, DC torque motors (PMI Corp., model JR16M4cH), mounted on the base of 

the robot, are connected independently to each joint via parallelogram configuration. 

Position and velocity measurements are made using two optical encoders (Teledyne 

Gureley) and tachometers (PMI), respectively, mounted on the axes of the mechanical 

joints. An accelerometer mounted under the base of the handle. A video display monitor 

mounted directly above the base of the robot (approximately at eye level with the 

subject). 

 



The subject was instructed to move his or her right hand from the start to the end 

position, both of which were displayed on the computer monitor. High-resolution sensors 

mounted on the axes of the mechanical joints were used to accurately measure joint 

position, velocity of the robot linkage. The position and velocity of the manipulandum in 

Cartesian coordinate were computed by the kinematical equation for the manipulandum 

linkage. Manipulandum acceleration and interaction force on it were monitored in 

Cartesian coordinate by the accelerometer and force transducer mounted on the base of 

the manipulandum. Two motors, mounted on the base of the manipulandum, could 

independently produce torque on the proximal and distal joints of the robot arm. A 

computer monitor mounted above the robot displayed a yellow cursor representing hand 

position and a green box representing targets. Subjects were instructed to move the cursor 

to a green plus on the monitor, which represented both the center of the manipulandum 

working and center of the monitor. The subject was asked not to move until the target 

box turned to green. We record hand position, hand velocity, and hand acceleration and 

interaction force at 200 samples/s.  Subjects were instructed to make 10 cm movements 

in the horizontal plane “from point A (the starting target) to point B (the final target)” as 

accurately as possible in 50 ms. The target is represented by a 8mm square on the 

computer monitor. Subjects made movements in the direction of north from the center of 

the workspace and then back to the center. Movement duration (MD) was estimated as 

the amount of time during which the hand’s speed exceed 03.0  m/s. If the subject 

completed the movement in 50500 ±  msec, the box ‘exploded,’ and the computer 

generated a pleasing sound; if the cursor reached the box too slow (in MD 550≥  msec), 

the target filled in blue; if the cursor reached the box too quickly (in MD 450≤  msec), the 

target filled in red. The only instruction provided was to explode as many targets as 

possible. I provided no instructions regarding straightness of movements or smoothness 

of trajectories. 

 

Each block of the experiment was composed of 96 forth and back reaching movements 

(48 forth and 48 back). All subjects exploded most of the targets after two or three blocks 

training. Movements were performed in two different dynamics environments. One, 

termed the “null field”, is the normal condition in which the torque motors do not create 



any forces; so in the null field the subjects encounter only the inertial dynamics of the 

manipulandum. In the second environments, torque motors produce an additional force as 

described by the equation: 

 

xBFM �
�

=  

 

where MF
�

 is the force produced at the end of effector by the robot’s motor, x� is the 

instantaneous velocity vector of the handle or hand in the robot frame which was 

obtained online at Hz200 sample rate, and B is a viscosity matrix. Generally, in the first 

environment of the null field, viscosity matrix B equals [ ] -1m sec N 00;00 . In the 

second environment of force field, B  is not zero, equals for example 

[ ] -1m sec N 013;130 − .  This force field exerted a force by the robot handle 

proportional in strength to the instantaneous speed of the hand, in the direction 

perpendicular to the instantaneous velocity vector. Choosing different parameters for 

B will design different force fields.  

 

3.2.2 Experiment Procedures  
 

Experiment 1. Movements in the null field. The subject are initially trained to make 

reaching movements with the robotic manipulandum for 2 or 3 blocks of 96 movements 

each in the null field since the robot does not produce any active force on the hand. 

Subjects were required to explode targets as many as possible. This is to train the subjects 

thoroughly with the experimental paradigm, the visuomotor transformation from the 

vertical plane visual coordinates to the horizontal plane hand coordinates, and the passive 

dynamics of the robot manipulandum. A typical movement is shown in Fig. 3.2. It has 

been shown previously (Flash and Hogan, 1985) that human plan reaching movements in 

order to follow a minimum jerk trajectory. The results here are consistent with the 

previous findings. The minimum jerk trajectory seems to present the desired behavior for 

subjects when making reaching movements. In other words, it is their kinematic plan for 

moving from one point to another. After the training, subjects will perform constantly 



and explode most of the targets. We assume that the internal model was adapted to the 

dynamic environment. Now a small, smooth and bell-shaped perturbation was given from 

100 msec to approximately 200 msec into the movement. The frequency of 

perturbations was approximately one out of three or four movements.  Each block 

consisted of 23 randomly selected perturbing directions. Three blocks of 96 movements 

each were used in the experiments for a single perturbing magnitude. After 27 blocks, we 

had perturbed movements with 9 different perturbing magnitudes and 23 directions. 

Movements with the same perturbing direction and magnitude were averaged for future 

computation and estimation. The typical perturbed movement with one kick magnitude is 

shown in Fig. 3.4. 
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Figure A is the shape of perturbing 
force with the duration around 100 
msec. Human arm is perturbed 100 
msec after the beginning of movement. 
Movements are perturbed in 23 
equally spaced directions as shown 
in Figure B.
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Figure 3.3: Shape of the perturbation A and All perturbing directions B. Each 
perturbation with the same kick magnitude and kick direction is repeated 3 times and data 
with the same kick was averaged. 
 

Experiment 2. All subjects performed movements in a consistently applied viscous force 

field. After the initial training and perturbation in the null field, the robot is programmed 

to generate active forces on the hand of the subject as the subject performed reaching 



movements. The forces, produced by the robot and indicated by the vector MF
�

, simulate 

a function of the velocity of the hand ,xBFM �
�

=  where x�  was the hand velocity vector, 

and B  was a constant matrix respresenting viscosity of the imposed environment in 

subject Cartesian coordinates, we chose B  to be: 
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This alters the dynamics of the environment, which is quite unfamiliar with the usual 

natural environments. Subjects were also required to explode targets as many as possible. 

Subjects’ training was divided into sets of 96 movements each in novel dynamic 

environments. There is an initial deviation from the straight line desired path as the force 

fields pushes the hand to the left when the subject move from the center to the target 

above the center, followed by a quick corrective movement to the target. As subjects 

trains in the force field the performance shows a gradual improvement until it converge 

back to the minimum trajectory and remained nearly unchanged compared with unloaded 

trials (in the null field). Fig 3.3 show one of the typical movement after adaptation and 

one can see that the hand paths are almost a straight line to the target with smooth bell 

shaped speed profile. Having completed the adaptation phase of the environment, the 

subject’s arm movement was perturbed. The same perturbation as in the null field was 

added to the force field and was imposed on the hand from the robot manipulandum. The 

smaller kick magnitude was chosen here so the perturbed trajectories in the force field 

were in the same working space and easier to compare with the trajectories in the null 

field. The perturbation was applied from 100 msec to 200 msec into the movement. One 

out of three or four movements was perturbed. 23 randomly selected perturbing 

directions in each block).  We did two different methods here in the force field. For the 

first 3 blocks, after the perturbing force the curl force field was turned off and the subject 

came back to the target unloaded; For the second 3 blocks, the force fields were still there 

after the perturbing force and the subject came back to the target loaded. Recorded data 

was also averaged for the same perturbing direction and magnitude.  



 
 

3.3 Data Acquisition and Preprocessing 
 

Subjects move the robot handle from a starting point to a target at 10 cm in upward 

direction with a movement time of 0.5 s. We consider two conditions. First, movements 

in a null field, i.e., the subject’s arm is unloaded. Second, movements in a curl force field 

,xBFM �
�

=  with the field described by sec/mN  
013

130






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=B . A two-degree-of-freedom 

model of the kinematic linkage of the human arm was used to analyze the data (See fig 

3.1). This model include elbow and shoulder joint rotations. The motion of the human 

hand could be descried in two Cartesian coordinates: the subject’s frame hO  and the 

robot frame rO . The origin of the subject’s frame hO  was the center of rotation of the 

subject’s shoulder, whereas the origin of the robot frame rO  was the intersection of the 

rotation axis of the motors with the horizontal plane. The X  and Y  axes of the two 

systems where parallel to each other but were pointing in opposite directions. The 

subject’s X  axis was lying in the frontal plane passing through the centers of rotation of 

both shoulders. The transform from robot coordinates to subject coordinates is then given 

by 

 

0Xxx rh −=  

0Yyy rh −=  

 

where 0X  and 0Y  are the coordinates of the robot origin in the subject’s frame; hx  and 

hy  are the coordinates of a point (the manipulandum) in the subject’s frame; and rx  and 

ry  are the coordinates of the same point in the robot frame. The inverse transform from 

subject coordinates to human coordinates is straightforward. The transformation of 

velocity, acceleration and force from one frame to the other are just inversing direction of 

these vectors and keep the magnitudes same.  

