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Abstract

Traditionally, the objective of the motor controller in the brain is thought to be

to guide the limb to a desired trajectory while making a reaching movement. The

controller in traditional models, thus, adapts internal models of the body and the

environment to guide the limb to a ’desired trajectory’. However, there is significant

evidence suggesting that even after extensive training in a novel environment, the

trajectories followed by people do not converge to the so called ’desired trajectory’.

Recently, optimal feedback control framework has been proposed as a model of motor

control. According to this model, the aim of any action made by the controller is

to achieve behavioral goals (i.e. earn rewards) while minimizing energy (i.e. costs).

The minimization of these costs is constrained by the forward dynamics of the task,

which makes the motor commands issued by the controller highly dependent on task

dynamics. We hypothesized that the dependence of the motor commands issued

by the controller on the task dynamics is not limited to the expected value of the

parameters defining the task dynamics but also the variance in these parameters i.e.

the learner’s uncertainty about these parameters. This hypothesis in conjunction
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with stochastic optimal feedback control framework has quite interesting predictions

about movements made by people in environments with varying levels of uncertainties

in the parameters defining dynamics of movement in the environment. We have been

able to demonstrate through a series of experiments that these predictions indeed

match behavioral data and thus, the control policy followed by the motor controller

is dependent on its uncertainty about the parameters defining the task dynamics.

Thesis Advisor: Dr. Reza Shadmehr
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Chapter 1

Introduction

Human beings are capable of making highly skilled movements fairly easily. We

usually take the controlling mechanism behind these movements for granted. How-

ever, the human motor control system has to keep making complex calculations to

continuously adapt to and learn the properties of the environment in which the move-

ments are being made. For many years motor control scientists have been trying to

model the motor control system, leading to important improvements in our under-

standing of the working of the motor control system. Here I present a brief summary

of some of the important models of the working of motor control system that have

emerged over past few years.

Reaching movements form an important part of our daily lives. The movements

we perform to grasp an object like a coffee cup or a ball form an example of reaching

movements. The properties of the environment in which reaching movements are
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performed can be changed to probe the adaptation and learning mechanisms of the

motor system. The changes in properties of the environment can relate to changes in

the kinematic map relating target position to arms configuration (e.g. use of prism

glasses) or the change in dynamics of the arm (e.g. use of a curl force field) [18]

The human motor control system constantly keeps adapting and learning to im-

prove the behavioral performance. The motor system has to play with multiple

parameters to formulate the best strategy to achieve a behavioral goal. So the motor

system is thought to be working towards optimizing a cost function which is reflec-

tive of the success in achieving the behavioral goal and movement constraints. Over

the years multiple different cost functions have been proposed to explain the data

observed in behavioral experiments.

1.1 Kinematic costs

The cost function in models based on kinematics contain only geometrical and

time-based properties of motion and the variables of interest are the positions and

their corresponding velocities, accelerations and higher derivatives. Flash and Hogan

[9][11] hypothesized that a major goal of the motor control system is to produce

smooth movements. They proposed that the objective of the motor control system

is the optimization of a cost function which is reflective of the smoothness of the

movement. The cost function proposed was the square of the magnitude of jerk or

rate of change of acceleration integrated over the whole movement.
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Cost =
1

2

∫ tf

0

((
d3x

dt3

)2

+

(
d3y

dt3

)2
)

dt (1.1)

Where x and y are time varying hand position co-ordinates in the laboratory fixed

Cartesian coordinate system and tf is the time at which the arm should reach the final

position from the initial position. The dynamic optimization of this cost function was

able to explain straight-line Cartesian hand paths with bell shaped velocity profiles

as observed in the empirical data for rapid movements without accuracy constraints.

[13]

1.2 Dynamic costs

The cost function in models based on dynamics depends on the dynamics of the

arm, and the variables of interest include joint torques, forces acting on the hand

and muscle commands. Considering the observation that people produce curvilinear

movements when asked to move over a large range, a phenomenon unexplainable by

the minimum jerk model, Uno et al [23] suggested an alternative cost function called

the minimum torque change cost function.

Cost =
1

2

∫ T

0

((
dτ1

dt

)2

+

(
dτ2

dt

)2
)

dt (1.2)

where τ1 and τ2 are the torques at the two arm joint (i.e. shoulder and elbow) and T

is the time allowed for the arm to reach the final position from the starting position.
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An important difference between minimum jerk model and the minimum torque

change model is the separability of movement planning and execution. The trajec-

tory obtained by minimizing ‘jerk’ is in terms of positions and velocities of arm as

functions of time and a separate mechanism is required to achieve this trajectory.

On the other hand, the solution of the problem of minimization of torque change

specifies a sequence of motor commands necessary to achieve the movement, making

the planning and execution steps the same. Uno et al were able to show that the

minimum torque change model was able to predict the trajectories they observed in

their empirical data.

Minimum jerk and minimum torque change model have been important in un-

derstanding different aspects of motor control. They, however, have certain features

making them unsatisfying. These models do not provide any satisfactory explanation

for why the Central Nervous System (CNS) would choose to optimize quantities like

jerk and torque change. These models make the assumption that the objective of the

CNS is to produce smooth movements, however, no particular advantage of smooth-

ness is specified. Also, even if the objective of the CNS was to minimize jerk or torque

change, it is hard to imagine how the CNS might be computing integrals of complex

quantities like jerk and torque change over the course of a movement. [10][13]
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1.3 Minimum Endpoint Variance Model

To overcome the problems associated with these models, Harris and Wolpert pro-

posed that while making reaching movements, the objective of the CNS is to minimize

the variance of the final limb position, in the presence of biological noise [10]. It is hy-

pothesized that the noise in the neuronal control signal (i.e. motor neuron firing rate)

will cause the trajectories to deviate from the desired path. These deviations would

accumulate over the duration of the movement making the final position variable.

If the noise in the neural control signal were independent of the control signal, then

the accumulated error can be minimized by making the movement as fast as possible.

However, one of the key assumptions in the minimum variance model proposed by

Harris and Wolpert is that the noise in the neural control signal increases with the

mean level of the signal. This assumption is supported by a variety of physiological

[3][15] and psychophysical data [8]. As a result of this assumption, making fast

movements would actually lead to higher variability in final position as moving fast

for low pass systems like the arm would require control signals which lead to higher

noise. On the other hand, moving slow would lead to increase in the amount of time

taken to achieve the target. Hence, the movement trajectory obtained by minimizing

the end point variance with the assumption of signal dependent noise is a trade-off

between movement duration and accuracy at the endpoint [10][13]

The minimum endpoint variance model provided a biologically plausible theory

for arm movements. To operate according to this model, the CNS would be able to
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use a measure of movement cost (i.e. endpoint variance), which is directly available

to the CNS as against the minimum jerk and torque change models which require

the CNS to construct highly complicated functions of the quantities available to it

for estimation of movement cost. The smoothness of the movement comes naturally

since non-smooth movements would requires higher control signals which in turn lead

to higher noise, increasing the endpoint variability of the movement. [10]

A recurring theme in all the models listed above is the separation between “tra-

jectory planning” and “trajectory execution”. As a result of this separation, the

behavioral goal is replaced by a so called ‘desired trajectory’. Accurate execution of

this desired trajectory guarantees the achievement of the behavioral goal. However,

there is an extensive body of evidence [21] which suggests that the trial to trial fluc-

tuations are much larger in task irrelevant movement-parameters as compared to the

task relevant movement-parameters or the parameters crucial for achievement of the

behavioral goal. This implies that the motor control system tries to restrict the motor

variability to a task irrelevant subspace rather than suppressing variability over the

whole space of movement-parameters. This would be impossible if the behavioral

goal is replaced by a desired trajectory.

1.4 Stochastic Optimal Feedback Control

Todorov and Jordan proposed Stochastic optimal feedback control as a theory of

motor control [21]. An important feature of this model is the fact that whenever
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the task allows redundant solutions, rather than resolving the redundancy all at once

before starting the movement, the controller achieves optimal behavior by resolving

the redundancy moment by moment making use of a feedback control law. As the

resolution of redundancy is delayed till the last moment, the control law can make use

of additional task completion opportunities created by fluctuations from the average

trajectory. Such exploitation of redundancy can explain several phenomena related

to motor coordination like task-constrained variability, goal-directed corrections and

motor synergies.

1.4.1 Minimal intervention principle

A distinct feature of Stochastic Optimal Feedback control is the ‘Minimal in-

tervention principle’. This principle states that the controller lets motor variability

accumulate in the task irrelevant directions rather than trying to eliminate it. This is

an optimal thing to do for the controller since the task of the controller is to achieve

the goal and by definition making any attempts to reduce motor variability in the

task irrelevant dimensions wouldn’t increase the probability of achieving the goal.

These attempts can actually increase the probability of missing the goal since both

noise and energy spent are control-dependent and can potentially increase. Allowing

uncertainty to accumulate can improve the chances of achieving the goal by allowing

the controller to further suppress uncertainty in task relevant directions.
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Chapter 2

Problem formulation and solution

2.1 Optimal feedback control model

Under the optimal control framework, the motor control system is modeled as a

feedback controller as shown in Fig. 2.1. In this system, the optimal controller com-

putes the “optimal policy” to achieve a goal given its model of the environment. The

“optimal policy” is computed so that it minimizes a measure of cost incurred by the

biological plant in achieving the goal. The motor commands issued by the controller

act on the biological plant or the hand for reaching movements, producing a change

in the state of the biological plant. The sensory system i.e. visual system, propri-

oceptive system etc. sense a noisy function of the change in state of the biological

plant. The optimal estimator receives a copy of motor commands issued by the con-

troller i.e. efference copy and the noisy observations from the sensory system. There
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is considerable behavioral evidence suggesting that the motor controller should have

a copy of the commands it generates so that it can predict the consequences of its

own actions[12][1][17] [26][4]. This becomes highly important both in online control

of movements as well as co-ordination of movements of different body parts. The

optimal estimator makes a prediction about the state of the biological plant based on

its model of the world and compares it with the observations from the sensory system.

Based on the error in its estimate, the optimal estimator updates its estimate of the

state of the biological plant and feeds this information to the controller. Making use

of this state estimate, the optimal feedback controller generates motor commands

following its optimal policy.

Figure 2.1 The Stochastic Optimal Feedback Control System
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Testing optimality principles in biological movement empirically requires us to

be able to solve the stochastic optimal control and estimation problem. Due to

the intractability of the solution of the optimal feedback control problem with a

biologically correct, control-dependent noise, open loop optimization of control signals

with a control-dependent noise has been proposed in the field of sensorimotor control

[10]. However, for the stochastic partially observable plants like the musculoskeletal

system, the control sequence obtained by open-loop optimization has been shown to

be suboptimal [21].

The stochastic optimal feedback control problem with additive gaussian noise can

be solved efficiently in the Linear-Quadratic-Gaussian(LQG) framework. However,

many robust phenomena observed in human motor control like trajectory smooth-

ness, speed-accuracy trade-offs and structured motor variability are linked to signal-

dependent nature of sensorimotor noise [10][21]. So, it necessary to extend the LQG

framework to include biologically plausible noises. Recently, Todorov [20] proposed a

co-ordinate descent algorithm to solve the stochastic optimal control and estimation

problem for a partially observable plant with biologically plausible noise in the LQG

framework. The optimization problem formulation incorporates state-dependent,

control-dependent and internal noise as explained below.

