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Abstract 

When one moves their hand from one point to another, the brain guides the arm by relying on 
neural structures that estimate physical dynamics of the task.  For example, if one is about to lift a 
bottle of milk that appears full rather than empty, the brain takes into account the subtle changes 
in the dynamics of the task and this is reflected in the altered motor commands.  The neural 
structures that compute the task’s dynamics are “internal models” that transform the desired 
motion into motor commands.  Internal models are learned with practice and are a fundamental 
part of voluntary motor control.  What do internal models compute, and which neural structures 
perform that computation?  We approach these problems by considering a task where physical 
dynamics of reaching movements are altered by force fields that act on the hand.  Experiments by 
a number of laboratories on this paradigm suggest that internal models are sensorimotor 
transformations that map a desired sensory state of the arm into an estimate of forces, i.e., a 
model of the inverse dynamics of the task.  If this computation is represented as a population code 
via a flexible combination of basis functions, then one can infer activity fields of the bases from 
the patterns of generalization.  We provide a mathematical technique that facilitates this inference 
by analyzing trial-to-trial changes in performance.  Results suggest that internal models are 
computed with bases that are directionally tuned to limb motion in intrinsic coordinates of joints 
and muscles, and this tuning is modulated multiplicatively as a function of static position of the 
limb.  That is, limb position acts as a gain field on directional tuning.  Some of these properties 
are consistent with activity fields of neurons in the motor cortex and the cerebellum.  We suggest 
that activity fields of these cells are reflected in human behavior in the way that we learn and 
generalize patterns of dynamics in reaching movements. 
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Introduction 
Our arm has inertial dynamics that dictate a complex relationship between motion of the 

joints and torques.  In order to reliably produce even the most simple movements, for example, 
flexion of the elbow, the brain must activate not only elbow flexors, but also shoulder flexors that 
counter the shoulder extension torque that is produced by the acceleration of the elbow.  The 
importance of these interaction forces was quite apparent when engineers were trying to control 
motion of robots [1].  Yet the principle is the same for control of biological limbs, as has been 
confirmed in EMG recordings from the human arm [2].  This has led to the idea that contrary to 
earlier hypotheses [3], passive properties of muscles are not enough to compensate for the 
complex physics of our limbs.  Rather, the brain must predict the specific force requirements of 
the task in generating the motor commands that eventually reach the muscles. 

To illustrate this idea, consider picking up an opaque carton of milk that appears full but 
has been drained empty.   The brain overestimates the mass of the carton by only a couple of 
pounds (the weight of the missing milk) yet the error is sufficient so that the resulting motor 
commands produce a jerky motion of the hand.  The visual appearance of the bottle apparently 
retrieves a motor memory in a neural system that predicts the forces that are necessary to move 
the bottle.  Motor commands are constructed based on this prediction and the predicted forces 
must be accurate if we are to produce smooth movements. 

The accuracy of force prediction is particularly important for control of our arm because 
our hands evolved in large part to support manipulation.  For example, a trip to your local natural 
history museum will confirm that the hand of a chimpanzee has a much longer palm length as 
compared to a human hand.  This means that while we can easily touch our index finger to our 
thumb and hold an object, say a string that is attached to a yo-yo, a chimpanzee’s hand is poorly 
suited for this.  Holding different objects can dramatically change mechanical dynamics of our 
arm.  The neural system that predicts force properties would have to be able to accommodate this 
variability and adapt.   To study the properties of the neural system with which the brain learns to 
predict forces, we have used a paradigm (Fig. 1) where arm dynamics are systematically changed 
through forces on the hand [4].  The subject is provided with a target and asked to reach while 
holding the handle of a robot.  When the robot’s motors are off (null field condition), movements 
are straight (Fig. 1a).  The forces in the field typically depend on the velocity of the hand (Fig. 
1b).  When the field is applied, movements are perturbed (Fig. 1c).  With practice, hand 
trajectories once again become smooth and nearly straight.  The brain’s ability to modify motor 
commands and predict the novel forces is revealed as sudden removal of force in catch trials.  
Very early in training, the hand’s trajectory in the catch trials is a straight path to the target.  With 
further training, trajectories in field trials become straight.  More importantly, the trajectories in 
catch trials (Fig. 1e) become approximately a mirror image of the early, field trials (Fig. 1c).  The 
trajectories in these catch trials are called after-effects. 