 



The rotation of the human arm was described in the subject joint coordinates with the 

origin hO . 






=
2

1

q

q
q , where 1q is shoulder angle and 2q  is elbow angle. Here the relative 

joint coordinates were used considering the configuration feature of the human arm. The 

kinematics of the human arm refer to the configuration relationships between joint 

positions and hand positions and the transformation between these two systems were 

introduced in Chapter 2 in detail. The transformation from interaction force acting on the 

human hand in the subject Cartesian coordinates to the rotational torque acting on the 

joints in the subject joint coordinates is given by  
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The inverse transformation from torques to forces is given by 
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where xF  and yF  are the components of the corresponding force at the handle taken in 

the subject Cartesian coordinates. 1q  is shoulder angle and 2q  is elbow angle in the 

subject joint coordinates. J is the Jacobian of joint to Cartesian coordinate transform.  

 

We sampled hand position, velocity, acceleration and interaction force on the hand at 5 

msec intervals as the subject reached to a target at a distance of 10 cm. The hand 

kinematic information was recorded online in the robot Cartesian coordinates by ++C  

software at the sample rate Hz 200 . Data was collected in blocks of 96 trials each and 



aligned using velocity threshold at the onset of movement. In order to reduce the effect of 

small hand tremors or unintentional movements, the perturbed paths were averaged for 

the same condition (kick magnitude, direction and dynamic force fields). We represent 

each trajectory as a time series of vectors for position, velocity, acceleration and 

interaction force on the hand. Raw data was converted into subject Cartesian coordinates 

and subject joint coordinates by Matlab  offline for future processing.  Typical hand 

trajectories from the center of the monitor to the target 10 cm above it both in the null 

field and force field were plotted in the following figures. (Figure 3.3 and Figure 3.4). 

 

 

 

 

 

 

0.1 0 0.1
0.05

0

0.05

0.1

0.15

0 0.2 0.4
0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4
2

1

0

1

2

3

0.1 0 0.1
0.05

0

0.05

0.1

0.15

0 0.2 0.4
0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4
3

2

1

0

1

2

3

M
ov

em
en

t i
n 

N
ul

l F
ie

ld
M

ov
em

en
t i

n 
F

or
ce

 F
ie

ld

Hand path Hand Velcocity [m/s] Hand Accleration [m/s^2]

X [m]

Y
 [m

]

X [m]

Y
 [m

]

Time [s] Time [s]

Time [s] Time [s]  
 



Figure 3.4 Typical hand path, velocity and acceleration in the subject Cartesian 
coordinates of movements in the late training period. Top row is movements in the null 
field. Bottom row is movements in the force field with the viscosity matrix B  equals to 
[ ] -1m secN  013;130 − . Left, Hand path of a typical subject in his movements toward a 
target. Middle and Right are hand velocity and hand acceleration respectively. Units for 
x-axis is sec and for y-axis is m  hand path, m/s  for hand velocity and m/s^2  for hand 
acceleration. 
 

 

 

0.08 0.06 0.04 0.02 0 0.02 0.04 0.06

0

0.02

0.04

0.06

0.08

0.1

0.12

Perturbed Trajectory in the Null field and Force Field

X (m)

Y
 (

m
)

 

 
Figure 3.5: Perturbed trajectories in the null field (black) and perturbed trajectories in the 
force field (gray). Trajectories are averaged over 3 individual trials in 23 different 
perturbing directions. Force field trajectories are the data with the force field on after the 
perturbing force. 
 



The recorded position and velocity of the human arm movements were noise free and 

there is no time delay for the sample rate Hz 200 . But the measurements of accelerometer 

and force traducer were noisier compared to position and velocity. sec 4 m  time delay for 

the measurement of interaction force was also observed. We used the Savitsky-Golay 

smoothing technique to delete the noise in the raw data. The order of the filter (the 

highest polynomial power used in the fit) we used here is 3  and half-width of the filter is 

]44[  (Half-width is given in the form [NL, NR ], where NL and NR are the number of 

points to the right and left of the point will be filtered. Savitsky-Golay filter can also be 

used to compute the derivatives. We can compute acceleration by filtering velocity and 

compared it with the measured acceleration. This filter added no time delay to the filtered 

data. Spikes were also observed in the raw data. Spikes were removed simply by 

replacing them with the average of the two points to the right and left. 
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Figure 3.6: Comparing Savitsky-Golay (order is 3, half-width is ]44[ ) filtered data 
(gray) and raw data (black) of hand acceleration and interaction force acting on the 
human hand in subject’s Cartesian coordinate frame.  
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Figure 3.7: Comparing computed data (gray) and measured data (black) of human joint 
velocity and acceleration. The velocity and acceleration in gray were computed using 
Savitsky-Golay filter (order is 3, half-width is ]44[ ) from raw position and velocity 
respectively. The velocity and acceleration in black were raw data from measurements of 
sensor and accelerometer. 
 

3.4 Data analysis: Formation of the Internal Model 

 
The experimental results from fig. 3.2. establish the learning of the force field as the 

subjects trained over time. It has been proposed that this process of learning occurs by 

adaptation of internal models that predict the dynamics of the force field (Shadmehr and 

Mussa-Ivaldi, 1994). After-effect movements provide evidence in support of this theory. 



 

In the absence of external force field, the subjects’ hand trajectories displayed 

approximately straight paths and smooth, bell shaped velocity profiles (Fig. 3.6). 

However, when the robot manipulandum generated velocity-dependent forces that 

interfered with the execution of the reaching movements, the hand trajectories were 

distorted. With training, movement error (integral of perpendicular velocity, that is, 

displacement from a straight line) gradually decreases, and the subjects’ distorted hand 

trajectories converged to the trajectories observed before the application of the force 

field. This convergence was gradually but monotonic and consistent with an adaptive 

process whose goal was to compensate for the forces imposed by the external field and 

return the hand’s trajectory to the path produced in the null field.   

 

Subjects’ training was divided into sets of 96 movements. Each two sets were followed 

by a 3-minute rest period. We gathered quantitative evidence motor learning by recording 

the path and the velocity of each subject’s movements and by computing a correlation 

coefficient between the velocity of an ideal, straight trajectory and the velocity of the 

actual trajectories. The correlation coefficients allowed us to evaluate whether the 

internal model has adapted to the new dynamic environment.  

 

In the experiments described here, a key feature of the task to which the human subjects 

were exposed involved a change in the mechanical environment with which their hand 

interacted. Because of this change, the neural representation of the arm would have to 

develop a new model to deal with the new dynamics of the environment. In this thesis, 

we present psychophysical evidence for the formation of this new internal model and we 

described the control force and torque changes observed by applying perturbations as the 

new internal model was formed (see figure 3.4). 

 
 
 
 



3.5 Estimating Inertial Model of the Human Arm 
 
As described above, the model for the two-link human arm dynamics on the horizontal 

plane  is, 

 

)()(),,(),,( tFqJqqMqqq ext
T+=Ψ µ����  

 

Our goal is trying to quantify the changes of descending commands ),,( µqqM � , 

represented as control force or torque, after the subjects adapted to the novel dynamic 

field. In order to get ),,( µqqM � , we measure the interaction acting on the hand )(tFext , 

the upper and lower arm lengths of the subject to compute )(qJ T , and kinematic 

information qqq ���,,  for all the movements for ),,( qqq ���Ψ . One more thing, we need to 

estimate the inertial model of the human arm ),,( qqq ���Ψ . 