For simplicity, we shall be following the notations similar to those used by Todorov

for all subsequent derivations[20]. The notations being used are listed in Table 2.1.

Consider a discrete linear dynamic system with state xt ∈ <m, control ut ∈ <p
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and feedback yt ∈ <k in discrete time t.

Dynamics xt+1 = Axt + But + ξt +
c∑

i=1

εi
tC̄iut (2.1)

Feedback yt = Hxt + ωt +
d∑

i=1

εi
tDixt (2.2)

Cost per step cpst = xT
t Qtxt + uT

t Rut (2.3)

Table 2.1 List of Notation
xt ∈ <m state vector at time step t
ut ∈ <p control signal
yt ∈ <k sensory observation
n total number of time steps
A,B, H system dynamics and observation matrices
ξt, ωt, εt, εt, ηt zero mean noise terms
Ωξ, Ωω, Ωε, Ωε, Ωη covariances of noise terms
C1, ....., Cd scaling matrices for state-dependent system noise
C̄1, ....., C̄d scaling matrices for control-dependent system noise
D1, ....., Dd scaling matrices for state-dependent observation noise
Qt, R matrices defining state and control-dependent costs
x̂t state estimate
et estimation error
Σt conditional estimation error covariance
Σe

t , Σ
x̂
t , Σx̂e

t unconditional covariances
vt optimal cost-to-go function
Sx

t , Se
t , st parameters of the optimal cost-to-go function

Kt filter gain matrices
Lt control gain matrices

The system is initialized with a known state mean x̂1 and state covariance Σ1. The

matrices A and B define the dynamics of the system. The next state of the system

depends on its previous state scaled by matrix A and the control signal ut generated

during the previous time step t scaled by matrix B. The term
∑c

i=1 εi
tC̄iut defines
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the way control signal dependent noise has been implemented in this formulation.

It has been shown in previous research that the standard deviation in the muscle

force is a linear function of the mean force in both static [21] and isometric force

tasks [16]. If u is a vector of control signals and ε is a vector of zero mean random

numbers, multiplicative noise can be expressed as C̄(u)ε, where C̄(u) is a matrix

whose elements depend linearly on u. The linear relationship between the matrix C̄

and the vector u can be expressed by making the ith column of C̄ equal to C̄iu, where

C̄i are constant scaling matrices. Given this structure of matrix C̄, it is easy to see

that C̄(u)ε =
∑

i C̄iuεi, where εi is the ith component of random vector ε.

We constantly receive sensory feedback from various sensory modalities to help

us control our movements online. Vision and Proprioception form two of the most

important sensory modalities for online movement control. The sensory feedback is

incorporated in the model through the feedback equation. On every time step, the

system receives feedback yt, which is a linear function of the current state of the

system. The observation matrix H defines the linear relationship between state xt

and feedback yt. Analogous to the multiplicative nature of motor noise, the accuracy

of visual position estimates can be well modeled with multiplicative noise, whose

standard deviation is proportional to the eccentricity[2][24]. This scaling law has been

confirmed in the visuomotor setting [7]. To incorporate this effect in the model, the

feedback equation has multiplicative observation noise in the form D(x)ε =
∑

i Dixεi,

where x is the state of the plant and the environment.
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For quantitative modeling of sensorimotor control, we require a scalar cost function

as a measure of success. The step by step cost function proposed in [7] has two

components to it. The first term xT
t Qtxt is the ‘state cost’. For simple point to point

reaching movements, this cost can be converted to a ‘tracking cost’ i.e. a cost which

penalizes the controller for not being at the desired position at any time point during

the movement. The matrices Q1, ..., Qn are symmetric positive semi-definite matrices

which scale the cost over the course of the movement. Note that if you set all the Q

matrices to a high value for the ‘tracking cost’ case, you are essentially forcing the

controller to follow a pre-specified ‘desired trajectory’. However, if the objective of a

movement is just to be at a spatial location at the end of the movement, you would

penalize the controller only for not being at the final desired position at the end of

the movement while setting the cost to zero during the movement. This provides the

optimization algorithm with maximum possible flexibility to search for a control policy

which can be used to achieve the goal with minimum effort. The second component

of the cost function uT
t Rut is the ‘control cost’. The matrix R is is a symmetric

positive definite matrix which scales the ‘control cost’. This component penalizes the

controller for producing large motor commands. This component can be thought of

as being indicative of the energy required for producing the motor commands. The

larger the motor commands you produce, the larger is the energy spent in doing so.

Hence, it would make sense for the controller to try and minimize the energy required

to complete a motor task.
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Each movement is modeled as being made of n time steps. The independent

random variables ξt ∈ <m, ωt ∈ <k, εt ∈ <c and εt ∈ <d define and scale various

noise terms incorporated in the model. The state x is not directly available to the

system. So, the system continuously needs to make an estimate of its state making

use of the feedback it gets on every time step. For linear systems the optimal way to

update the state estimate is to use the Kalman filter. It is easy to see that when the

control-dependent and the state-dependent noise terms are zero(i.e. C̄1, ..., C̄d = 0

and D1, ..., Dd = 0), the system reduces to the classic LQG system with additive noise

only. This classic LQG problem has been solved long ago. [14]

Linear-Quadratic Regulator Kalman Filter
ut = −Ltx̂t x̂t+1 = Ax̂t + But + Kt(yt −Hx̂t)

Lt =
(
R + BT St+1B

)−1
BT St+1A Kt = AΣtH

T
(
HΣtH

T + Ωω
)−1

St = Qt + AT St+1 (A−BLt) Σt+1 = Ωε + (A−KtH) ΣtA
T

In this case, the matrices L, defining the optimal control law, do not depend on

any of the noise covariances or the Kalman gain matrices K. Similarly the Kalman

gain matrices K do not depend on the cost or optimal control law. The dependence

of optimal motor commands ut on the history of control and feedback signals is

only through the state estimate x̂t, updated recursively by the Kalman filter. This

independence of optimal control law formulation and state estimation does not hold if

we add state-dependent and control-dependent noise to the model. So, for the purpose

of analytical tractability, the state estimate is assumed to be updated according to a
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linear recursive filter.

x̂t+1 = Ax̂t + But + Kt (yt −Hx̂t) + ηt (2.4)

here, the term ηt ∈ <m is the so called ‘Internal noise’. Generally it is assumed that

the neural representations work as flawlessly as a digital computer which is unrealistic.

So, to incorporate the fluctuations in neural representations of the model, a term for

‘Internal noise’ is added to the model. The Kalman filter gains are assumed to be

non-adaptive and are determined in advance. A non-adaptive filter for this model is

sub-optimal. However, the difference between the performance with adaptive vs non-

adaptive filtering was explored numerically in [20] and not found to be substantially

different for models similar to musculoskeletal plants.

2.2 Optimal Control

It can be shown that given the system dynamics model described above, the cost

expected to accumulate after a particular time step t, if the controller follows an

optimal control policy for the remaining time steps, (ut = π (x̂t)) has a quadratic

form [20]

vt (xt, x̂t) = xT
t Sx

t xt + eT
t Se

t et + st (2.5)

where et = xt− x̂t is a quantity defined for simplicity in the derivation. This quantity

which is the difference between the actual state and the state estimate can be called

the estimation error.
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Minimizing this cost function with respect to the control law π (x̂t) gives us the

optimal control law. However, the cost function as shown above is a function of the

actual state xt, which is not available to the controller. The best estimate of the state

available to the controller at any time point t is x̂t. So, the cost function actually

minimized to obtain the optimal control law is the expected value of the cost function

(Equation 2.5) given the state estimate x̂t. Solving this problem gives us a system

of equations which lets us calculate the optimal control law recursively backward in

time (Equation 2.6).

The cost matrices are initialized so that Sx
n = Qn, S

e
n = sn = 0.As stated before,

the optimal filter gain matrices K are assumed to be fixed to pre-known values.

The iterative relations for computing the optimal control law show that the feedback

gain matrices L do not directly depend on the additive gaussian noise terms η, ξ, ω.

However, as shown in the next section, the computation of the optimal filter gains

K depends on all the noises, which in turn affect the calculation of feedback gain

matrices L

Controller ut = −Ltx̂t

Lt =

(
R + BT Sx

t+1B +
∑

i

C̄T
i

(
Sx

t+1 + Se
t+1

)
C̄i

)−1

BT Sx
t+1A

Sx
t = Qt + AT Sx

t+1 (A−BLt) +
∑

i

DT
i KT

t Se
t+1KtDi; Sx

n = Qn

Se
t = AT Sx

t+1BLt + (A−KtH)T Se
t+1 (A−KtH) ; Se

n = 0

st = Tr
(
Sx

t+1Ω
ξ + Se

t+1

(
Ωξ + Ωη + KtΩ

ωKT
t

))
+ st+1; sn = 0
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2.3 Optimal Estimation

In the previous section, the feedback gain matrices for the optimal control law

were calculated for a fixed set of optimal filter gain matrices. Now our objective

is to calculate the updated sequence of optimal filter gain matrices such that they

minimize the cost function for the optimal feedback gain matrices L obtained in the

previous section. Thus, the filter gain matrices K, rather than being calculated to

minimize the estimation error are calculated to minimize the cost function for a given

set of feedback gain matrices. As shown in [20] new optimal filter gain matrices can

be calculated in a forward pass through time. The optimal filter gain matrix Kt at

any time point t can be found analytically as long as Kt+1, ..., Kn−1 still have values

for which the feedback gain matrices Lt+1, ..., Ln−1 are still optimal.

Estimator x̂t+1 = (A−BLt) x̂t + Kt (yt −Hx̂t) + ηt

Kt = AΣe
tH

T

(
HΣe

tH
T + Ωω +

∑
i

Di

(
Σe

t + Σx̂
t + Σx̂e

t + Σex̂
t

)
DT

i

)−1

Σe
t+1 = Ωξ + Ωη + (A−KtH) Σe

tA
T +

∑
i

CiLtΣ
x̂
t LT

t CT
i ; Σe

1 = Σ1

Σx̂
t+1 = Ωη + KtHΣe

tA
T + (A−BLt) Σx̂

t (A−BLt)
T

+ (A−BLt) Σx̂e
t HT KT

t + KtHΣex̂
t (A−BLt)

T ; Σx̂
1 = x̂1x̂

T
1

Σx̂e
t+1 = (A−BLt) Σx̂e

t (A−BLt)
T − Ωη; Σx̂e

1 = 0

Given these sets of equations, we can estimate the optimal feedback gain matrices

L and the optimal filter gain matrices K. The iterations are started by assuming
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a starting value for the sequence K1, ..., Kn−1. Then, we keep on iterating between

the system of equations for optimal controller and that for optimal estimator until

convergence.