Improvement in performance occurs because training results in a change in the motor 
commands.  One possibility is that movements improve because subjects co-contract antagonist 
muscle groups.  This motor strategy can be sufficient to resist perturbations imposed by the robot.  
However, in a catch trial, this kind of adaptation would not produce any after-effects. 

An alternate hypothesis is that the composition of motor commands by the brain relies on 
a neural system that for any given movement direction, predicts the forces that will be imposed 
on the hand by the robot.  One way to do this is to imagine a tape that is played out as a function 
of time for each movement direction.  This tape may be an average record of forces that were 
sensed in the previous movements in that direction.  Mathematically, the inputs to this system are 
direction and time and the output is force.  To test this idea, Conditt et al. [5] trained subjects to 
reach to a small number of targets in a force field and then suddenly asked them to draw a circle 
in the same field.  They reasoned that if what was learned was like a tape recording of the forces 
encountered in reaching to each target, then the neural system that had been trained to predict 
forces in short, brief reaching movements should contribute little to longer, circular movements.  
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However, they found that performance was quite good in circular movements when the field was 
on and, importantly, the subjects showed after-effects when the field was off. 

This suggested that the neural system did not predict forces explicitly as a function of 
time.  Rather, in performing the reaching movements the neural system had learned to associate 
the sensory states of the limb—specially limb position and velocity—to forces.  The particular 
order in which those states were visited and the trajectory at the time they were visited (e.g., in a 
straight line trajectory or in a curved movement) was immaterial.  What was important was the 
region of the state space—the limb’s velocity at a given position—that the reaching movements 
had visited.  If the temporal order of the states were changed from the “training set” in which the 
system had experienced the forces, the neural system could still predict forces because the states 
themselves were part of the initial training set. 

However, one could argue that the reason why the subjects learned to associate states to 
forces, rather than some other input that explicitly included time, was because the force field that 
was imposed on the hand was itself not explicitly time dependent.  Rather, it was dependent on 
hand velocity.  Conditt and Mussa-Ivaldi [6] tested this by asking whether subjects could adapt to 
force fields that explicitly depended on time.  Remarkably, the experimental results indicated that 
they could not.  When a predictable, time-dependent pattern of force was imposed on reaching 
movements, generalization trials (circular movements) suggested that subjects still learned to 
associate states of the arm to forces.  Therefore, the brain’s ability to predict force did not 
explicitly depend on movement time.  Rather, that prediction depended on an input that described 
the desired state of the arm. 

These experiments suggested that with practice, participants learned a sensory to motor 
transformation where a velocity-like input signal was transformed into a force-like output signal.  
This is an internal model of the force field. 

 
Neural correlates of learning internal models of dynamics  

We have not specified how information is represented in this internal model, or how this 
information is acquired through experience.  All we can say at this point is that at the start of 
training the internal model is “empty” (i.e., it predicts zero force for all input states) and after a 
long period of training, it has adapted in the sense that it correctly predicts forces that are 
produced for typical states visited in reaching movements.  However, there is sufficient 
information in this statement to allow us to test whether our formulation thus far is consistent 
with measurements. 

If a simulation of the dynamics of the arm acquires an internal model of a force field, 
what will its trajectories of motion look like?  The dynamics of the arm (in this case, a two-joint 
planar system) are derived from Newton’s laws and are written as equations that describe how the 
limb’s acceleration depends on forces.  They describe how the mass of the limb responds to force 
input from the muscles.  To represent the error feedback system of the muscles and the spinal 
reflexes, we add to the equations a simple low-gain spring-damper element that stabilizes the 
limb about the desired trajectory (the straight line).  To produce a movement, we assume that the 
joint torques are commanded based on knowledge of the inverse dynamics of the limb, i.e., a map 
that transforms the desired sensory state of the limb into torques so that it compensates for the 
arm’s inertial dynamics.  This is an internal model of the arm’s physical dynamics.  These 
equations have been detailed in Shadmehr and Mussa-Ivaldi [4]. 