 

We described the theory derivation of human arm inertial model in Chapter 2. Here we 

explained how we design the experiment to estimate this intertial model. We know that 

because the three inertial parameters, 321  and  , aaa  for ),,( qqq ���Ψ , are independent of 

posture and movement, their values can be fixed in any posture for each subject. This 

reduces estimation errors caused by partially correlated data under some conditions. To 

measure the inertial parameters, we use the same experimental apparatus and protocol as 

explained in 2.2. A small box was displayed on the center of the computer monitor 

representing the target. The cursor on the same monitor represented hand position of the 

human arm. First we asked the subject to move his/her hand to the target (the small box 

on the center of monitor) by moving the cursor on top of the target. Right-handed 

subjects sat straight in front of the monitor grasping the handle, with the right arm 

supported by a sling. Then we shake subject’s arm by grasping and shaking the robot 

arm. We asked subjects relax his arm when we shake his arm but keep their wrists stiff. 

The cursor and target on the monitor help us not to move the hand too far away from the 

target, the original position of right hand. Since the arm was shaken in a small area, we 



assumed that muscle stiffness and viscosity )22( ×  matrix  K  and B  remained constant 

during the shaking experiment.  

 

As explained on 2.2 and 2.3, the arm dynamics on the horizontal plane could be modeled 

by the following second-order nonlinear differential equation, 

 

x
T FJqqMqqq +=Ψ ),,(),,( µ����  

 

Here, qqq ���  and ,  are the relative joint position, velocity and acceleration in the subject 

joint coordinates. [ 






=
2

1

q

q
q , where 1q  is shoulder angle and 2q  is elbow angle. (.)Ψ  

denotes a two-link arm dynamics. M  is the joint torque generated by the muscles and it 

can be represented as a function of angular position, velocity and motor command µ , 

descending from the supraspinal central nervous system (CNS).  J  is the Jacobian for 

hand position and joint angle transform, and xF  is the external dynamic interaction force 

on the hand. From Chapter 2, we knew that if we assume the arm to be rigid body two-

link system, we have 
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H  and C  are the inertia and coriolis matrices of the arm. 
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where  

2
12

2
1111 lmlmia cc ++=  
2
2222 cc lmia +=  

2123 cllma = .   

 
 We represent muscle stiffness and viscosity matrix )22( ×  K  and B  such as:  

 

Stiffness: 







=≡−

2221

1211

0
kk

kk
K

dq

dM

q

 

Viscosity: 



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


=≡−
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bb

bb
B

dq
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So, we have 

 

00
),,( qq qBdKdqqqM �� −−≅µ  

 

where qdqdqqdq qq �� =−=
00

 and 0  

 

 

   x
T

q FJqBdqqKqqq +−−−=Ψ
0

)(),,( 0 ����  

 

We suppose that K  and B are constant for postural maintenance control. qqq ���,,  and extτ  

are measured where 0,0),0( 000 === qqqq ��� . To fix the inertial parameters, we have 

quantified all these parameters 2221121122211211321 ,,,,,,,, , , bbbbkkkkaaa  using data from 

different trials. We chose the inertia parameters that are nearly constant among different 

trials.  
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Figure 3.8: The comparison between inertia model output and the measured data for 
subject A, B and C.  
 
 
Table 3.1. The inertial parameters estimated for each subject 



Subject )sm/(rad/ N a 2
1   )sm/(rad/ N a 2

2  )sm/(rad/ N a 2
3  

A 0.2347 ± 0.0034 0.0990 ± 0.0014 0.0730 ± 0.0014 
B 0.2936 ± 0.0041 0.0788 ± 0.0009 0.0882 ± 0.0012 
C 0.4296 ± 0.0081 0.1433 ± 0.0017 0.1323 ± 0.0010 

 
Table 3.2. The average of absolute fitting error and average of absolute measured torque 
for each subject in Figure 3.8. 
Subject Average Abs Err [Nm]/ Average Abs 

Torque [Nm]  (Shoulder) 
Average Abs Err [Nm]/ Average Abs 
Torque [Nm] (Elbow) 

A 0.7000/2.7416 0.2803/1.0249 
B 0.6737/4.3433 0.3128/1.4544 
C 0.8992/5.0522 0.4028/1.8062 

 
 
Model validation: The measured values of stiffness and viscosity parameters 

2221121122211211 ,,,,,,, bbbbkkkk  for one subject is not necessary same across different trials. 
It depends on how subject relaxes his/her arm during each trial.  Impedance of human 
arm does have different value when the arm is posed in different state (position and 
velocity, which is the property of human arm muscle). So when we use the robot to shake 
subject’s arm in, we keeping the arm in a small working space. In this condition, we 
assume that the value of stiffness and viscosity does not change during shaking. This is 
the main reason that the modeled dynamic torque does not perfectly fit the measured 
torque. The inertia parameters should be constant across different trials. To modify the 
inertia model, for example, we measure the inertia parameters for subject A in 3 trials, the 
inertia value we have for each trial is 
 
Table 3.3: The inertial parameters of subject A in three different trials 
Subject A )sm/(rad/ N a 2

1   )sm/(rad/ N a 2
2  )sm/(rad/ N a 2

3  

Trial 1 0.2310     0.1003     0.0698     
Trial 2 0.2354     0.0992     0.0703     
Trial 3 0.2376 0.0976 0.0789 

 
One can see that the inertia values we measured across different trials are very stable, 
which testify that the inertial model we build for human arm can perfectly predict the 
inertia torque during the arm movements. 

 

3.6 Predicting the Un-perturbed Trajectory 
 

When subjects learned the new dynamic environment and internal model has adapted to 

the force field, small force perturbations of brief periods (about s 11.0 ), with randomly 

selected perturbing directions, were given in one out of two or three movements. The 



subject was also instructed to move his or her hand in as relaxed a way as possible and 

not to intervene voluntarily (not to correct his or her movements even if the target was 

missed because of the perturbation). Trajectories are selected based on the recorded data 

before the perturbation is given. Only the beginning trajectories (part of trajectories 

before the perturbations) close to the normal sample trajectories were used for data 

analysis. From Chapter 3, we described that when there was no perturbation, the hand 

path followed a desired trajectory dq  during reaching movements. When movements 

were perturbed, it is deviated from the desired path dq  by q∆ . The perturbed resulting 

trajectory was qqq ∆+= d . We need to predict the path that the human arm system 

would follow if there were no perturbations based on the data we measured q and the 

sample data without perturbations recorded before giving perturbations for the same 

subject.   

 

For easy understanding the movement prediction method, a row vector was constructed 

for each movement and was organized as a row for the data matrix. So we have a data 

matrix with the matrix with the size equal to number of movements by duration of each 

movement for position, velocity, acceleration and interaction force. We call this matrix 

S . This matrix S  can also be expressed by catenation of two small matrices 21  , SS .  

 

][ 21 SSS =  

 

 1S is all the unperturbed movements with the time interval from the beginning to 

perturbations appear. 2 S  is all the unperturbed movements with the interval from 

perturbations appear to the end of movements. The goal of our prediction is given a 

perturbed trajectory q and the time point when this movement is perturbed )time_prtb( . 

Vector q can also be expressed by catenation of two small vectors 21  , qq  by the same 

definition when using 21  , SS to describe S .  Our goal is to estimate ][ 21
d dd qqq =  for 

this particular q with the known information  1q and sample data matrix S . Two methods 

of prediction were used and compared here.  



Note: 11
dqq = . 

 

3.4.1 Methods 1 
 

Use all unperturbed sample movements as bases for prediction. The idea is that use all the 

raw data of movements as the base functions to predict the unknown movements.  

 

1
1

1 Skqd ×=  

 

Assume if we know 2
dq , it can be expressed by 2

1
2 Skqd ×= . Cancel 1k , we have 

 

   21112 ][ SSqq dd
−=  

 

3.4.2 Method 2 
 

The idea here is that instead of using the raw data of movements as the base functions, we 

use the principal components of the raw data as the base functions to predict the unknown 

movements. PCA  is used to analyze the variability in trajectory shape. To compute the 

principle components, the mean vector is subtracted from each of a set of M  movement 

vectors jm
�

, and the covariance matrix is formed: 

 

T
j

M

j
jmmR
��∑

=

=
1

 

 

The eigenvector ic
�

 (principle components) are then calculated using Matlab (version 5.3, 

Mathworks). Any movement vector among M  movement vectors jm
�

 can be exactly 

reconstructed as a superposition of the full set of principle components ic
�

 according to: 
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i
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where N is the number of principle components. N equals the row dimension of the data 

matrix which is used to calculate  the principle components. If the movements are 

approximated with a smaller number of components Nn < , then we can write: 

 

∑
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≈
n

i
iicam

1

��
 

 

To decide what is the number of principle components n  should be used to predict the 

movements. All sample raw data was divided into two data sets and two data matrix was 

constructed. One was used as sample data based on which unknown movements were 

predicted and the other was used as the test data. The test data was predicted using the 

following method with different number of components and prediction errors were 

computed. Using different number of components would have different errors though the 

difference was not so big. The number of components with the smallest error was saved 

for the real prediction. 