2.4 Introducing Model Parameter Uncertainty

A motor controller needs to have a model of functioning of the surrounding envi-

ronment as well as the body to be able to execute desired movements. Such models

are called as ‘Internal models’ which can be viewed as the motor controllers view of

the functioning of the surrounding world and the body[13][25]. The internal models

help the controller predict in advance, the change in state of the body given that

it has issued a certain motor command. It is very essential for the controller to be

able to predict the consequences of its motor commands while performing essentially

no feedback movements like saccades since the movement times are too fast for the

controller to receive any feedback from the sensory system. This ability to predict

is also essential in improving the performance of the controller in online control of

the movement since the feedback is received from the sensors with considerable delay.

The predictions from the internal models can then be compared with sensory feed-

back to obtain an actual estimate of state of the body to correct the internal model

if there are any discrepancies.

Human beings have to constantly deal with changing properties of the surrounding

environment as well as the body itself. One can think of multiple instances involving
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such changes of properties which force the motor control system to adapt its internal

models about the functioning of the surrounding world as well as the body in order

to execute desired movements properly. The changes in the properties, however, are

not always deterministic. One simple example would be mass of an object we are

trying to lift. We are generally very good at judging the mass of an object by making

use of various cues like the color of the object, surface texture of the object etc. If a

person is going to lift an object he/she is used to lifting, the person doesn’t need to

think much about it. On the other hand, if the person is about to lift an unknown

object made of an unknown material, he/she would approach much carefully. In other

words, there is a difference between the way a person executes a motor task when the

person is fairly certain about the properties of the entities involved as against when

the person has fairly high uncertainty about the properties of the entities.

A natural conclusion from the above observations would be that the motor control

system must have some way of representing uncertainty regarding the parameters of

the Internal model so that these uncertainties can be considered while formulating

the optimal control policy to execute a motor task. To incorporate the uncertainty of

the motor controller regarding the parameters of the model, we made the following

simple modification to the system dynamics equation 2.1.

xt+1 = (A + ηεt)xt + But + ξt +
d∑

i=1

γi
tC̄iut

xt+1 = Axt + But + ξt + ηεtxt +
d∑

i=1

γi
tC̄iut (2.6)
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where η is a parameter which modulates the variance in the model parameter A and

εt is a random variable drawn from the distribution N(0, 1). The uncertainty term

ηεtxt can be expressed as a state-dependent (x) noise in the state update equation as

shown in Equation 2.7. Modulating the matrices C can be interpreted as changing

the variance in parameter A i.e the uncertainty of the controller regarding internal

model parameter A.

Dynamics xt+1 = Axt + But + ξt +
d∑

i=1

εi
tCixt +

d∑
i=1

γi
tC̄iut (2.7)

Feedback yt = Hxt + ωt +
d∑

i=1

εi
tDixt (2.8)

Cost per step cpst = xT
t Qtxt + uT

t Rut (2.9)

This extended version of this stochastic optimal feedback control problem is simple

to solve following the steps followed in [20]. The optimal control policy obtained

by solving this extended problem is shown in the following set of equations. All the

notations used in the above equations have meanings as described in table 2.1. Please
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refer to the appendix for the detailed derivation.

Controller ut = −Ltx̂t

Lt =
(
R + BT Sx

t+1B + C̄t

)−1
BT Sx

t+1A

Sx
t = Qt + AT Sx

t+1 (A−BLt) + Nt

Se
t = (A−KtH)T Se

t+1 (A−KtH) + AT Sx
t+1BLt

st = st+1 + Tr (Mt)

Nt =
d∑

i=1

(
CT

i

(
Sx

t+1 + Se
t+1

)
Ci + DT

i KT
t Se

t+1KtDi

)

C̄t =
d∑

i=1

(
C̄T

i

(
Sx

t+1 + Se
t+1

)
C̄i

)

Mt = Sx
t+1Ω

ξ + Se
t+1

(
Ωξ + KtΩ

ωKT
t + Ωη

)

Following the methodology similar to [20], we can also obtain the changed set of

equations for the optimal estimator as shown below

Estimator x̂t+1 = (A−BLt) x̂t + Kt (yt −Hx̂t) + ηt

Kt =AΣe
tH

T

(
HΣe

tH
T + Ωω +

d∑
i=1

DiΣ
x
t DT

i

)−1
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Σx̂
t+1 = (A−BLt) Σx̂

t (A−BLt)
T + Kt

(
d∑

i=1

Di

(
Σx̂

t + Σe
t + Σx̂e

t

)
DT

i

)
KT

t + Ωη+

+ Kt

(
HΣe

t H
T + Ωω

)
KT

t + (A−BLt) Σx̂e
t HT KT

t + KtHΣx̂e
t (A−BLt)

T

Σe
t+1 = (A−KtH) Σe

t (A−KtH)T +
d∑

i=1

(
Ci

(
Σx̂

t + Σe
t + Σx̂e

t + Σx̂eT

t

)
CT

i

)
+

Kt

(
d∑

i=1

(
Di

(
Σx̂

t + Σe
t + Σx̂e

t + Σx̂eT

t

)
DT

i

)
+ Ωω

)
+ Ωξ + Ωη+

d∑
i=1

(
C̄iLtΣ

x̂
t LT

t C̄T
i

)

Σx̂e
t+1 =KtHΣe

t (A−KtH)T −Kt

(
d∑

i=1

Di

(
Σx̂

t + Σe
t + Σx̂e

t + Σx̂eT

t

)
DT

i + Ωω

)
KT

t −

Ωη + (A−BLt) Σx̂e
t (A−KtH)T
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Chapter 3

Model Predictions

3.1 Simulation Parameters

With the framework we developed in the previous chapter, we have a way to

estimate the optimal behavior an ideal optimal feedback control system should exhibit

in various different kinds of motor environments. These predictions can then be

compared with human behavior to answer questions like does human motor control

system actually exhibit behavior in accordance with optimal feedback control theory?,

Does the optimal policy followed by the motor controller depend on its uncertainty

about the world? and if yes, can these changes be explained by the optimal feedback

control theory?

We focused our attention to point-to-point reaching movements in a novel dynamic

environment called a viscous curl force field [18]. The effect of a viscous curl force
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field is similar to altering the viscosity of the surrounding environment. The force

produced by this force field is given by

f = Zẋ (3.1)

where for a simple 2-D case, f = [fx, fy], ẋ = [Vx, Vy] and fx, Vx and fy, Vy are the force

and velocity in the x and y direction respectively. The elements of the matrix Z are

the parameters controlling the effect of the force field. We can introduce uncertainty

in these parameters as shown below.

f = [Z + βη] ẋ (3.2)

where β is the noise gain modulation parameter and η ∼ N(0, 1).

Since we are limited to a linear dynamical system, we modeled the hand as a

point mass system. The dynamics of a point mass in a viscous curl force field can

be easily represented as a linear dynamical system. For a simple point-to-point

reaching task, the state was a 8 × 1 vector with the elements of the state being

x = [Px, Vx, Py, Vy, Fx, Fy, Tx, Ty] where Px and Py are the hand co-ordinates, Vx and

Vy are the hand velocities , Fx and Fy are the forces produced by the hand and Tx and

Ty are the target positions in x and y directions respectively. The motor command

u is a 2 × 1 vector u = [ux, uy] where ux and uy are the x and y components of the

motor commands. The translation of motor commands ux and uy into forces Fx and

Fy was modeled as a first order dynamical system

τ
∂Fi

∂t
= ui − Fi; (3.3)
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the parameter τ lets us control the latency between issue of motor command ui from

the brain and the expression of force by the muscles Fi. Given the above assumptions,

we can generate the matrices A and B defining system dynamics (Eqn 2.6).

A =




0 1 0 0 0 0 0 0

0 ZM11 0 ZM12 M−1
11 M−1

12 0 0

0 0 0 1 0 0 0 0

0 ZM21 0 ZM22 M−1
21 M−1

22 0 0

0 0 0 0 −1
τ

0 0 0

0 0 0 0 0 −1
τ

0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




dt + I; B =




0 0

0 0

0 0

0 0

1
τ

0

0 1
τ

0 0

0 0




dt (3.4)

where matrix M is the matrix defining mass properties of the hand, the matrix ZM

is the matrix formed by the product of matrices Z and M−1, dt is the time step used

in the discrete dynamical system and I is an identity matrix of size 8× 8.

It is easy to see the working of the dynamics system we just defined. The 1st

and 3rd elements of the state are hand co-ordinates Px and Py respectively. They

are just being updated on every time step by adding Vxdt and Vydt to their values

on previous time step respectively i.e. by adding the area below the velocity curve

for the respective direction on every time step. The velocities Vx and Vy are updated

on every time step by adding the area below the acceleration curve in the respective

direction on every time step to their values on previous time step. The viscous curl
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force field generates forces on the point mass depending on the velocity of the mass.

Hence, the acceleration at any time step is computed by considering the effect of

forces Fx and Fy produced on the last time step as well as the forces produced by

the curl force field on the hand. The update rule for the forces Fx and Fy basically

implements the dynamics shown in the Eqn 3.3 and the target position Tx and Ty

remains unchanged over the course of the movement.

The matrix Q defining the ‘tracking cost’ (Eqn 2.9) is such that the controller is

penalized for not being at the target at the pre-specified movement completion time

tf . The matrix Q is a zero matrix at all other time points. The matrix R defining

the ‘control cost’ is set to a constant value throughout the movement time.

The control signal only affects the forces produced by the plant directly. The

change in velocity and position, however, doesn’t depend directly on the motor com-

mands. So, the control-dependent noise matrix C̄ (Refer to Eqn 2.7) was defined as a

8× 2 matrix with all the elements zero except the elements C̄51 and C̄62. Please note

that this structure of the control-dependent noise matrix ensures that any control-

dependent noise affects only the forces produced by the plant directly.

Now we are interested in varying the uncertainty of the learner/controller regard-

ing the model parameters and find out the difference in the optimal control policies

for different levels of uncertainty. In the case of viscous curl force fields, the matrix Z

is the parameter we can control and introduce uncertainty in, to test the predictions

of the model. So we define the matrix C which controls variance of the noise in model
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parameters (Refer to Eqn 2.7) as shown below

C =




0 0 0 0 0 0 0 0

0 η11 0 η12 0 0 0 0

0 0 0 0 0 0 0 0

0 η21 0 η22 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




(3.5)

The parameter η can be changed to change the uncertainties in the model parameters

Z. We simulated the average behavior of the optimal controller in all different tasks

described below for three levels of variance viz. High Variance (HV), Medium Variance

(MV) and Zero Variance (ZV).

Please refer to the appendix for the specific values of the parameters used for

simulations.

3.2 Predictions for a point-to-point reaching task

3.2.1 Biased viscous curl force field with off-diagonal noise

We calculated the optimal policy predicted by the stochastic optimal control model

for three different levels of uncertainties and simulated the average behavior of the sys-
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tem using this optimal policy. These simulations are done for a clockwise biased vis-

cous force field i.e. the elements of the matrix Z used were Z =




0 13

−13 0


 Ns/m.

The force field is such that if the hand velocity is in the positive y direction, the

force field tends to push the hand towards positive x direction. The noise is called

‘off-diagonal noise’ since we introduced noise only in the non-zero parameters of the

field matrix Z i.e. the off-diagonal elements. Thus, for these simulations, parameters

η11 and η22 from Eqn 3.5 were set to zero for all simulations in this section while the

parameters η12 and η21 were changed for different levels of uncertainties. The idea

was to introduce noise only in the new parameters being learnt by the system.