Initially in training, the simulated internal model has no knowledge of the robot-imposed 
forces.  Because of this, the simulated arm does not move straight to the target (Fig. 1d).  Rather, 
it moves along a trajectory that is similar to what we have recorded in our participants, that is, a 
peculiar hooking pattern [4,7].  Now we change the internal model so that it completely takes into 
account the added dynamics of the force field.  That is, we assume that the internal model is fully 
trained.  If we now simulate a catch trial, the resulting movement (Fig. 1f) is approximately 
mirror image of the field trials early in training.  Therefore, the trajectories that we had recorded 
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in the reaching movements of our subjects are consistent with learning an internal model that 
transformed desired sensory states into forces. 

It is an easy next step to extend the mathematical formulation and predict not just the 
limb’s trajectory before and after the internal model adapts to imposed forces, but also a correlate 
of that adaptation at the level of the neural commands to the muscles.  The equations of motion 
that produced trajectories in Figure 1 included torque generators but not specific muscles.  In 
Thoroughman and Shadmehr [8] we added to these equations constraints regarding function of 
muscles.  The most important constraint was that opposing torques in two antagonistic muscles 
should be inversely proportional.  That is, the more one muscle was activated, the less the 
antagonist was activated.  This assumption allowed us to translate a pattern of expected forces on 
the hand onto changes in muscle activations.  To visualize the changes, we plotted the average 
magnitude of activation for each simulated muscle as a function of movement direction in hand-
centered coordinates and computed a preferred direction (PD) for each muscle [9,10].  The 
preferred direction for a muscle was the direction of movement in Cartesian coordinates centered 
on the hand for which the modeled muscle was most active.  For example, the simulations 
predicted that adaptation of the internal model to a clockwise curl field should accompany a 
clockwise rotation by ~27o for elbow muscles and ~18o for shoulder muscles.  A curl field is a 
particular force field where the forces are always pushing the hand perpendicular to its current 
direction of motion.  In the clockwise version of this, the force vectors are pointing in the 
clockwise direction perpendicular to the direction of hand motion.  EMG in biceps, triceps, 
anterior and posterior deltoids in a group of participants confirmed this prediction [8].  This 
confirmation of the model’s prediction illustrated that one way to represent the change in motor 
commands due to adaptation of the internal model was as rotations in preferred direction of 
muscles. 

The result is not surprising because of course the brain would have to change the 
commands to the muscles if forces are to be produced to counter the effects of the robot imposed 
field.  Rather, the results are useful for the following reasons.  First, because the model predicts 
that for any given field, formation of an internal model should accompany a specific rotation in 
the PD of certain simulated muscles, it provides a compact way by which to quantitatively predict 
the experience-dependent change that should occur in the motor commands.  Second, because in 
the monkey motor cortex, in certain conditions where PD of muscle activation functions had 
changed, so had the PD of some cells in the primary motor cortex [11], one can suggest that the 
rotation in EMG that the model predicts is echoing a similar change in PD of some motor cortical 
cells. 

In an experiment where monkeys learned reaching movements in a clockwise curl field 
[12], Bizzi and colleagues reported that task related cells in M1 underwent a median clockwise 
shift in PD of 16o.  However, whereas we had found that the EMG patterns returned to baseline 
conditions once the field was turned off (i.e., a washed out phase), many cells in the motor cortex 
kept the change in their PD.  Bizzi and colleagues labeled these “memory” cells.  Remarkably, 
whereas the memory cells kept their clockwise change in PD when the force field was turned off, 
another population of cells that had not changed their PD in the force field now changed their PD 
in a counter clockwise direction when the field was removed.  Therefore, after completion of 
training and return to a null field condition, distinct population of cells maintained the effect of 
the field in terms of rotations in their PD.  As demonstrated many times previously, the cells in 
M1 are not simply upper motorneurons.  Rather, in this case there are likely involved in 
representing the memory of the internal model. 