 

Legend: 

 

pcaQ , pcaS :  Matrix for principal components of raw data matrices S  and Q repectively 

meanmean QS , : Mean for raw data matrices S and Q  respectively 

 

1
1

1
pcaSKS ×=   1

1
1 ˆ

pcaQKQ ×=  

2
2

2
pcaSKS ×=  2

2
2 ˆ

pcaQKQ ×=  

 

Assume that there exists the following relation for 2121
ˆ  ˆ,, KandKKK , 

 

CKK ×= 12   CKK ×= 12
ˆˆ  



 

From above equations we have, 

 

221222111111112  )])([())(])([( meanpcapcameanmeanpcapcameandd SSSSSSSSSQQQ +−−−= −−−  
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Figure 3.9: Sample results of trajectory prediction for 3 typical subjects. Black solid line: 
predicted trajectory. Gray dash line: measured trajectory. 
 

Model validation: We have measured 264 unperturbed movements for each subject. The 

beginning of movements is decided when hand velocity is equal or bigger that 0.03 

m/sec. We also record the data 0.1 sec before the beginning of movements. We index this 

data with the time from –0.1 sec to 0 sec. We use the movement information from –0.1 

sec to 0.1 sec to predict the information afterwards. We divide the recorded 264 

movements into three sets A (132 movements), B (64 movements) and C (64 

movements). We use set A as the base data for prediction. Our principal component 

analysis models are trained on B and then used to predict movements in C to for model 

validation. 
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Figure 3.10: Average of absolute error on top of average of absolute measured value for 
4 time intervals after perturbations for three subjects A, B and C. Interval 1: [0.1 0.2] 
sec, Interval 2: [0.2 0.3] sec, Interval 3: [0.3 0.4] sec and Interval 4: [0.4 0.5] sec. 
Perturbations are about 0.1 sec long and are imposed on the arm 0.1 sec after movements 
begin. 
 
One can see from Figure 3.10 that the angle, velocity, acceleration and interaction force 
on the hand can be predicted quite well at least until 300 msec after the beginning of 
perturbations. Actually, we are interested in the change of the angle, velocity, and 
acceleration and interaction force caused by perturbations compared to the data if 
movements were not perturbed. So if for some perturbed movements we can not predict 
the unperturbed ones well, the predication errors are still acceptable compared to the 
difference caused by perturbations.   
 



 

 
 
 

Chapter 4 

 

Data Analysis and Results 
 
 

4.1 Introduction 
 

The experimental results from the last chapter, the human motor learning of novel 

dynamic force fields, indicates that human subject can adapt their internal models to 

predict the dynamics of the force field (Shadmehr and Mussa-Ivaldi, 1994). While there 

is no experimental evidence for this idea in the central nervous system, substantial 

evidence indicates that learning the control of arm movements involves formation of an 

internal model. By observing the behavior of “after-effects” after the force field was 

removed, investigators provided evidence in support of this theory. Internal models have 

been divided into two varieties: forward models and inverse models. The computational 

nature of such internal models, whether an inverse model or a combination of both 

forward inverse models, was examined by simulation (Bhushan and Shadmehr, 1999). 

Though forward model alone is effective for stable feedback control of movement, it is 

not able to exactly produce the desired trajectory. The reason for this inability is that 

dynamics of the plant are completely ignored in the controller, and feedback gains are not 

infinitely high. Remarkable similarities in instability and near path-discontinuities in the 

kinematics of arm movements between simulations and human behavior were observed.   

These results suggest that learning control of novel dynamics is accomplished with an 

adaptive forward model of the system. By measuring the neural activation to muscles, 

represented by force or torque, we tried to find more evidence for the existence of 



forward models in the human motor controller and its learning and adaptation to the 

novel dynamic environments. 

 

4.2 Mathematical Modeling of Human Motor Control  
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Figure 4.1: Block diagram illustrating the current understanding of the human motor 
control structure with both feedforward and feedback control. A control system that 
provides feedback control with the use of a forward and an inverse model. 
 
The purpose of the mathematical modeling was to describe the concept and function of 

internal models and to understand how the adaptive controller learns an internal model of 

the force field produced by the robot. The adaptive controller was modeled to reasonably 

estimate the biomechanical behavior of the human arm. We built on ideas introduced in 

our previous work (Bhushan and Shadmehr, 1999).  Figure 4.1 shows the diagram for the 

computing structure of the human motor controller.  

 

The control system represents the arm’s dynamics in the subject’s joint coordinates.  The 

variable )(tq  represents a point in configuration space (e.g., an array of joint angles).  

 )(tq�  and )(tq��  represent its first and second time derivatives respectively. )(tq ,  )(tq� and 



)(tq��  are joint trajectory, velocity and acceleration vector respectively ( 






=
)(

)(
)(

2

1

tq

tq
tq , 

where )(1 tq  is shoulder angle and )(2 tq  is elbow angle). In figure 4.1, the box labeled 

“Inverse Dynamics Model” is a feedforward adaptive controller. Adaptation to novel 

external dynamics occurs through learning of a new inverse model of the altered external 

environment. When the inverse model is an exact inverse of the forward plant dynamics, 

given the task of point-to-point reaching movements the arm can exactly track the desired 

trajectory dq  (input of the inverse model). We assume the desired trajectory, dq , is a 

minimum jerk trajectory of the hand to the target  (Flash and Hogan, 1985) with a 

movement period of 0.5 sec. We represent the part of neural command, output of the 

inverse model iµ  as 

 

),,(ˆ 1
dddpi qqqf ���−=µ           (4.1) 

 

where 1ˆ −
pf  is the estimated inverse of the forward plant dynamics. It maps the desired 

position dq , velocity dq�  and acceleration dq��  of joint angle into descending neural 

commands iµ .  When the inverse model perfect models the dynamics of the arm, 

1ˆ 1 =−
pp ff , and there is exact tracking of the desired trajectory. However, when the 

inverse model is not accurate, the correct torque values are not generated which in turn 

causes deviation from the desired trajectory dq . The box labeled “Spinal Feedback” 

corrects for errors between the desired and the actual muscle state q , by producing a 

corrective neural activation sµ  based on a linear feedback controller with constants 

sK and sB . If the gain for a zero-delay feedback loop is infinity, then it can be easily 

shown that the output of the two-joint system is equal to the set-point at all times. 

However, the gain of the spinal reflex is limited by 30=∆  msec plus muscle activation 

delay in the feedback loop. The equation that relates these variables is: 

 

   ))(ˆ())(ˆ( ∆−−+∆−−= tqqBtqqK sss ��µ                                  (4.2) 



 

The “Forward Dynamics Model” box provides this control architecture with feedback 

control of arm movements in addition to forward control. The feedback signal corrects 

for unmodeled disturbances to the system. Delays in the feedback cause instability. The 

forward model also estimates the state of the arm at the current time, given the delayed 

state at some earlier time ∆−t and a history of descending motor command )(tiµ  from 

∆−t  up to the current time t  ( ∆  is the time delay in the long-loop feedback control). 

We forward model design is as follows:   
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where  q
�

and q�̂  the output of the forward model, q
�

 and q�
�

 are intermediate variables 

used by the forward model. The above equations represent the interactive solution of a 

non-linear differential equation pf̂  at time t, given initial state of the system )( ∆−tq  and  

)( ∆−tq�  and the input iµ  during the time interval ∆−t  to t . 0t  is the discretized 

interation time interval which should be infinitely small. We represent the neural 

command which is from the feedback of forward model by fµ , 

 

)ˆ()ˆ( dfdff qqBqqK �� −+−=µ                              (4.3) 

 



where q̂  is estimated current state and fK  and fB  are the long loop gain. This controller 

requires computation of muscle state through the forward model and then uses a linear 

controller to vary the neural activation to the muscle based on the error. The net 

activation µ  going to the plant muscles is the sum of the activations from the brain 

sfi µµ + and activation from the spinal reflex sµ .  