Now, if we have a system which doesn’t care about the uncertainty in the model

parameters, we would predict that the average behavior of the system for different

levels of uncertainties is the same given that the expected value of the model parame-

ters is the same for all cases. However, the stochastic optimal feedback control model,

predicts different average behavior of the controller for different levels of uncertainties

in the model parameters as shown in Fig 3.1. The simulations are done for a reach

length of 9 cm to match the reach length in the experiments reported in next chapter.

A noteworthy prediction of the model is that the average trajectory for the cer-

tain clockwise force field (ZV) is curved towards the negative x direction. Hence, the

average trajectory followed by the system is curved in direction opposite to the di-

rection of the force field i.e. the system shows overcompensation on an average. This

prediction is contradictory to the conventional idea of a straight line being the desired
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trajectory of the motor system for making any point-to-point reaching movements.

As shown in the following chapter, we find that this prediction indeed matches the

average human behavior in a biased clockwise viscous curl force field.

It is a well accepted fact that human beings show symmetric bell shaped speed

profiles when making point-to-point reaching movements [9][23]. From the simula-

tions, it is clear that the model predicts a symmetric speed profile for the zero noise

case as expected. However, as the level of uncertainty increases, the peak speed

increases and the speed profile becomes more and more skewed. Note that in this

particular case, the state-dependent component of the noise in system dynamics is

directly proportional to the velocities Vx and Vy. Thus, lower the velocities, lower the

value of the absolute noise in system dynamics. Now, the objective of the controller

is to be at the target at the movement completion time tf . Now since the absolute

value of the noise is proportional to the velocities Vx and Vy, it is easier to achieve

the goal if you increase the speed in the initial phase of the movement and cover

major portion of the distance without caring much about how you cover the distance

and then slow down so that the perturbation is lower in magnitude as well as more

certain towards the end of the movement. This gives you better control over your

movement towards the end which is essential since you have the spatial constraint of

being present in the target to be able to successfully complete the task.

Another important difference is the separation of the average trajectories for dif-

ferent levels of uncertainties. As the level of the uncertainty increases, the average
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trajectory shown by the system becomes more and more straighter.
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Figure 3.1 Simulation results for biased clockwise viscous curl force field with off-

diagonal noise. The plots show the progression of different components of state x over

the course of an average movement. The Blue, Red and Green curves correspond to

the Zero Variance, Medium Variance and High Variance cases respectively.

We did the same simulation for counterclockwise field viscous curl force field as

well. Here the elements of the matrix Z are such that if hand velocity is in the positive

y direction, the force field tends to push the hand towards negative x direction. The

actual elements of matrix Z used were Z =




0 −13

13 0


 Ns/m. The simulation

results are indicated in Fig 3.2

The predictions are essentially the same as those for the clockwise force field,

except the curvature of the average trajectories is in the opposite direction. Since,
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Figure 3.2 Simulation results for biased counterclockwise viscous curl force field with

off-diagonal noise. The plots show the progression of different components of state x

over the course of an average movement. The Blue, Red and Green curves correspond

to the Zero Variance, Medium Variance and High Variance cases respectively.
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our model is an approximation of the limb used for making reaching movements, we

decided to make sure that the overcompensation observed in human behavior for the

clockwise field is not just a result of the nonlinear dynamics of the human arm.

The simulations in Fig 3.1 are based on the assumption that the controller has a

perfectly adapted internal model of its and the surrounding environment’s working.

This, however, need not always be true. In the case of the biased force fields, presum-

ably, the internal model starts from an estimate of zero bias and slowly increases its

estimate of bias in the force field based on its observations. Fig 3.3 shows the effect on

the average behavior of the system if the optimal policy followed by the controller is

based on incompletely adapted internal model i.e. the force field bias estimate of the

control system is a fraction of the actual bias of the force field. These simulations are

done for a fixed level of high uncertainty (HV) from Fig 3.1. The average trajectory

predicted by the model is close to a straight line if the controller’s estimate regarding

the bias of the curl force field is correct, the same as that in Fig 3.1. However, as the

learned fraction of the bias becomes smaller, the average trajectory shows a pecu-

liar overcompensation during early part of the movement and an undercompensation

towards the later part of the movement. The significance of these simulations will

become clear when we analyze human behavior in a biased curl force field with high

uncertainty.
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Figure 3.3 Simulation results for incomplete learning of a biased clockwise viscous

curl force field with off-diagonal noise. The plots show the progression of different

components of state x over the course of an average movement. The Blue, Red and

Green curves correspond to the Zero Variance, Medium Variance and High Variance

cases respectively.
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3.2.2 Biased viscous curl force field with diagonal noise

All the simulation conditions were exactly the same for this section as in the

previous section except that now we introduced noise in the diagonal components of

the matrix Z i.e. the components of the matrix Z which were at the default zero

value and the controller didn’t need to learn them. The idea was to see if there

are any differences in the optimal policy followed by the learner if the uncertainty is

increased in the parameters whose bias is already learnt by the learner vs the case

in which the learner is learning a parameter which is noisy to begin with. Fig 3.4

shows the simulation results for this case. The predictions are quite similar to the

predictions for the off-diagonal noise case. Even in this case, the average trajectory

tends to become straighter and the speed profile tends to become more skewed with

higher peak speed as the variance level increases.

3.3 Predictions for a via-point reaching task

To substantiate our hypothesis about the role of learner’s uncertainty in the op-

timal policy followed by the learner to do a motor task, we decided to test the pre-

dictions of the model on a different motor task i.e. the via-point task. In this task,

the learner is supposed to make a reaching movement such that he/she has to cross

a via-point on the path to the target at a pre-specified via-point time and then reach

the target before certain pre-specified movement time. The uncertainty introduced
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Figure 3.4 Simulation results for biased clockwise viscous curl force field with diagonal

noise. The plots show the progression of different components of state x over the

course of an average movement. The Blue, Red and Green curves correspond to the

Zero Variance, Medium Variance and High Variance cases respectively.
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in the force field in this task is exactly the same as that used for reaching task in

a biased force field with off-diagonal noise. The force field used, however, was an

unbiased force field i.e. the expected value of the elements of matrix Z defining the

force field was zero. For the simulations corresponding to the via-point task, the state

vector needs to have an estimate of the via-point. So, the state vector is changed to

x = [Px, Vx, Py, Vy, Fx, Fy, viax, viay, Tx, Ty] (3.6)

where all other symbols have the same meaning as specified in the previous section

and viax and viay are the x and y co-ordinates of the via-point. Since the position of

the via-point doesn’t change over the duration of the movement, the changes to be

made to the matrices A and B are simple. The matrices are set so that the position

of via-point remains constant throughout the movement duration. The system knows

the correct location of the via-point through proper initialization of the state vector

x.

The matrix Q defining the ‘tracking cost’ (Eqn 2.9) is such that the controller is

penalized for not being at the via-point at the pre-specified via-point time tv, and

for not being at the target at the pre-specified movement completion time tf . The

matrix Q is a zero matrix at all other time points. The matrix R is the same as that

used for the simulations corresponding to the point-to-point reaching task.

Fig 3.5 shows the simulation results. The simulation results show that the average

trajectory followed by the system is the same for all levels of uncertainties. The main

difference in the control policy, however, shows up in the speed profiles for different
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Figure 3.5 Simulation results for the via-point task with unbiased force field and off-

diagonal noise. The plots show the progression of different components of state x over

the course of an average movement. The Blue, Red and Green curves correspond to

the Zero Variance, Medium Variance and High Variance cases respectively.
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uncertainties. The objective of the task is to pass through the via-point at a specific

time point tv and then reach the target before time point tf . In the viscous curl

force field as discussed in previous section, the uncertainty in the perturbing force is

velocity dependent. So, it is in the best interest of the system to reduce its speed

when coming close to the via-point to be able to satisfy the spatial constraint of

being present within the via-point at the required time. One possible solution is to

reduce the speed to zero at the via-point crossing time and then increasing speed

again to reach the target. This, however, cannot always be feasible since there is an

added constraint of minimizing the ‘control cost’ which goes higher if a lot of high

amplitude motor commands are produced. Since reducing the speed to complete zero

would require the system to suddenly accelerate to a high speed and then decelerate

to meet the time constraint for the target, the optimal solution obtained is a tradeoff

between the cost of not being at the via-point at the via-point crossing time tv and

the control cost.
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Chapter 4

Experiments

4.1 Apparatus

For all experiments described in this thesis, right handed subjects sat on a chair

in front of a 2-dimensional robotic arm, holding the handle of the robotic arm. The

robotic arm could be controlled to produce forces on the subjects hands in a plane.

The robot position and speed were sampled at the rate of 100 Hz. The targets were

projected onto a white screen above the robotic arm using a DLP projector (Optima,

EP739, refresh rate: 70Hz) mounted overhead. White screen covered the robotic arm

and subjects hand holding the arm so that the subject couldn’t view their arms. The

chair could be adjusted in height and position so that subjects could comfortably

move the robotic arm and comfortably view the target projected on the screen. All

the experimental protocols were approved by the Johns Hopkins Medicine IRBs. All
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the subjects recruited for the experiments were healthy right handed subjects.

4.2 Reach experiment with biased certain force

field

In traditional motor control literature straight line point-to-point movements are

considered to be the “desired” way of the motor controller to make point-to-point

reaching movements. There has been evidence from recent literature that this is not

the case. A popular way to manipulate the motor environment of a person is to

make the person do reaching movements holding a two degree of freedom robotic

manipulandum. Using the robot, different force perturbations can be applied to the

subject’s hand which essentially means temporarily changing the dynamics of the

surrounding motor environment for the subject. A common perturbation used is the

viscous curl force field[18]. To probe the extent of learning of the new environment, the

experiments usually have “catch” trials dispersed randomly between training trials

[6][19][18]. No force perturbation is applied during the “catch” trials. A recent

article shows that even after training people for a long time in a novel environment,

their trajectories didn’t return to straight line trajectories or the so called “desired

trajectory”, if no catch trials were used during training[5]. In this particular study

[5], subjects were trained over three days but in multiple directions. Also, each day,

training began with a null block of movements i.e. a set of movements without any
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force perturbations, which would have the effect of washout on the learning of making

movement in the force field. So one might argue that the training might not be long

enough for any particular direction for the controller to be able to learn to achieve

straight line trajectory in the novel environment.

To address this issue, we decided to do a simple study to check if this was indeed

true. We trained subjects for three consecutive days for making reaching movements

in a single direction. The subjects were trained for making 9 cm reaching movements

over three days in a zero variance clockwise viscous curl force field. The matrix Z

(Eqn 3.1) defining the force field was Z =




0 13

−13 0


 Ns/m. The table 4.1 shows

the sequence of blocks over three days we followed for this experiment. In the table,

‘no field’ block refers to a block of training trials without any perturbation while ‘ZV

FF’ refers to a block of trials with a zero variance clockwise viscous curl force field. On

each trial, the subjects started from a square indicating starting position and made

a reaching movement to a target indicated by another square on the screen. The

subjects were told to imagine that they were playing a video game and the objective

of the game was to reach the target before a specific time limit. If the subjects were

able to reach the target in time, they were rewarded with a visual explosion of the

target, while if they were slow, they were given feedback in the form a blue colored

target. To motivate subjects to perform the task better, their score i.e. the number

of explosions of target in a block, was constantly displayed on the screen. 8 subjects

participated in this study.