If motor cortex was involved in representing the internal model, what might be a testable 
behavioral consequence of this hypothesis?  One of the consistent properties of task related cells 
in M1 is that if a cell is active for reaching movement to a group of targets at one arm 
configuration, it is also likely to be active when the configuration of the arm is changed and the 
targets are moved to the new workspace.  However, the change in the workspace often results in a 
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change in the PD of cells.  The PD of a typical M1 cell will rotate approximately with the 
shoulder angle [13,14].  The reason for this rotation is possibly the observation that many M1 
cells are sensitive to force requirements of the task.  Sergio and Kalaka [11] trained monkeys to 
generate isometric force ramps in 8 spatially constant directions in a horizontal plane while 
holding the arm in 9 different locations in a 16 cm diameter workspace.  Typically, M1 activity 
was directionally tuned for the direction of isometric force in any given arm location in the 
workspace.  However, many cells showed small but systematic shifts of directional tuning at 
different workspace locations even though the output force was in a constant spatial direction.  
On average, there was a significant clockwise rotation of cell PDs from the central hand location 
to locations to the right, and a significant counter clockwise rotation of cell PDs for hand position 
to the left.  These rotations were consistent with the rotation of PDs in the shoulder and elbow 
muscles of the arm in the same task. 

Because the memory cells that Bizzi and colleagues found [12] were sensitive to changes 
in force properties of the task, i.e. their PDs rotated as the task was changed from a null field to a 
curl field, we can hypothesize that these cells might be “muscle-like”.  By this, we mean that their 
PDs will change as the workspace in which the reaching movements are done changes.  We 
would expect that their PDs will rotate with the shoulder in a way similar to rotation of PDs in 
arm muscles in the same task.  Imagine that the force field related changes in PD and the posture 
related changes in PD are cumulative.  Then training in one workspace should result in the 
rotation of PDs by a certain amount, and translation of the arm to a new workspace should result 
in an additional rotation by an amount approximately equal to the rotation in the shoulder joint.  
At the new workspace, despite the fact that no prior training had taken place there, an effect of the 
training elsewhere should be observed, i.e., we should observe generalization.  This is a 
behavioral prediction of the model. 

However, it is certainly not the case that all M1 cells are “muscle-like” in their tuning 
properties.  In many instances, experiments have demonstrated that a significant portion of cells 
in M1 code for parameters of reaching movements in extrinsic coordinates [15,16].  Indeed, in 
their force field learning experiment, Bizzi and colleagues [12] found that 34% of M1 cells that 
they recorded had tuning properties that remained invariant despite the changes in force 
properties of the task (labeled as “kinematic” cells).  One would predict that these kinematic cells 
would not change their PD with the configuration of the arm.  Therefore, our hypothesis assumes 
that M1 cells that have more muscle-like properties, i.e., change their discharge patterns in a way 
that correlates with changes in muscle activations, would be predicted to be the ones that 
contribute most to the representation of internal models for dynamics of reaching movements. 

 
Generalization as a function of arm’s position 

Because M1 cells that have muscle-like properties in their tuning tend to rotate their PD 
with the shoulder angle, learning an internal model with these cells should result in a specific 
pattern of generalization. For example, consider adaptation to a force field described by 1B=f x , 
where f is a force vector acting on the hand, x  is a hand velocity vector, and B1=[-11, -11; -11, 
11] N.sec/m.  This is a “saddle field” (Fig. 1b) where movements toward 120o and 300o encounter 
a resistive force and movements toward 210o and 30o encounter an assistive force.  If the right 
arm is near the horizontal plane and the shoulder is flexed so that the hand is at a “left” 
workspace (meaning that reaching movements are performed in a flexed posture for the 
shoulder), preferred direction of triceps is about 90o.   When a subject trains in the field, one 
observes a 30o clockwise rotation in the PD of triceps.  Now imagine that there are cells in the 
motor cortex that also rotate their PD by an amount similar to this.  If we now take the subject’s 
arm and extend the shoulder so that the hand is at a right workspace, we would expect that M1 
cells that were directionally tuned with the arm in the left workspace to also be directionally 
tuned when the hand is at the right workspace.  Furthermore, we would expect that on average, 
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the 90o clockwise rotation in the shoulder joint should cause the PD of these cells to rotate by an 
average of 90o.  So for a motor cortical cell that was “muscle-like” and had a PD of say 180o at 
the left workspace, adaptation to the field at that workspace should cause the PD to change to 
150o (i.e., 180o–30o), and movement of the hand to the right workspace should bring the PD to 60o 
(i.e., 180o–30o–90o).  If the subject had not practiced movements in the field, this cell would have 
a PD of 90o.  Therefore, the effect of training at the left workspace should be observable in terms 
of the behavior of the hand at the right workspace if the “memory cells” that rotated their PD at 
the left workspace maintain their relative rotation at the right workspace.  In terms of forces, this 
corresponds to a field where the relative rotation of the muscle PDs is maintained as a function of 
the shoulder angle. 