 

sfi tt µτµτµµ +−+−= )()(         (4.4) 

 

iµ  and fµ is limited by  60=τ sec delay. The motor neural command µ , which is sent 

to from supraspinal central nervous system (CNS) to activate human muscles, relies on 

both forward and inverse model. These neural signals are then programmed to produce 

control force or torque, which allow for exact tracking of the desired trajectory dq . To 

quantify µ , we can examine the control force or torque during arm movements, which 

are generated by the neural signal µ . We models the dynamics of the human motor 

control system coupled (in parallel) with its environment: 

 

)(),,(),,( qEqqMqqq ����� +=Ψ µ         (4.5) 

 

where ),,( qqq ���Ψ , a time-invariant component,  denotes a two-link arm dynamics. )(qE �  

denotes joint torque which depend on dynamics of the environment. ),,( µqqM �  

represents joint torque generated by the motor neural commands, was an adaptive 

controller implemented by the motor system of the subject. It relies on both the inverse 

and forward model controls. Considering the length-tension and velocity-tension 

relationships of muscle force, the generated torque, ),,( µqqM � , can be represented as a 

function of joint trajectory, velocity, and motor command, µ , descending from the CNS. 

 

So the neural activation, output of human motor controller, the control torque, can be 

represented by joint torque in joint coordinates as: 

 



)(),,(),,( qEqqqqqM ����� −Ψ=µ         (4.6) 

 

Note: We model the human arm as a two joint revolute arm. To determine control force 

which is represented by FM , I multiplied the control torque ),,( µqqM �  around joints by 

1)( −qJ T , the inverse of transposed subject’s hand Jacobian.  

 

))(),,(()( 1 qEqqqqJM T
F ���� −Ψ= −  

 

The torque represented by Ψ  is itself a sum of inertial, coriolis/centripetal, and friction 

forces, which is the inertia model of human arm. For movements in the null field, 

0)( =qE � , we know that the torque required to move along the desired trajectory 

expressed in terms of joint angle, is given by: 

 

dddddd qqqCqqHT ���� ),()( +=          (4.7) 

 

where H  and C  were inertial and coriolis/centripetal matrix functions. With respect to 

the function ),,( µqqM � , simulations have previously suggested a reasonable lumped 

model of the subject’s biomechanical motor controller in the case of point-to-point 

movements is as follows (Shadmehr and Brashers-Krug, 1997): 

))(ˆ())(ˆ( ∆−−+∆−−= tqqBtqqK sss ��µ  

 

))(ˆ())(ˆ(        

)()()(),(ˆ)(ˆ

∆−−−∆−−−

−−−−−+=

tqqBtqqK

qqBqqKqEqqqCqqHM

ss

dfdfdddddd

��

����
����

      (4.8) 

 

where Ĥ  and Ĉ , which is the inverse model built  by human motor controller for the 

dynamic of human arm, are the approximation of H  and C . q
�

and q�̂  are the output of 

the forward model, the estimate of current state. dq  is the reference trajectory planned by 

the motor control system of the subject. )( ∆−tq  and )( ∆−tq�  are delayed sensory 



feedback. fK  and fB  are the long loop gain and sK  and sB  are the short loop gain. This 

controller relies on an inverse model of dynamics of the subject’s arm, represented by 

ddddd qqqCqqH ���� ),(ˆ)(ˆ + . ddddd qqqCqqH ���� ),(ˆ)(ˆ +  is the feedforward component of 

controller. It maps the desired position dq , velocity dq�  and acceleration dq��  of the arm 

joint, into descending neural commands to generate the required torque or force to move 

the arm. )()( dd qqBqqK �� −+−  is the feedback component of controller. K  and B are 

linear estimates of subject’s joint stiffness and viscosity. The dynamic environment of the 

force field represented by )( dqE . )( dqE  equals zero when movements are performed in 

the null field. 

 

The purpose of the computational modeling was to predict the change in the pattern of 

control torques or forces M  that should result if adaptive control system learned to 

completely compensate for the dynamics of the force field. M is a sum of the desired 

torque (feedforward control) and corrective terms (feedback control). The corrective 

terms are the converging control force about the desired state of the system at time. They 

have zero forces only when the actual paths exactly track the desired paths. We assume 

that the short-loop feedback plays no role in the learning task of the human motor control. 

So the change in the pattern of corrective terms due to learning of the force field will 

mainly attribute to the forward model feedback controller. So by examining the 

corrective terms, we can get some knowledge the existence and characteristics of the 

forward model controller of CNS. 

 

How to isolate the corrective terms (feedback control terms) from the sum of control 

force M  (both feedforward and feedback)? We designed experiment with perturbing 

technique to quantify the control force only attribute to the feedback part of the human 

controller (See chapter 3). The assumption for the perturbed movements is that since the 

direction of perturbing force is randomly selected, it can not be learned by the subject. So 

the desired trajectory remains same for unperturbed and perturbed movements in the 

same force field environment.  

 



When subject adapted to the passive dynamics of the robot manipulandum (in the null 

field), movements are constant and remain nearly unchanged across trials. For normal 

movements in the null field ( 0)( =dqE � ) without perturbation, trajectories exactly track 

the desired trajectory dd qq �, . In other terms, dqq = , dqq �� =  and the corrective terms of 

the controller are zero.  The control force in this situation is represented by 0M : 

 

ddddd qqqCqqHM ���� ),(ˆ)(ˆ
0 +=          (4.9) 

 

For the movements, which are perturbed, and also in the null field, the resulted 

trajectories were deviated from the desired trajectory. We represent the deviation by q∆ . 

Note that dq  remains unchanged when movements are perturbed. We name the resulting 

control force pM .  

qBqKqqqCqqHM dddddp ����� ∆−∆−+= ),(ˆ)(ˆ                            (4.10) 

 

The difference between pM  and 0M  is represented by M∆ : 

 

qBqKMMqqM pqd
�� ∆−∆−=−=∆∆∆ 0),(      (4.11) 

 

M∆ is evaluated along the desired trajectory by the small deviation of qq �∆∆  and . One 

can see that the control force change ),( qqM
dq �∆∆∆  only attributes to the feedback terms 

of the human motor controller and has no relation with the feedforward terms (inverse 

model) of the controller.  

 

For the learned movements in the force field, we have dqq = , dqq �� = . 0)( ≠dqE � . For 

movements in the force field which are not perturbed, we represent the control force 

during movements as 0

~
M , 

 

)(),(ˆ)(
~

0 dddddd qEqqqCqqHM �����
�

−+=                               (4.12)     



 

CH
~

 and 
~

 are the inertia model of human arm in the force field. For movements, which 

are perturbed in the force field, we represent the control force during movements as pM
~

, 

 

)(
~

)(
~

)(),(ˆ)(ˆ~
ddddddddp qqBqqKqEqqqCqqHM ������ −−−−−+=    (4.13) 

 

(13)-(12), we have the control force change caused by perturbations in the force field, 

 

qBqKMMqqM pqd
�� ∆−∆−=−=∆∆∆ ~~~~

)~,~(
~

0                             (4.14) 

 

Note: The control force pM∆ , 0M∆  and control force change ),( qqM
dq ∆∆∆  in the null 

field was adapted to pM
~∆ , 0

~
M∆  and )~,~(

~
qqM

dq
�∆∆∆ , respectively after the learning of 

force field. However, after subjects learned the force field, the hand trajectory in the force 

field converged to a path very similar to those observed in the null field. So we assume 

that the desired trajectories dq  in both conditions are quite similar since human motor 

controller builds correct internal models for the environments by practice and learning.  