41



Table 4.1 Reach Experiment Protocol (Biased Force Field with zero variance)
Block 1 Block 2 Block 3 Block 4 Block 5

Day 1 No Field ZV FF ZV FF ZV FF ZV FF
Day 2 ZV FF ZV FF ZV FF ZV FF
Day 3 ZV FF ZV FF ZV FF ZV FF

On the first day, people were familiarized with the robotic manipulandum through

a block of 150 movements with no force perturbations. This block was followed by 4

blocks of force field training. On the second day and third days, the subject had four

blocks of force field training on each day. We hypothesized that if the objective of

the controller is to converge to a ‘desired trajectory’, this long term training for three

consecutive days in a single direction should be enough for the controller to learn the

dynamics of the new environment and converge onto its desired trajectory by the end

of training.

Fig. 4.1 shows the gist of the results of the experiment. In plot A of the figure, the

black curve shows the average trajectory over subjects for the no force field condition.

This curve was obtained by averaging the trajectories for each subject over the last 50

trials of Block 1 of Day 1 and then by averaging the average trajectory over subjects.

The green and the blue curves were derived in a similar way from first 50 trials of the

first force field training block (i.e. Day 1 Block 2) and last 50 trials of the last force

field training block on the last day (i.e. Day 3 Block 4) respectively. The average

trajectories were obtained after aligning all the trajectories so that their starting

x-co-ordinate was the same. From the results, we can clearly see the dissociation
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between the trajectory in the no force field condition (black curve) vs the trajectory

after completion of training(blue curve). The average trajectory after completion

of training shows peculiar overcompensation as predicted by the simulations for the

reaching task in a zero variance clockwise viscous curl force field shown in Fig 3.1.

The difference between average trajectories for the first and last training blocks is

indicative of how the average trajectory changed after optimization to minimize the

cost associated with making a movement in the changed dynamic environment was

completed. The plot B in the Fig. 4.1 shows the overcompensation averaged over

subjects for the no force field training block followed by that for last force field

training block on all three days. Overcompensation was calculated as the maximum

deviation of a trajectory from the straight line joining the starting point and the

target in the direction opposite to the direction of the force field. We can clearly see

a sustained overcompensation higher than the average overcompensation for the no

force field training block on all three days.

The model of the arm we have is a simplistic linear model. So, one might suspect

that the overcompensation for this particular direction of force field might be due to

nonlinear dynamics of the arm rather than the result of formation of a new optimal

control policy. So, to strengthen our belief in the reason for the curved trajectory not

being a result of nonlinear dynamics of the arm, we tested behavior in an oppositely

directed force field (counterclockwise force field). The sequence of blocks followed

was exactly the same as that for clockwise force field with the only difference being
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Figure 4.1 Average trajectory in a zero variance viscous curl clockwise force field. Plot

A: Black curve shows the average trajectory in the no force field condition (averaged

over last 50 trials of (Day 1 Block 1) and then averaged over subjects). The green

and blue curves show similarly calculated averages for first 50 trials of (Day 1 Block

2) and last 50 trials of (Day 3 Block 4) respectively. The gray shading indicates

standard error over subjects (n=8). Plot B: Average overcompensation over subjects

for (Day 1 Block 1) followed by that for last force field training block on each day.

Error bars indicate standard error over subjects (n=8).
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the changed direction of the force field. The matrix B used for this case was B =


0 −13

13 0


 Ns/m. Fig. 4.2 shows the results for this experiment. All the colors

and curves have the same meaning as in Fig. 4.1. Thus, we have a strong indication

that indeed the average trajectory in the force fields never converges to the average

trajectory in the null field, making the possibility of the motor controller trying to

approach a desired trajectory highly unlikely.

4.3 Reach experiment with biased variable force

field

4.3.1 Off-Diagonal Noise

Now, to test the effects of increasing the learner’s uncertainty regarding the model

parameters, we trained a group of subjects to make reaching movements in a high

variance biased force field. The bias of the force field parameters was the same as

that for the clockwise force field in the ‘Reach Experiment with biased certain force

field’. However, the force field parameters were changed from trial to trial by adding

gaussian noise to the constant bias of the force field parameters. The variance of

the gaussian noise added was the same as that for the high variance case (HV) in

the simulations of reaching movements in a biased viscous curl force field with off-

diagonal noise (Fig 3.1). The sequence of blocks followed for this experiment is shown
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Figure 4.2 Average trajectory in a zero variance viscous curl clockwise force field. Plot

A: Black curve shows the average trajectory in the no force field condition (averaged

over last 50 trials of Block 1 on Day 1 and then averaged over subjects). The green

and blue curves show similarly calculated averages for first 20 trials of (Day 1 Block

2) and last 50 trials of (Day 3 Block 4) respectively. The gray shading indicates

standard error over subjects (n=5). Plot B: Average overcompensation over subjects

for no force field block(Day 1 Block 1) followed by that for last force field training

block on each day. Error bars indicate standard error over subjects (n=5).
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in Table 4.2. The additional block of 50 trials on Day 3 (Day 3 Block 5) tested the

behavior of the subjects in a zero variance force field. This block helped us compare

the average behavior of the motor controller when trained in different conditions (high

variance and zero variance force fields) in the same environment i.e. the zero variance

force field. 8 subjects participated in this study.

Table 4.2 Reach Experiment Protocol (Biased Force Field with High Variance Off

Diagonal noise)
Block 1 Block 2 Block 3 Block 4 Block 5

Day 1 No Field HV FF HV FF HV FF HV FF
Day 2 HV FF HV FF HV FF HV FF
Day 3 HV FF HV FF HV FF HV FF ZV FF

Fig. 4.3 shows the comparison of average trajectories over subjects for different

conditions. In plot A of the figure, the black curve shows the average trajectory over

subjects for the no force field condition. This curve was obtained by averaging the

trajectories for each subject over the last 50 trials of Block 1 of Day 1 and then by

averaging the average trajectory over subjects. The red and the blue curves were

derived in a similar way from 50 trials of Block 5 on Day 3 for the subjects who were

trained in the high variance force field and last 50 trials of Block 4 Day 3 for the

subjects trained in the certain biased force field(last force field training block on the

last day) respectively. One can clearly see the separation of the average trajectories

resulting due to training of the motor controller in the high variance vs the zero

variance conditions. The average trajectory corresponding to training in high variance
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condition, however, doesn’t match the model prediction shown in Fig 3.1 exactly. We

observe a peculiar undercompensation during the later part of the movement. In

high variance training, the motor controller needs to learn two aspects of the force

field, the bias as well as the variance of the force field parameters. Since there is

no direct way for the controller to make observations of these parameters, it is not

unlikely for the controller to not have been able to estimate the bias and variance

correctly over the training that was provided. The simulations shown in Fig 3.3

can explain the average trajectory observed after training in the high variance force

field. As the learned fraction of the bias in the force field reduces, we see more and

more undercompensation during the later part of the trajectory in Fig 3.3. Plot B of

Fig 4.3 shows the validation of another important prediction of the model. The model

predicts that with increasing variance in the force field parameters, the speed profile

should become more skewed and the peak speed should increase as compared to the

speed profile for the zero variance force field condition. We find that this prediction is

indeed true from the average speed profiles shown in Fig. 4.3. The speed profiles were

obtained from the same data that was used for obtaining the average trajectories of

the corresponding color. The gray shading indicates the standard error over subjects.

One might question that why should the average trajectories match the predictions

from based on incomplete learning of the model while the speed profiles match the

predictions from optimization based on a completely learned model. However, if we

look at the speed profile predictions based on different levels of incomplete learning,
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we can see that they are more or less similar or overlapping during the earlier part of

the movement which can explain the difference in the peaks of the speed profiles for

the HV group vs the ZV group. The data, however, doesn’t show significant reduction

towards the end of the movement for the HV group as compared to the ZV group.

If we look at the model predictions for incomplete learning, we see that the speed

towards the end of the movement increases as the fraction of learning reduces. Thus,

we suspect that the effect might be too small due to incomplete learning to be able

to observe any statistically significant results.

Fig 4.4 shows a bar plot comparing the average peak speed over subjects for the

zero variance condition (ZV)(calculated for the last 50 trials of Block 4 on Day 3) vs

the high variance condition (HV)(calculated for the last 50 trials of Block 5 on Day

3). The error bars indicate the standard error over subjects.

4.3.2 Diagonal Noise

We wanted to study the difference in behavior when subjects were exposed to

an environment where they had to learn new noisy parameters (i.e. the off-diagonal

noise case) vs when they had to learn only the noise in the parameters (i.e. the

diagonal noise case) as explained in the chapter on model predictions. The sequence

of blocks followed was exactly the same as that for the Off-diagonal noise case. The

only difference was that the noise parameters used were the same as those used for

simulations of the high variance case (HV) in the simulations for the Clockwise biased
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Figure 4.3 Average trajectory and speed profile comparison for movements in high off

diagonal noise force field vs those in zero noise force field. Plot A: Black curve shows

the average trajectory in the no force field condition (averaged over last 50 trials of

(Day 1 Block 1) and then averaged over all subjects). The red curve is similarly

calculated average from last 50 trials of the ZV FF block on Day 3 for subjects from

the HV group and the blue curve is similarly calculated average from the last 50 trials

of the last training block on Day 3 for subjects from the ZV group. The gray shading

indicates the standard error over subjects.(n=16 for black curve and n=8 for blue

and red curves) Plot B: Average speed profiles for the corresponding curves in plot

A. The speed profiles were normalized with the average peak speed in the no force

field condition before averaging over subjects.
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Figure 4.4 Peak speed comparison for movements in high off diagonal noise force field

vs those in zero noise force field. Blue bar is the average peak speed over last 50 trials

of (Day 3 Block 4) for all subjects from ZV group while black bar is the average peak

speed over the 50 trials of (Day 3 Block 5) for all subjects from the HV group. The

error bars indicate the standard error over subjects(n=8)
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viscous curl force field with diagonal noise (Fig 3.4). 6 subjects participated in this

study.

Fig 4.5 shows the results of the experiment. Both Plots A and B in the Fig 4.5

correspond to the plots A and B in Fig 4.3. We see that the separation in the

trajectories for the high variance (HV-Diag) case vs the zero variance case (ZV) is

very similar to the off-diagonal noise case. However, the results for the change in

the speed profile are much more prominent in this case. Here, we can see clear

correspondence to both predictions of the model for the speed profile i.e. increase

in peak speed during the earlier part of the movement and reduction in the speed

towards the later part of the movement for the HV-Diag group as compared to the

ZV group.

Fig 4.6 shows a bar plot comparing the average peak speed over subjects for the

zero variance condition (ZV)(calculated for the last 50 trials of Block 4 on Day 3) vs

the high variance condition (HV-Diag)(calculated for the last 50 trials of Block 5 on

Day 3). The error bars indicate the standard error over subjects.