One can approximate such a force field by transforming forces on the hand at the “left” 
workspace to joint torques, and then transforming the torques back to hand forces at the “right” 
workspace [17].  For our saddle field, this procedure produces the surprising result that a 90o 
rotation in the shoulder results in a 180o rotation of the matrix B1.  This theoretical result means 
that the force field described by B1 should be generalized to –B1 at the right workspace.  We were 
intrigued by this prediction because we had earlier observed that if one adapts to field B and then 
is given field –B in the same workspace, performance in –B is absolutely terrible.  In fact, 
performance in –B for these subjects is far worse than performance of naïve subjects in the same 
field [18].  The model now predicted that if after training in B we simply moved the subject’s arm 
to a new location, we would see that performance in –B is quite good.  Experiments confirmed 
this prediction [17].  The results suggested the intriguing theory that not only the motor cortex 
might take part in representing the memory of the internal model, but that the properties of 
activity fields (or tuning) of cells in M1 might be related to the behavioral patterns of 
generalization in force fields.  The property of activity fields that is relevant in this case is the 
change in PD as a function of shoulder angle. 

 
Computing an internal model with a population code 

How does one test the idea that activity fields of certain cells influence patterns of 
generalization during learning of reaching movements?  Alternatively, how does one infer the 
shape of the activity fields from the patterns of behavioral generalization?  We need to advance 
beyond a description of the input-output variables that are encoded by internal models (sensory 
state of the arm and force, respectively) and consider how the transformation from input to output 
might take place.  That is, we must first consider how the central nervous system might compute 
internal models. 

One of the most widely used models of neural computation is population coding.  While 
the idea of using populations of neurons to code variables of interest is old [19], it has become a 
compelling tool since it was combined with a simple decoding strategy called a population vector 
to reconstruct the direction of reaching movements from cells in M1 [20]. To motivate our 
approach, let us put aside for now the problem of predicting force as a function of velocity and 
consider the simpler problem of representing direction of movement of the hand.  Georgopoulos 
et al. [20] recorded from a collection of cells in M1 and asked whether one could estimate 
direction of a reaching movement from the discharge of cells.  Each cell had a preferred direction 
of movement, a vector of unit length wi.   The movements were in a plane.  Therefore, w is a 2D 
vector that might point along any direction about a unit circle.  In a given trial, imagine that the 
movement direction is θ, and each cell i discharges by amount ri.  This discharge can be 
decomposed into two terms.  The first term is an average response gi(θ) which represents the 
cell’s tuning curve as computed over many movements to various directions.  The second term is 
noise ni that we might encounter at any given trial i: 

iii ngr += )(θ  
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In this equation, the first term is the tuning curve of the cell and the second term is noise.  
Experiments show that the tuning curve is typically a cosine-like function of movement direction 
and has a half-width at half-height value of approximately 56o [21].  The second term is noise that 
cannot be accounted for by the “input” (target direction).  Experiments suggest that this noise 
term (for neurons in the visual cortex) is often normally distributed with a variance that is 
proportional to the mean value of the tuning function [22].  If cells did not have this noise and we 
could record from a large number of cells at the same time, we would note that cell j happened to 
fire most during some movement and estimate the movement direction θ̂ to be the preferred 
direction of that cell: 

ˆ
jθ = w  

This is a winner-take-all coding.  However, because cells are noisy, our estimate would 
have a large variance from trial to trial, even though the actual direction of movement did not 
change.  A better approach is a population code [20].  In this approach, each cell’s discharge is 
weighted by its preferred direction vector.  The sum of these vectors produces the estimate of 
movement direction: 