The deviation q~∆  and q�~∆  from the desired trajectory caused by perturbations in the 

force field would be different with the ones ( q∆  and q�∆ ) in the null field since the 

change of dynamic environment. With the learning of novel dynamic environment and 

adaptation of internal model of human motor controller, subjects will use quite different 

stiffness and viscosity strategy to perform the point-to-point movements. By examining 

the control force change, we can extract the part of control force change only due to 

forward model 

4.3 Calculation of Control Force Produced by the Human 
Controller 
 

When movements are perturbed, we recorded the data for )(),(),( tqtqtq ���  and the 

interaction force at the manipulandum ))(),(( tFtF yx . Then the prediction that what the 



movements would be if there were no perturbation was made for these perturbed 

movements. We name these predicted movements unperturbed movements. We have two 

groups of movements. One, perturbed movements described by )(),(),( tqtqtq ���  and the 

other, unperturbed movements described by )(),(),( 000 tqtqtq ��� . I used the structure and 

parameters of the model of the human-robot interaction to estimate the amount of force 

subjects create during movements, which we named control force here. Using estimates 

of the human arm configuration and inertia dynamic parameters, I first transformed 

individual subject’s hand position, velocity and acceleration into the arm joint 

coordinates. From Chapter 3.3, I have discussed that we pre-estimate 3,2,1, =iai , the 

inertial dynamics of the arm of each subject. The joints information q , q�  and q�� were 

transformed into estimated dynamic torque ),,( qqq ���Ψ  using inertial model of the 

subject’s arm. ),,( qqq ���Ψ  was the net torque that moved the human arm (including both 

the torque produced by the subject’s muscles and the interaction torque from the robot 

manipulandum) .  

 

qqqCqqHqqq ������� ),()(),,( +≅Ψ  

 

I then multiplied the interaction force extF  on the hand by )(qJ T , the transposed of the 

subject’s hand Jacobian, to determine the joint torques attributable to the interaction 

force. The interaction force will compensate both the passive dynamics of the robot 

manipulandum and the dynamics of the force field environment. 

 

ext
T

ext FqJt )()( =τ         (4.15) 

 

In the null field, the robot does not produce any active force on the hand. The interaction 

force is the force used to only compensate the passive dynamics of the robot 

manipulandum. In the force field, the robot is programmed to generate active forces on 

the hand while a movement is being made. From the model of two-link human arm 

dynamics on the horizontal plane, the control force is 

 



)(),,(),,( tqqqqqM extτµ −Ψ= ����            (4.16) 

 

)(tFext  denotes the external force acting on the hand from the robot handle. We name 

),,( µqqM �  as control force for easy understanding. J  was the Jacobian matrix 

describing the differential transformation of coordinates from end point to joints. 

 

Now we have the following control force from computation, pM  for perturbed trajectory 

in the null field, 0M  for unperturbed trajectory in the null field, pM
~

 for perturbed 

trajectory in the force field and 0

~
M  unperturbed trajectory in the force field. Note: When 

computing control force for the perturbed trajectory, trajectory information and force 

were measurement data  

 

4.4 Control Force Change Caused by Perturbations 
 

The experiments we describe probed the relative contribution of feedback and “adaptive 

feedback” mechanisms in the generation of planar, voluntary reaching movements by 

examining the change of control torque when the perturbed trajectory q  is deviated by 

q∆  from the desired trajectory 0q . The current hypotheses of motor control provide a 

structure with both inverse and forward model for human arm movement control. It 

predicts that the input of inverse internal model is the desired trajectory, which only 

depends on the movement task and remains the same after perturbation since the 

perturbing direction is randomly selected. If we subtract the unperturbed control torque 

from the perturbed control torque, which we called control toque change here, is only 

related with the forward feedback control part  (long loop and short loop) of the human 

arm motor control system.   

 

When the hand is displaced from an equilibrium trajectory by an external perturbation, a 

force is generated to restore the original position. We developed an experimental method 

to measure and represent the field of elastic forces associated with movement trajectories 



of the hand in the horizontal plane. When subjects conducted constant movements in a 

given direction, torque motors of the robot delivered small perturbations of the hand 

along different directions at a constant time point. We measured the corresponding 

restoring torque or forces ),( qqM
dq �∆∆∆  before the hand finally reached the targets. 

Since the inverse model remained unchanged when there is perturbation in the null field 

environment or force field environment, we assumed that the changes of control torque in 

),( qqM
dq �∆∆∆  the null field or )~,~(

~
qqM

dq
�∆∆∆  in the force field were only due to the 

long loop delay sensory feedback through cortical structures (forward model). Restoring 

torque or forces ),( qqM
dq �∆∆∆  and )~,~(

~
qqM

dq
�∆∆∆  were output of the forward model. 

We tried to quantify the difference between ),( qqM
dq �∆∆∆  and )~,~(

~
qqM

dq
�∆∆∆  and find 

the evidence for the adaptation of the forward model.  

 

Note: From observation, the dq~  in force field is nearly comparable with the dq  in the null 

field. When we try to predict what the path would be if the movements were not 

perturbed, using the sample data dq  in force field or using the sample data dq  in the null 

field did not make much difference. So M∆ is not very sensitive to dq .   

 

After the experiment both in the null field and in the force field, we have two control 

force changes. One is ),( qqM
dq �∆∆∆ , the control torque change in the null field and the 

other is )~,~(
~

qqM
dq

�∆∆∆ , the control toque change in the force field. . We considered a 

%30±  change in inertia of the arm and estimate control force with the varied inertia. We 

found that, the control force change caused by perturbation is not very sensitive to arm 

inertia because the effect of perturbing force is stronger than inertia for change of control 

force between perturbed and unperturbed movements. 
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Figure 4.2: Perturbed control force, unperturbed control force and control force change 
with inaccurate inertial models in the null field. Inertia parameters are increased 10% , 
20% and 30%, respectively(solid green, blue and red) and decreased  10% , 20% and 
30%, respectively(dashed green, blue and red). Solid line: control force and change with 
accurate model.  
 
One can see that the change force is not sensitive to the inertia model. 

 

4.5 Modeling the Control Force Change in the Null Field 
 
By using perturbing techniques and predicting what the movements would be if they are 

not perturbed, we measured the control force change caused by perturbation both in the 

null field ),( qqM
dq �∆∆∆  and in the force field )~,~(

~
qqM

dq
�∆∆∆ . We want to compare 

dqM∆  with 
dqM

~∆  to see what human have learned from the new dynamic environment 

and whether or not the learning is performed through the forward model of human motor 

controller. We know that the control force change is the function of deviation from the 

desired trajectory. Since there is no way to express the functions in mathematical closed 

form, we try to quantify the change of functions (the model of human motor controller) 



by comparing output of these two functions. The problem is that how can we give the 

same input to the two functions to compare the output signal? We solve this problem by 

building the model for ),( qqM
dq �∆∆∆  to compute )~,~( qqM

dq
�∆∆∆ , and then compare 

)~,~( qqM
dq

�∆∆∆  with )~,~(
~

qqM
dq

�∆∆∆ . 

 

Modeling of human data can be done in many different ways. Most of them are not 

explicit mathematical models in closed form, but some useful function approximators 

(FA). Two of the most popular FAs are Neural Networks and Fuzzy Approximators. 

Having in mind repetitiveness of the task with some explicitly defined parameters 

modifying it, we chose not to use either of these two, but one other, nonlinear FA 

particularly suited for parametric modeling. Named Successive Approximations 

(Dordevic et al., 2000) it is essentially a procedure of successive (non-linear) Least 

Squares fitting of fitting coefficients. The model, in the form of an ordered set of 

coefficients, which are function of parameters used in modeling, generalizes well inside 

but also outside of learning domain. The other, very important, property is that these 

models can be addressed randomly, giving the output along some trajectories experienced 

never before.  

 

This approximating procedure is successfully applied in robotics, particularly in 

kinematic redundancy modeling tasks (Dordevic et al., 2000). With only minor changes it 

is applied here. First step was a choice of parameters. According to the task definition, we 

adopted two parameters: kick direction kdp  and kick magnitude kmp .  

 

The typical data acquired from target-reaching experiment with parameterized kick 

direction and kick magnitude are shown on following figures. These data are used for 

subsequent modeling.  
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Figure 4.3: Measured perturbed hand trajectories in subject Cartesian coordinates in the 
null field. Movements were perturbed in 23 angle-equally-spaced directions with the 
same kick magnitude. We also measured the data for other 8 different kick magnitudes all 
of which are used to model the control force change in the null field. B: Perturbed 
trajectories were presented as the time series (top) and velocity-position space (bottom). 
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Figure 4.4: The data used for modeling. Measured control force with perturbation and 
predicted control force if not perturbed for one kick magnitude. Top row: Measured 
control force when movements were perturbed in the null field. We name this force pM . 