4.4 Via-point experiment with unbiased uncertain

force field

To substantiate our hypothesis about the role of learner’s uncertainty in the op-

timal policy followed by the learner to do a motor task, we did another experiment
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Figure 4.5 Average trajectory and speed profile comparison for movements in high

diagonal noise force field vs those in zero noise force field. Plot A: Black curve shows

the average trajectory in the no force field condition (averaged over last 50 trials of

(Day 1 Block 1) and then averaged over all subjects). The red curve is similarly

calculated average from last 50 trials of the ZV FF block on Day 3 for subjects from

the HV-Diag group and the blue curve is similarly calculated average from the last

50 trials of the last training block on Day 3 for subjects from the ZV group. The

gray shading indicates the standard error over subjects.(n=14 for black curve and

n=8 for blue curve and n=6 for red curve) Plot B: Average speed profiles for the

corresponding curves in plot A.The speed profiles were normalized with the average

peak speed in the no force field condition before averaging over subjects.
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Figure 4.6 Peak speed comparison for movements in high diagonal noise force field vs

those in zero noise force field. Blue bar is the average peak speed over last 50 trials

of (Day 3 Block 4) for all subjects from ZV group while black bar is the average peak

speed over the 50 trials of (Day 3 Block 5) for all subjects from the HV-Diag group.

The error bars indicate the standard error over subjects(n=8 for blue bar and n=6

for black bar)
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trying to probe the role of the learner’s uncertainty about the world in the control

policy followed by the learner.

The task was a via-point task. The subject’s task was to pass through a via-point

at a specific ‘via-point time’ and then reach the target before a certain ‘movement

time’. The task constraints used i.e. via-point time, movement time, target and

via-point distance were exactly the same as those used for the simulations related

to the via-point task in the ‘Model Predictions’ section. After each trial the subject

was given feedback about his/her actual timing by showing them arrows indicating

difference between their actual time of passing the via point and the required time of

passing through via point. The subjects were shown a blue filled square at the target

if they were slower than required to reach the target. Correct timings were rewarded

with visual explosions of the via point and the target. A score of the number of times

subjects were able to get the timings right during each block was constantly displayed

on the screen. Subjects were motivated to perform good on the task by offering them

remuneration proportional to their score on the task.

The sequence of blocks for the experiment is shown in Table 4.3. The force field

used for this experiment was an unbiased force field i.e. the expected value of the

elements of matrix B (Eqn 3.1 defining the force field was zero. Subjects were trained

to do the task for 150 trials during the first block in a zero variance force field (ZV

force field). Now, since the field used was unbiased, ZV force field essentially means

making movements in a null environment with no external forces acting on the hand.
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Then for the following 4 blocks, subjects were trained to do the task in an unbiased

high variance force field (HV force field). The variance of this force field was the same

as that used for the HV case in the via-point task simulations shown in Fig ??. Then

subjects were trained to make movement in the ZV force field again for subsequent

three blocks.

Table 4.3 Experimental protocol for via-point task
Block 1 Block 2 Block 3 Block 4
ZV force field HV force field HV force field HV force field
Block 5 Block 6 Block 7 Block 8
HV force field ZV force field ZV force field ZV force field

Fig. 4.7 shows the results of the experiment. In plot A of the figure, the black

curve shows the average trajectory over subjects for the no force field condition in

the first block. This curve was obtained by averaging the trajectories for each subject

over the last 50 trials of Block 1 and then by averaging the average trajectory over

subjects. The red curve was derived in a similar way from last 50 trials of the last

force field training block (i.e. Block 5). Plot B from Fig. 4.7 shows the average speed

profiles for the same blocks as those for the average trajectories in plot A. The gray

shading in both the plots indicates the standard error over subjects. The average

trajectories are more or less similar for the high variance (HV) and zero variance(ZV)

conditions as predicted by the model. But the important thing is dramatic change in

the average speed profile from the ZV condition to the HV condition. As predicted by

the model (Fig. 3.5), to reduce the variability of position at the via-point, the learner
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should start reducing his/her speed when close to the via-point and then increase the

speed again after crossing the via-point to reach the target in time. This leads to

generation of a characteristic speed profile with two peaks, as can be clearly seen in

the results of the experiment for the HV condition.

Fig. 4.8 shows a bar plot comparing the average speeds at the via-point crossing

time over subjects for the ZV condition (calculated for the last 50 trials of Block 1)

vs the HV condition (calculated for the last 50 trials of Block 5). The error bars

indicate the standard error over subjects.
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Figure 4.7 Average trajectory and speed profile comparison for the via-point task in

zero variance unbiased force field vs that in high variance unbiased force field. Plot

A: The black curve shows the average trajectory for the zero variance force field case

(averaged over last 50 trials of Block 1 and then averaged over subjects). The red curve

shows similarly calculated average trajectory for last high variance force field training

block (Block 5). Plot B: The speed profiles for corresponding average trajectories in

plot A. The gray shading indicates standard error over subjects(n=11).The speed

profiles were normalized with the average peak speed in the zero variance unbiased

force field condition before averaging over subjects.
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Figure 4.8 Via-point speed comparison for via-point task in high variance unbiased

force field vs that in zero noise unbiased force field. Black bar is the average via-point

speed over last 50 trials of Block 1(ZV) for all subjects while red bar is the average

via-point speed over the 50 trials of Block 5(HV) for all subjects. The error bars

indicate the standard error over subjects(n=11)
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Chapter 5

Discussion and Conclusion

Traditionally motor control theories have focused on trying to explain the observed

human behavior in perturbed motor environments by proposing several different crite-

ria for optimization. [10][23][9]. However, all these theories proposed that the redun-

dancy in the possible ways of successful achievement of a behavioral goal is removed

by calculation of a ’desired trajectory’ during a ’trajectory planning’ phase. The job

of the motor controller is to try to execute this ’desired trajectory’ as faithfully as

possible for guaranteed achievement of the goal. However, based on the observation

that the trial to trial variability is higher in task irrelevant movement parameters as

compared to task relevant movement parameters, Todorov and Jordan [21] proposed

optimal feedback control as a theory of motor control. According to this theory the

controller instead of calculating a ’desired trajectory’ calculates an ’optimal policy’

for successful achievement of a behavioral goal in a novel motor environment. This
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optimal policy helps the controller to delay taking the optimal action till the last

moment to take advantage of every possible task completion opportunity created due

to deviation from the average trajectory.

Human beings are believed to have ’Internal Models’ of the working of their own

body and the surrounding environment. Having such predictive models is necessary

for predicting the consequences of one’s own actions, which is extremely useful for

online control of a movement when the only feedback available comes from noisy

delayed sensors. Changes in these internal models should presumably lead to re-

optimization of the policy followed by the motor controller to achieve a behavioral

goal. We hypothesized that there is no reason for the internal models to only have a

representation of the expected value of it’s parameters. The internal models should

infact have a representation of uncertainty in it’s parameters to be able to better

accomplish motor tasks in a novel motor environment.

Solution of the ’stochastic optimal feedback control’ optimization problem by

Todorov [20] gave us a framework to think about the effects of biologically plau-

sible noises in the internal model on the optimal motor policies followed by the motor

controller to successfully accomplish a behavioral goal. Through a small change in

Todorov’s model formulation, we were able to obtain a representation of model pa-

rameter uncertainty in the internal model. This stochastic optimal control problem

with an enhanced internal model could be done by simply following the methodology

in [20].
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Now that we had a framework to understand the consequences of various kinds

of uncertainties in the internal model, we could predict the optimal policies that the

controller should ideally follow in various situations. We focused our attention on

the viscous curl force field paradigm [18]. We predicted the average behavior of the

controller for optimal policies formulated with internal models of different forms of

uncertainties and and validated them experimentally.

One of the important outcomes of our experiments has been substantial evidence

contrary to the idea of the objective of the controller being to converge on to a de-

sired straight line trajectory even when making reaching movements in a viscous curl

force field. Traditionally due to the presence of catch trials or the no force field trials

during the training phase for force fields, the curvature in the movements was proba-

bly reduced and went unnoticed. Theoretically, adding catch trials is like increasing

the learner’s uncertainty regarding the force field parameters. Now, according to our

model predictions for reaching task in a biased viscous curl force field (Fig 3.1), the

average trajectory becomes more and more straighter as the learner’s uncertainty re-

garding the model parameters increases. This could explain the straighter trajectories

observed in training with catch trials [5]. Our experiment with constant viscous curl

force field training for making movements in a single direction for three days showed

strong evidence for the change in the optimal policy followed by the controller for

the changed motor environment (i.e. the force field), in accordance with the model

predictions, and no tendency to converge on to the straight line trajectory. This pre-
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diction of curved trajectory was observed in human behavior for both clockwise and

counterclockwise force fields.

The most important result of the experiments was the demonstration of the effect

of change in mere uncertainty (with constant expected value) of model parameters

on change in optimal policy followed by the motor controller. Both the tasks that we

trained people on (i.e. the reaching task and the via-point task) demanded presence

at particular spatial locations at a specific times during the movement for successful

completion of the task. The viscous curl force field is a velocity dependent force field

by its very definition. So introducing uncertainty in the force field parameters implies

introducing an uncertainty in the internal model proportional to the velocities. So,

intuitively one would expect the controller to try to minimize movement speed just

before arriving at constrained spatial locations in order to minimize uncertainty at

these constrained spatial locations, which is exactly what the model predicted and

we qualitatively validated these predictions through experiments.

5.1 Future work

The dynamical system we used for our simulations was a linear dynamical problem

since the solution to the stochastic optimal control problem was only available for lin-

ear dynamical systems. The model based on a linear dynamical system although not

having an accurate representation of the dynamics of the arm, serves as an excellent

qualitative predictor for human reaching behavior in novel environments. However,
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with recent approximations to the solution of the stochastic optimal control problem

available for non-linear dynamical systems[22], we can have better model predictions

for behavior in novel environments which might even be able to numerically match

observed behavior.

Our analysis of the experimental results has focused on the average trajectories

observed after completion of the optimization process. However, we still lack an

understanding of how exactly this optimization might be progressing over training

time. More experiments specifically designed to address this issue need to be done

to improve our understanding of the formulation of optimal motor policies in novel

environments.

One more interesting aspect of the movements in environments with different levels

of uncertainties in dynamical model parameters is the variation of the ‘variance’ of

hand path over the course of the movements. For the simple point-to-point reaching

task, one would expect the movement variance to be small at the starting position

and the target and to be higher in the middle part of the movement since the exact

trajectory followed to move from the starting position to the target doesn’t interfere

with task constraint i.e. being at the target before certain time after starting the

movement [21]. Similarly, the variance of the trajectory for the parts of the movement

between the starting position and the via-point and the via-point and the target is

expected to be greater than that at the starting position, via-point and the target.