Middle row: Predicted control force (What the control force would be if the trajectories 
were not perturbed in the null field). We name this force 0M . Bottom row: Control force 

change 0MM p − . 
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Figure A is the shape of perturbing 
force with the duration around 100 
msec. Human arm is perturbed 100 
msec after the beginning of movement. 
Movements are perturbed in 23 
equally spaced directions as shown 
in Figure B.
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Figure 4.5: Measured control force change with the same kick magnitude in 23 different 
kick directions 0MMM p −=∆  on the top of hand trajectories in the null field caused by 

perturbations. 
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Figure 4.6: Measured control force change with the same kick magnitude in 23 angle-
equally-spaced kick directions for three subjects A, B and C. 
Hand trajectory, hand velocity and control force due to adaptation of human motor 

controller are independently modeled, giving models: ),,( kmkdx pptMod , 

),,( kmkdvx pptMod , ),,( kmkdy pptMod , ),,( kmkdvy pptMod , ),,( kmkdM pptMod
x∆  and 

),,( kmkdM pptMod
y∆ . The model based on these two parameters, enables reproduction of 

hand trajectory, along with force exerted at the handle of manipulandum, for arbitrary 

values of the parameters that belong to the learning domain. Furthermore, random 

addressing of the model (Dordevic et al., 1999) enables addressing of a single point only, 

specified by a set of time instant *t , *
kdp  and *

kmp , which lead to addressing of arbitrary 

trajectory.  

 

Verification of the model is done stepwise. First, we evaluate approximation of time 

histories of hand positions, velocities and forces in the experiment, by keeping 

approximation error defined by normalized mean-squared error within 95% confidence 

limits. A typical trajectory of approximated motion along Ox coordinate is shown on 

Figure 4.8, along with 95% confidence limits. For all other kick directions, the degrees of 



approximating polynomials are chosen with respect to the criteria to tighten confidence 

limits along the change of independent variable. In other words we tried to keep a balance 

between overfiting and underfiting underlaying data. Approximation in time finished for 

all variation of trajectories due to varied kick direction and varied kick magnitude, gives 

three dimensional set of coefficients of approximating polynomials that can be taken as 

functions of kick direction and kick magnitude variables.  

 

Again, we performed least squares fitting with respect to the kick direction variable kdp , 

maintaining the same balance between overfiting and underfiting which will result in 

acceptable confidence limits. Finally, the same is done with respect to the kick magnitude 

variable kmp  (Dordevic et al., 1999). 

 

Finally, we take a whole set of all possible trajectories from the model for kick directions 

as in experiment. By bootstraping, we took trajectories randomly for large number of 

times, and evaluated how each of trajectory correlates to the rest of them. Next six 

box-plots, Figure 4.7. give an information how good models of positions, velocities and 

forces are with respect to the change of kick direction. General conclusion is that 

positions are easiest to approximate, comparing to velocities and forces. Also, the quality 

of the model is a function of kick direction parameter, showing slight decrease of model 

quality within a region of kicks that produces minor motion perpendicular to the target 

direction. Based on this and former evaluation of modeling procedure, we take these 

models as a good basis for further understanding of forward model adaptation during 

motor learning task. 
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Figure 4.7:  Final bootstrap testing of model quality for positions, velocites, and forces. 
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Figure 4.8: Final bootstrap testing of model quality for positions, velocites, and forces. 

 

Having modeling done, we can use it to match arbitrary hand trajectory, assuming that it 

belongs to the state space regions visited by trajectories for modeling. Essentially, 

matching problem is a procedure of finding a nearest neighbor defined by time instant, 

*
kdp  and *

kmp , to the desired point of new trajectory  

 

},,,{
newynewnewxnewnew vyvxT ≡ : 
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Now, for all points of a new trajectory niT i
new ,,1, �= , assuming that we have the same 

number of points for all trajectories used in modeling, the result of matching are two 

vectors *
kdp  and *

kmp . These two vectors simultaneously with time-respective addressing 

of points can be used in addressing the two force models: ),,( kmkdM ppMod τ∆ : 

 

nipptModM i
km

i
kdMnew ,,1),,,( �==∆ ∆  

 

All models are three-dimensional sets of functional coefficients. Each dimension 

corresponds to one parameter, taking time, kick direction, and kick magnitude as 

parameters. Specifically, models of positions and velocities ),,,( vyyvxx  are of the same 

size, taking 11 coefficients for approximation in time, 10 coefficients in approximation in 

kick direction, and 4 coefficients for approximation in kick magnitude. It practically 

means that approximation in time is done with polynomials of 10th degree, 

approximation in kick direction as a variable with polynomials of 9th degree and finally 

approximation in kick magnitude as variable with polynomials of 3rd degree. Slightly 

higher degrees of polynomials are used for force signals modeling. Also, we have 

modeled the force signals with two models, later blended for smoother transition.  

 

The output of models, after addressing by desired values of time instant, kick direction 

and kick magnitude, is a polynomial, different for different signals (positions, velocities 

and forces). For example, model output for x(t) is a polynomial of 10 th degree. 
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Figure 4.9: Models of perturbed hand trajectories in subject Cartesian coordinates in the 
null field. Top row: Modeled perturbed hand paths, which are perturbed in 50 angle-
equally-spaced directions with the same, kick magnitude. Bottom row: same data are 
presented in velocity-position space. 
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Figure 4.10: Modeled control force change with the same kick magnitude in 50 angle-
equally-spaced kick directions. 

4.6 Adaptation of the Control Force Change after Learning the 
Novel Dynamics Environment 
 



Previous simulation indicates that human motor controller where a forward model was 

used in conjunction with an inverse model results in remarkable kinematic similarities to 

the observed human behavior. There is no doubt about motor adaptation within the 

changed mechanical environment. It is pretty straightforward to understand that human 

motor controller adapts the inverse model to predict the changed dynamic environment. 

For the unperturbed normal movements in two quite different dynamic environments, in 

this situation the deviation from the desired trajectories (which are quite similar for 

movements within null field and force filed) is so small that error feedback from forward 

model nearly plays no role in controlling movements, human motor adapts very well to 

both of them. But the stiffness and viscosity of human motor controller, which is adapted 

to one specific dynamic environment always remains same whether or not there is error 

in movements. The problem is that it is hard to see when error is so small. Our goal in 

this thesis is to go one step further. We try to find more evidence of dynamic information 

from arm movements, which supports the theory that human motor controller does use 

forward model to control movements. However, the main question is, whether or not the 

forward model is adapted and how the forward model contributes to the motor learning of 

subjects. 

  

The reasonable lumped model of the subject’s biomechanical motor controller in the case 

of point-to-point movements is as follows: 

 

)()()(),(ˆ)(ˆ dddddddd qqBqqKqEqqqCqqHM ������ −−−−−+=   

 

For normal movements without disturbance from outside environment, subject performs 

so well (deviation from the desired trajectory  dqqq −=∆ and dqqq ��� −=∆  are very 

small) that the error feedback terms, which attribute to forward model and spinal reflex, 

are not quite obvious. By perturbing movements in randomly selected directions, which 

give more deviation from the desired trajectory, we can easily measure the control force 

due to the feedback terms. (Note: Since perturbations cannot be learned, they have no 

effect to human motor controller. In other words, controller and desired trajectory are the 



same for the movement perturbed and unperturbed).  First, we compute the control force 

change 
dqM∆ caused by perturbations in the null field, 

 

qBqKMMqqM pqd
�� ∆−∆−=−=∆∆∆ 0),(  

 

where  pM and 0M  are control force during the perturbed and unperturbed movements in 

the null field respectively. K  and B are linear estimate of subject’s joint stiffness and 

viscosity. One can see 
dqM∆  is the force that only attributes the feedback control box.  In 

Figure 4.4 control force change are plotted as arrows on top of the perturbed trajectories 

in the null field and one can see that the correcting force push the movements come to the 

desired trajectory, which is nearly a straight line upward towards the target. To provide 

the same state input to the forward model, we next build parameterized model for the 

control force change in the null field using all the movements we measured in the null 

field, which are perturbed in 23 directions with 9 different kick magnitudes. We can 

estimate the control force change for an arbitrary movement in the null field with this 

model. 

 

Then, we compute the control force change 
dqM

~∆ caused by perturbations in the force 

field. The torque motors of robot produce an additional force at the handle as described 

by the equation, xBF �
�

= , where x� is the instantaneous velocity vector of the handle and 

[ ] -1m secN  013;130 −=B . 

 

qBqKMMqqM pqd

�� ~~~~~~
)~,~(

~
0 ∆−∆−=−=∆∆∆  
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Figure 4.11: Measured control force change 0

~~
)~,~(

~
MMqqM pqd

−=∆∆∆ �  with the same 

kick magnitude on the top of perturbed hand trajectories in the force field caused by 
perturbations.  
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Figure 4.12: Difference between the control force changes after learning novel dynamic 
force field for three subjects A, B and C. The force difference is plotted by arrows on top 

of the perturbed trajectory qq �~,~  in the force field. 
 



where 0

~
 and 

~
MM p  are control force during the perturbed and unperturbed movements in 

the force field respectively. By adapting K  and B  to K
~

 and B
~

, control force in the 

force field are adapted to predict the new dynamic environment. Using the parameterized 

model build for the null field, we estimate the control force change )~,~( qqM
dq

�∆∆∆  for 

the trajectory qq �~,~  where qqqqqq dd
��� ~~,~~ ∆+=∆+=  are perturbed trajectories in the force 

field. The difference between )~,~(
~

qqM
dq

�∆∆∆  and )~,~( qqM
dq

�∆∆∆  is represented as 

)~,~( qqM
dq

�∆∆δ , 

   

)~,~()~,~(
~

)~,~( qqMqqMqqM
ddd qqq

��� ∆∆∆−∆∆∆=∆∆δ  

 

Figure 4.7 shows )~,~( qqM
dq

�∆∆δ  on top of the perturbed force field trajectories. It is easy 

to see from the force field equation that the effect of the force field is to push your arm to 

the left when arm is moving upward towards the target. Though, the initial responses to 

the unanticipated force field were driven-off-course from the straight line to the left.  

After practice and learning, subject’s hand trajectories became straight and quite similar 

to those observed in the null field (straight line). This adaptive behavior shows that 

subject adjust internal models of motor controller to predict and compensate the external 

force presented in the forces field. One can see from the plotting )~,~( qqM
dq

�∆∆δ  that 

forward model of human motor controller also adapted to the force fields. )~,~( qqM
dq

�∆∆δ  

represents the force generated by the forward model feedback controller, which converge 

the perturbed trajectory back to the desired trajectory.  After practice in the force field, 

forward model knows there is force field always pushing the arm to the left if moving 

upwards. So when movement is disturbed, forward model will always expect the pushing 

left force and generate neural command not only push movements back to the straight 

desired trajectory but also push the arm to the right harder to compensate the expected 

forces. That is what we see from our results. The differences of control force change 

)~,~( qqM
dq

�∆∆δ  for our 3 subjects are pointing to the right due to the adaptation of the 

force field, which supports the theory that learning and adaptation of the new dynamic 



environment are also performed through the forward model of human motor controller. 

Results suggest that the adaptation of the forward model played a dominant role in the 

motor learning of subjects. 

 

Here, we approached the system architecture of the human adaptive motor controller. The 

task that we considered was reaching movements in novel force field. The feature of 

movements we examined here are control force change, which will be only effected if the 

forward model has adapted to a new dynamic environment. We demonstrate that the 

obvious adaptation of control force change is used to compensate for the novel force 

field, as shown in Figure 4.7. This constant compensation of force fields could not be 

accounted for if the supra-spinal controller was only an open loop system composed of an 

inverse model and learning is only via formation of an inverse model.  These 

characteristics point to support the architecture where descending commands were 

influenced by an adaptive forward model in conjunction with an inverse model. The 

accurate prediction of force fields provides the evidence for an adaptive forward model in 

the control of human arm movements in novel dynamic environments.  

 

We next do a control experiment to testify that the control force change does have 

relationship the stiffness or viscosity of the human arm. Subjects performed the same 

movements in the null field with 23 equally spaced kicking directions. We instruct the 

subject to try her/his best to stiff her/his arm but still reach the target with the same time 

as before (500 msec). We measure the control force change in this situation. For these 

stiffed trajectories, we use the model built before to estimate what the control force 

change would be in the relaxed condition (All the movements we measured before this 

control experiment are performed in a natural and relaxed condition).  
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Figure 4.13: Measured control force with the same kick magnitude on the top of 
perturbed hand trajectories change in the stiffed situation caused by perturbations. 
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Force scale in this figure is same as figure 4.10. 

 
Figure 4.14: Difference between the control force changes between the stiffed 
movements and relaxed movements. The force difference is plotted by arrows on top of 
the perturbed trajectory in the stiffed situation.  
Figure 4.11 shows that the change of control force change when subjects stiff their arms 

during the movements. One can see the change of control force change is pointing 



towards the target. This means that increasing stiffness and viscosity while performing 

reaching movements would give more control force change toward the target. This 

support the idea that control force change has strong relations with feedback control 

strategy of human motor control, which is represented by stiffness and viscosity of the 

human arm.  

 



 

 

 
 

Chapter 5 

 

Discussion and Conclusion 
 
 
In this thesis, learning to make point-to-point reaching movements in a curl force field 

was used as a paradigm to explore the system architecture of the human motor adaptive 

controller. The concept of internal model, a system for predicting behavior of the 

controlled movements, is divided into a forward and an inverse model. Simulation results 

show that the forward-inverse model feedback control seems to provide a comprehensive 

framework for study of computational process in the brain and adaptive human motor 

control. By estimating the current state on the basis of delayed information and the 

history neural commands through the forward model, this method provides a stable 

feedback control strategy for a time delayed nonlinear control system. The ability of the 

internal model’s adaptation to the new force field provides an adaptive controller capable 

of learning novel dynamic environment. Simulation results provide a strong support for 

the existence of internal model in the brain by comparing simulated kinematic 

information and real human behavior. Now, in this thesis, an insight of the existence of 

the internal models is gained through measuring the control force, which is generated by 

the neural control signal to active the movement of human arm.  

 

The existence and learning ability of the inverse model in the brain is more 

straightforward than forward model. With practice, the hand trajectories in the force field, 

though grossly distorted during the initial movements, converged to a path very similar to 

that observed in the null field. We assume the kinematic design, the desired movement, is 

independent of dynamical conditions. When subjects perform constant in the force field, 



it means the desired trajectory is nearly same as the resulted trajectory and the error 

feedback control term is negligible in this condition. This suggested that the adaptation of 

the inverse model plays a dominant role in this condition. When we see the control force 

for unperturbed movement in the force field, a lot of control force was generated to 

compensate for the force field. The recovery of performance within changed mechanical 

environment supports the adaptation ability of the inverse model.  I try to ask whether 

forward mode does play a role in the human control system and what happened to the 

forward model during the adaptation of the controller? 

 

During trained unperturbed movements of human arm, it is hard to see the effect of 

forward model. Perturbing will caused more error during the otherwise stable 

movements. This technique gives us a toll to investigate the role of forward model in the 

control and adaptation process. A forward model calculates the forward process of the 

plant. A forward model transforms an efferent copy of descending commands into a 

prediction of the current state, position and velocity of the arm. Then the estimated state 

is compared with the desired state and the error feedback is used to modulate the 

demanding neural signal. Since our work has focused on an forward model of dynamics 

as a role of feedback control, we subtract the control force during the unperturbed 

movement from the control force during the perturbed movement and name it control 

force change (Note: The unperturbed movement we name here is actually the prediction 

for each perturbed movement if the movement was not perturbed). From the control 

architecture we provided in this thesis, the control force change is only due to 

computation result of forward model and spinal reflex feedback. In order to compare the 

control force change in the null field and in the force field in the same state (position and 

velocity), a parameterized model was built in the null field to compute what the control 

force change would be in the state of force field. We subtract the control force change in 

the null field from the control force change in the force field (the two control force are in 

the same state) to see how the control force change with respect the new dynamic 

environment. Results show that control force change is increased in the opposite direction 

of force field. This supports the idea that learning of the novel dynamic environment is 

also via the forward model of human motor controller. With training, the forward model 



can exactly predict the force field in the mechanical environment and adapt to give more 

control force to compensate the force field. Control experiment is also done to support 

that control force change has a strong relation with forward model feedback control. 

Results suggested that the adaptation of the forward also played a dominant role in the 

motor learning of subjects. Further studies on the behavior of humans are necessary to 

determine the role of internal models on the full repertoire of human motor control 

strategy and learning of new task. 
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