However, we still don’t know how exactly the variance of the trajectory varies with
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change in the dynamical model parameter uncertainties.
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Appendix A

Solving for the Optimal Controller

and the Optimal Estimator with

model parameter uncertainty

A.1 Optimal Control Policy

The system dynamics are expressed as following

Dynamics xt+1 = Axt + But + ξt +
d∑

i=1

εi
tCixt +

d∑
i=1

γi
tC̄iut (A.1)

Feedback yt = Hxt + ωt +
d∑

i=1

εi
tDixt (A.2)

Cost per step cpst = xT
t Qtxt + uT

t Rut (A.3)
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All the notations have the same meaning as described in Table 2.1. The state estimate

of the dynamic system is assumed to be updated according a linear recursive filter

for analytical tractability

x̂t+1 = Ax̂t + But + Kt (yt −Hx̂t) + ηt (A.4)

We define the estimation error as et = xt − x̂t Now, we can show through induction

that the optimal cost-to-go function or the cost expected to accumulate under the

optimal control law after a time step t has the quadratic form

vt (xt, x̂t) = xT
t Sx

t xt + (xt − x̂t)
T Se

t (xt − x̂t) + st (A.5)

= xT
t Sx

t xt + eT
t Se

t et + st (A.6)

Now, consider an optimal control law denoted by ut = π (x̂t). Let vπ
t (xt, x̂t) be the

cost-to-go function corresponding to the optimal control law. Since the control law

π (x̂t) is optimal for all time points t+1, ..., n, the cost-to-go function satisfies vπ
t+1 =

vt+1. Given this condition, the cost-to-go function satisfies the Bellman equation: [20]

vπ
t (xt, x̂t) = xT

t Qtxt + π (x̂t)
T Rπ (x̂t) + E [vt+1 (xt+1, x̂t+1) |xt, x̂t, π]

From Eqn A.4 and Eqn A.2

x̂t+1 = Ax̂t + But + Kt

(
Hxt + ωt +

d∑
i=1

εi
tDixt −Hx̂t

)
+ ηt (A.7)

Hence, using Eqn A.1 and the definition of et, we get

et+1 = (A−KtH) et + ξt −Ktωt − ηt +
d∑

i=1

(
εi

tCixt + γi
tC̄iπ (x̂t)− εi

tKtDixt

)
(A.8)
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Now we will calculate the expected values and the covariance matrices of the random

variables of our interest xt+1 and et+1, which shall be useful in calculating the cost-

to-go function.

E [xt+1|xt, x̂t, π] =Axt + Bπ (x̂t) (A.9)

E [et+1|xt, x̂t, π] = (A−KtH) et (A.10)

Cov [xt+1|xt, x̂t, π] =Ωξ +
d∑

i=1

(
Cixtx

T
t CT

i + C̄iπ (x̂t) π (x̂t)
T C̄T

i

)
(A.11)

Cov [et+1|xt, x̂t, π] =Ωξ + KtΩ
ωKT

t + Ωη+

d∑
i=1

(
Cixtx

T
t CT

i + C̄iπ (x̂t) π (x̂t)
T C̄T

i + KtDixtx
T
t DT

t KT
t

)

(A.12)

Using the relations derived in Eqn A.5, Eqn A.1 and the expected values and covari-

ances we just calculated, we get

vπ
t (xt, x̂t) = xT

t Qtxt + π (x̂t)
T Rπ (x̂t) + E

[
xT

t+1S
x
t+1xt+1 + eT

t+1S
e
t+1et+1 + st+1

]

(A.13)

Now using the relation

E
[
xT Ax

]
= Tr (AΣ) + cT Ac (A.14)

where Σ = V ar[x] and c = E[x], we get
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vπ
t (xt, x̂t) =xT

t Qtxt + π (x̂t)
T Rπ (x̂t) + (Axt + Bπ (x̂t))

T Sx
t+1 (Axt + Bπ (x̂t)) +

((A−KtH) et)
T Se

t+1 ((A−KtH) et) + st+1+

Tr

(
Sx

t+1

(
Ωξ +

d∑
i=1

(
Cixtx

T
t CT

i + C̄iπ (x̂t) π (x̂t)
T C̄T

i

)))
+

Tr

(
Se

t+1

(
Ωξ + KtΩ

ωKT
t + Ωη +

d∑
i=1

C̄iπ (x̂t) π (x̂t)
T C̄T

i

))
+

Tr

(
Se

t+1

(
d∑

i=1

(
Cixtx

T
t CT

i + KtDixtx
T
t DT

i KT
t

)
))

(A.15)

Using the property

Tr
(
xyT

)
= yT x

where x and y are vectors, we get

vπ
t (xt, x̂t) =xT

t

(
Qt + AT Sx

t+1A +
d∑

i=1

(
CT

i

(
Sx

t+1 + Se
t+1

)
Ci + DT

i KT
t Se

t+1KtDi

)
)

xt+

eT
t (A−KtH)T Se

t+1 (A−KtH) et + st+1+

π (x̂t)
T

(
R + BT Sx

t+1B +
d∑

i=1

C̄T
i

(
Sx

t+1 + Se
t+1

)
C̄i

)
π (x̄) +

2π (x̂t)
T BT Sx

t+1Axt + Tr
(
Sx

t+1Ω
ξ + Se

t+1

(
Ωξ + KtΩ

ωKT
t + Ωη

))

(A.16)
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Let us define some symbols to make our equations compact

Nt =
d∑

i=1

(
CT

i

(
Sx

t+1 + Se
t+1

)
Ci + DT

i KT
t Se

t+1KtDi

)

C̄t =
d∑

i=1

(
C̄T

i

(
Sx

t+1 + Se
t+1

)
C̄i

)

Mt =Sx
t+1Ω

ξ + Se
t+1

(
Ωξ + KtΩ

ωKT
t + Ωη

)

Using these symbols, the cost-to-go function becomes

vπ
t (xt, x̂t) =xT

t

(
Qt + AT Sx

t+1A + Nt

)
xt + eT

t (A−KtH)T Se
t+1 (A−KtH) et+

st+1 + π (x̂t)
T (

R + BT Sx
t+1B + C̄t

)
π (x̂t) + 2π (x̂t)

T BT Sx
t+1Axt+

+ Tr (Mt) (A.17)

The cost-to-go function is, however, a function of the real state xt, which is not

available to the controller. The only thing available to the controller is the state

estimate x̂t. So, we take the expected value of the cost-to-go function over the true

state and minimize it w.r.t. the control policy π

E [vπ
t (xt, x̂t) |x̂t] =constant + π (x̂t)

T (
R + BT Sx

t+1B + C̄t

)
π (x̂t) +

2π (x̂t)
T BT Sx

t+1Ax̂t (A.18)

Minimizing this expectation w.r.t. the control policy π, we get the optimal control

policy

ut = π (x̂t) = −Ltx̂t;

Lt =
(
R + BT Sx

t+1B + C̄t

)−1
BT Sx

t+1A (A.19)
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We found the optimal control policy but we still need to figure out how to obtain the

matrices st,S
x
t and Se

t . Substituting ut = −Ltx̂t in the Eqn A.17

vπ
t (xt, x̂t) =xT

t

(
Qt + AT Sx

t+1A + Nt

)
xt + eT

t (A−KtH)T Se
t+1 (A−KtH) et+

st+1 + (−Ltx̂t)
T (

R + BT Sx
t+1B + C̄t

)
(−Ltx̂t) +

2 (−Ltx̂t)
T BT Sx

t+1Axt + Tr (Mt) (A.20)

Now using LT
t

(
R + BT Sx

t+1B + C̄t

)
Lt = LT

t BT Sx
t+1A = AT Sx

t+1BLt

vπ
t (xt, x̂t) =xT

t

(
Qt + AT Sx

t+1A + Nt

)
xt + eT

t (A−KtH)T Se
t+1 (A−KtH) et+

st+1 + Tr (Mt) + x̂T
t LT

t BT Sx
t+1Ax̂t − 2x̂T

t LT
t BT Sx

t+1Axt+

xT
t LT

t BT Sx
t+1Axt − xT

t LT
t BT Sx

t+1Axt

vπ
t (xt, x̂t) =st+1 + Tr (Mt) + xT

t

(
Qt + AT Sx

t+1A + Nt − AT Sx
t+1BLt

)
xt

+ eT
t (A−KtH)T Se

t+1 (A−KtH) et + (xt − x̂t)
T LT

t BT Sx
t+1A (xt − x̂t)

vπ
t (xt, x̂t) =st+1 + Tr (Mt) + xT

t

(
Qt + AT Sx

t+1 (A−BLt) + Nt

)
xt+

eT
t

(
(A−KtH)T Se

t+1 (A−KtH) + AT Sx
t+1BLt

)
et

Comparing with vπ
t (xt, x̂t) = xtS

x
t xt + eT

t Se
t et + st, we get

st = st+1 + Tr (Mt) (A.21)

Sx
t = Qt + AT Sx

t+1 (A−BLt) + Nt (A.22)

Se
t = (A−KtH)T Se

t+1 (A−KtH) + AT Sx
t+1BLt (A.23)

Thus, we showed that the cost-to-go function remains in the assumed quadratic form

shown in Eqn A.5 for any time step t given that it is true for the time step t + 1,
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completing the induction proof.

A.2 Optimal Estimator

According to the assumption in the previous section of Kalman gains not being

functions of x and x̂, we need to minimize the unconditional expectation of the cost-

to-go function vt+1 with respect to Kt

E [vt+1 (xt+1, x̂t+1)] = Ext,x̂t [E [vt+1 (xt+1, x̂t+1) |xt, x̂t, Lt]] (A.24)

taking only the terms involving Kt in the expression for E [vt+1 (xt+1, x̂t+1) |xt, x̂t, Lt]

f (Kt) = ((A−KtH) et)
T Se

t+1 ((A−KtH) et) +

Tr
(
Se

t+1

(
KtΩ

ωKT
t + KtDixtx

T
t DT

i KT
t

))

f (Kt) =eT
t (A−KtH)T Se

t+1 (A−KtH) et+

Tr
(
Se

t+1Kt

(
Ωω + Dixtx

T
t DT

i

)
KT

t

)

Using Tr (AB) = Tr (BA)

f (Kt) =eT
t (A−KtH)T Se

t+1 (A−KtH) et+

Tr

(
Kt

(
Ωω +

d∑
i=1

Dixtx
T
t DT

i

)
KT

t Se
t+1

)

Using the Eqn A.14 and defining

a (Kt) = Ext,x̂t [f (Kt)] ; Σx
t = E

[
xtx

T
t

]
; Σe

t = E
[
ete

T
t

]
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we get the unconditional expectation of the Kt dependent expression in the cost-to-go

function

a (Kt) =Tr
(
(A−KtH)T Se

t+1 (A−KtH) Σe
t

)
+

Tr

(
Kt

(
Ωω +

d∑
i=1

DiΣ
x
t DT

i

)
KT

t Se
t+1

)

a (Kt) =Tr
(
constant + HT KT

t Se
t+1KtHΣe

t −HT KT
t Se

t+1AΣe
t − AT Se

t+1KtHΣe
t

)
+

Tr

(
Kt

(
Ωω +

d∑
i=1

DiΣ
x
t DT

i

)
KT

t Se
t+1

)

using Tr(ABC) = Tr(BCA) = Tr(CAB)

a (Kt) =Tr
(
constant + KT

t Se
t+1KtHΣe

t H
T −KT

t Se
t+1AΣe

t H
T −KtHΣe

t A
T Se

t+1

)
+

Tr

(
Kt

(
Ωω +

d∑
i=1

DiΣ
x
t DT

i

)
KT

t Se
t+1

)
(A.25)

using the properties

∂Tr (XA)

∂X
=AT ,

∂Tr
(
XT A

)

∂X
= A and

∂Tr
(
XT BXC

)

∂X
=

∂Tr
(
XCXT B

)

∂X
= BXC + BT XCT

we can minimize the unconditional expectation of the Kt dependent expression in the

cost-to-go function w.r.t Kt

∂Tr (a (Kt))

∂Kt

=Se
t+1KtHΣe

t H
T + Se

t+1Kt

(
HΣe

t H
T
)T − Se

t+1AΣe
t H

T−

(
HΣe

t A
T Se

t+1

)T
+ 2Se

t+1Kt

(
Ωω +

d∑
i=1

DiΣ
x
t DT

i

)
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∂Tr (a (Kt))

∂Kt

=2Se
t+1Kt

(
HΣe

t H
T + Ωω +

d∑
i=1

DiΣ
x
t DT

i

)

− 2Se
t+1AΣe

t H
T

setting the derivative to zero and solving for Kt, we get

Kt = AΣe
t H

T

(
HΣe

t H
T + Ωω +

d∑
i=1

DiΣ
x
t DT

i

)−1

(A.26)

Thus, we obtained a relation for calculating the optimal kalman gains over the course

of a movement. But, we still need to find out a way to calculate the covariance

matrices Σx̂, Σe and Σx̂e. We calculate these matrices in a forward pass through

time. Since the variables x, x̂ and e are deterministically related, we can calculate

the covariance for the third variable given we know the covariance for two variables.

We choose to calculate the covariance matrices for x̂ and e since the equations are

most compact for these variables [20]. Given the covariances of x̂ and e, the covariance

of variable x is given by

Σx
t = E

[
(e + x̂) (e + x̂)T

]
= Σe

t + Σx̂
t + Σx̂e

t + Σx̂eT

t (A.27)

Now, from Eqn A.7

x̂t+1 =Ax̂t + But + Kt

(
Hxt + ωt +

d∑
i=1

εi
tDixt −Hx̂t

)
+ ηt

x̂t+1 =Ax̂t + But + Kt

((
H +

d∑
i=1

εi
tDi

)
(et + x̂t) + ωt −Hx̂t

)
+ ηt

x̂t+1 =

(
A−BLt + Kt

d∑
i=1

εi
tDi

)
x̂t + Kt

(
H +

d∑
i=1

εi
tDi

)
et+

Ktωt + ηt (A.28)
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Similarly, from Eqn A.8

et+1 = (A−KtH) et + ξt −Ktωt − ηt+

d∑
i=1

(
εi

tCixt + γi
tC̄iπ (x̂t)− εi

tKtDixt

)

et+1 = (A−KtH) et + ξt −Ktωt − ηt+

d∑
i=1

((
εi

tCi − εi
tKtDi

)
(et + x̂t)− γi

tC̄iLtx̂t

)

et+1 =

(
A−KtH +

d∑
i=1

(
εi

tCi − εi
tKtDi

)
)

et + ξt −Ktωt − ηt+

(
d∑

i=1

(
εi

tCi − εi
tKtDi − γi

tC̄iLt

)
)

x̂t (A.29)

Now, we know that

Σx̂t
t = E

[
x̂tx̂

T
t

]
; Σe

t = E
[
ete

T
t

]
; Σx̂e

t = E
[
x̂te

T
t

]
(A.30)

Using these definitions,

Σx̂
t+1 = (A−BLt) Σx̂

t (A−BLt)
T + Kt

(
d∑

i=1

DiΣ
x̂
t DT

i

)
KT

t + KtHΣe
t H

T KT
t +

Kt

(
d∑

i=1

DiΣ
e
t D

T
i

)
KT

t + KtΩ
ωKT

t + Ωη + (A−BLt) Σx̂e
t HT KT

t +

2Kt

(
d∑

i=1

DiΣ
x̂e
t DT

i

)
KT

t + KtHΣx̂e
t (A−BLt)

T
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Simplifying

Σx̂
t+1 = (A−BLt) Σx̂

t (A−BLt)
T + Kt

(
d∑

i=1

Di

(
Σx̂

t + Σe
t + Σx̂e

t

)
DT

i

)
KT

t + Ωη+

+ Kt

(
HΣe

t H
T + Ωω

)
KT

t + (A−BLt) Σx̂e
t HT KT

t + KtHΣx̂e
t (A−BLt)

T

(A.31)

Now calculating the covariance of variable e,

Σe
t+1 =

(
A−KtH +

d∑
i=1

(
εi

tCi − εi
tKtDi

)
)

Σe
t

(
A−KtH +

d∑
i=1

(
εi

tCi − εi
tKtDi

)
)T

+

(
d∑

i=1

(
εi

tCi − εi
tKtDi − γi

tC̄iLt

)
)

Σx̂
t

(
d∑

i=1

(
εi

tCi − εi
tKtDi − γi

tC̄iLt

)
)T

+

(
A−KtH +

d∑
i=1

(
εi

tCi − εi
tKtDi

)
)

Σx̂eT

t

(
d∑

i=1

(
εi

tCi − εi
tKtDi − γi

tC̄iLt

)
)T

+

(
d∑

i=1

(
εi

tCi − εi
tKtDi − γi

tC̄iLt

)
)

Σx̂e
t

(
A−KtH +

d∑
i=1

(
εi

tCi − εi
tKtDi

)
)T

+
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ωKT
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Σe
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d∑

i=1

(
CiΣ

e
t C

T
i + KtDiΣ

e
t D

T
i KT

t

)
+

d∑
i=1

(
CiΣ
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t CT

i + KtDiΣ
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t DT

i KT
t + C̄iLtΣ

x̂
t LT

t C̄T
i

)
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ωKT
t + Ωη+
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(
Ci

(
Σx̂e

t + Σx̂eT

t

)
CT

i + KtDi

(
Σx̂e
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t

)
DT
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)
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Simplifying further

Σe
t+1 = (A−KtH) Σe

t (A−KtH)T +
d∑

i=1

(
Ci

(
Σx̂

t + Σe
t + Σx̂e

t + Σx̂eT

t

)
CT

i

)
+

Kt

(
d∑

i=1

(
Di

(
Σx̂

t + Σe
t + Σx̂e

t + Σx̂eT

t

)
DT

i

)
+ Ωω

)
+ Ωξ + Ωη+

d∑
i=1

(
C̄iLtΣ

x̂
t LT

t C̄T
i

)
(A.32)

Now calculating the covariance between variables x̂ and e

Σx̂e
t+1 =−Kt

d∑
i=1

DiΣ
x
t DT

i KT
t + KtHΣe

t (A−KtH)T −Kt

d∑
i=1

DiΣ
x̂
t DT

i KT
t −

KtΩ
ωKT

t − Ωη + (A−BLt) Σx̂e
t (A−KtH)T − 2Kt

d∑
i=1

DiΣ
x̂e
t DT

i KT
t

Simplifying

Σx̂e
t+1 =KtHΣe

t (A−KtH)T −Kt

(
d∑

i=1

Di

(
Σx̂

t + Σe
t + 2Σx̂e

t

)
DT

i + Ωω

)
KT

t − Ωη+

(A−BLt) Σx̂e
t (A−KtH)T (A.33)
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Appendix B

Simulation parameters

This section lists the values of simulation parameters used for the simulations

shown in the ’Model Predictions’ section.

B.1 Common Parameters for all simulations

Mass property of the point mass being controlled by the controller in the model

was set to

M =




4.0 0

0 1.5




The time constant for conversion of motor commands u to forces f (Eqn 3.3)was

set to τ = 0.12 sec.
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The observation matrix H (Eqn 2.7) was set so that the feedback vector y was

y = [Px, Py, Vx, Vy, Tx, Ty]

y = [Px, Py, Vx, Vy, viax, viay, Tx, Ty]

for the reach and via-point simulations respectively. All the symbols have the same

meaning as described in the ’Model Predictions’ section.

B.1.1 Noises

The variance of gaussian noise (Ωξ)in system dynamics equation (Eqn 2.7) was

set to a diagonal matrix of the size of the state x with value of all diagonal elements

being 1.

The variance of the gaussian noise (Ωω)in feedback equation (Eqn 2.8)was set to

a diagonal vector with the elements along the diagonal being

[0.08, 0.08, 0.8, 0.8, 0.08, 0.08]

[0.08, 0.08, 0.8, 0.8, 0.08, 0.08, 0.08, 0.08]

for the reach and via-point experiment respectively. Please note that the noise vari-

ances are varied in accordance with elements of the feedback vector y and have units

as the units for the feedback vector elements squared.

The variance of the gaussian noise (Ωη)in the state update equation (Eqn 2.4)

was set to a diagonal matrix of the size of the state estimate vector x̂ with all the
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diagonal elements being 0.3

Please note that although the values for the variances of these noises were chosen

randomly, the effects of uncertainty on the control policy seen in the simulations were

fairly robust with respect to change in the variances of these noises.

The matrix C̄ defining the control dependent noise in the system dynamics equa-

tion (Eqn 2.7) was set to a zero matrix of the size of the matrix B in the system

dynamics equation with the only non-zero elements being C̄51 = C̄62 = 0.01

B.1.2 Cost Function

The matrix Q defining the ’state cost’(Eqn 2.9) was set so that the controller was

penalized for not being at target or the via-point at the required movement time or

via-point time. The penalty was the squared distance of the current position in the

state vector from the target or the via-point scaled by a factor of 20.

The matrix R defining the control cost was set to a diagonal matrix of size 2X2

with the diagonal elements being 0.000000001.

Please note that the size of the effect of uncertainty observed in simulations is

dependent on the ratio of the state cost to the control cost but the effect even if small

can be observed for a wide range of ratios of the cost.
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B.2 Simulation specific parameters

B.2.1 Biased viscous curl force field with off-diagonal and

diagonal noise

For clockwise force field, Z =




0 13

−13 0


 Ns/m.

For counterclockwise force field, Z =




0 −13

13 0


 Ns/m.

Movement time was set to 0.45 sec. The target distance from the starting position

was 9 cm.

Off-diagonal noise

The matrix C defining the state dependent noise in the system dynamics equation

(Eqn 2.7) was set to a zero matrix with the only nonzero elements being C24 = 0.0975

and C42 = −0.26 for the high variance (’HV’) case. The same elements were halved

for the medium variance (’MV’) case.

Diagonal noise

The matrix C defining the state dependent noise in the system dynamics equation

(Eqn 2.7) was set to a zero matrix with the only nonzero elements being C22 = 0.0975

and C44 = −0.26 for the high variance (’HV’) case. The same elements were halved

for the medium variance (’MV’) case.
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B.2.2 Via-point reaching task

The movement time was set to 1.0 sec. The via-point time was 0.4 sec. The

distance of the via-point and target from the starting position was 9cm and 18cm

respectively.

The matrix C defining the state dependent noise in the system dynamics equation

(Eqn 2.7) was set to a zero matrix with the only nonzero elements being C24 = 0.0617

and C42 = −0.1644 for the high variance (’HV’) case. The same elements were halved

for the medium variance (’MV’) case.

All the values of elements of the matrix C correspond to the actual noise levels

tested in the ’Experiments’ section.
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