ˆ ( )i i i i i i
i i

r g nθ θ= = +∑ ∑w w w  

This approach is better in the sense that it produces a smaller variance in its estimate from 
trial to trial (when the movement direction is fixed) than in the winner-take-all approach.  In fact, 
if the tuning curves were exactly cosine functions, the estimate would be optimal in the sense that 
its variance would be as small as possible [23].  Therefore, the success of population coding 
depends on computing with neurons that broadly encode the input variable.  Where this condition 
has been approximately met, experiments have generally demonstrated that a population code 
could successfully be used to estimate the input variable from noisy neuronal discharge [20,24]. 

The example of population coding above is an instance of neural computation of an 
identity map, i.e., a map where the output is an estimate of the input variable.  In general, a 
population code could also be used to map an input variable x into any other variable y [25,26].  
In this case, the tuning curves of the neurons that participate in this computation become the basis 
functions with which the output is approximated.  Basis functions are a set of functions such that 
when they are linearly combined, they can approximate almost any linear or non-linear function.  
For example, Pouget and Sejnowski [27] suggested that neurons in the parietal cortex might serve 
as basis functions with which the brain could compute position of a visual target with respect to 
the head.  Cells in this region of the brain typically have a discharge r that is modulated by both 
position of the eye xe in the orbit and position of the target on the retina xr.  These cells have a 
preferred position on the retina where discharge is maximum, and this discharge is modulated 
approximately linearly with the position of the eye [28].  The tuning function of a cell i can be 
labeled as gi(xe,xr).  Using a weighted sum of these functions, one could estimate position of the 
target with respect to the head: 

ˆ ( , )i i e r i i
i

y g x x n= +∑w w  

The appropriate weighting wi would have to be learned to form this map.  However, 
Pouget and Sejnowski [27] point out that because the tuning functions are the bases with which 
the map is constructed, the same bases can be used to form any other representation, for example, 
a shoulder centered representation of the target.  This idea is important because it demonstrates 
that population coding, a method that can be used to form neural computation of identity maps, is 
equally suited for more general problem of computing nonlinear maps.  Another point is that 
whereas in the population code described for decoding of movement direction the weights were 
vectors that were static and pointed in the preferred direction of a cell, here if the bases are to be 
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used for learning arbitrary maps, then the weight vectors will change and will have no specific 
relationship with the tuning function. 

Let us now return to our problem of how the brain might compute an internal model.  
One can think of an internal model as a map that transforms sensory input regarding the desired 
state of the arm x (i.e., the position and velocity of the arm) into force f.  Let us assume this 
neural computation is performed via a population code.  Each neuron that participates in this 
computation has a tuning curve gi that describes the average discharge of that cell as a function of 
hand position and velocity.  Each cell also has a preferred force vector wi.  The population vector 
response of the network is: 

( )ˆ
i i i i

i
g n= +∑f w x w     (1) 

We now have a framework to relate tuning properties with behavioral generalization.  Consider 
the following experiment: participants are initially trained with force field f1 for movement along 
arm state x1.  The error that they experience in a movement changes the preferred force vector w.  
Assuming Hebbian learning rules, the weight change will be maximum for those neurons that 
happened to be most active about state x1.  The subject is then asked to make a movement with 
the arm along state x2, an arm position (or velocity) where the subject has not been trained.  If 
performance is different from naïve, then the function gi for which the weights adapted for 
movements along x1 must have been broad enough to not only be active for x1, but also x2.  
Therefore, if the internal model is represented via a population code, then generalization is 
described by the shape of the tuning curves of the elements of computation. 

From the experiment in which we observed generalization in one arm from one 
workspace to another workspace [17], we can now conclude that the tuning functions could not 
have had “preferred positions” of the hand, in the sense that this implies sharply tuned activity 
functions around that position.  If they did, then experiencing force at one hand position could not 
be generalized to another hand position far away.   

 
Inferring coding of limb position and velocity from patterns of generalization 

The idea is that the tuning properties of “muscle-like” cells in M1 may be the function g 
in this population coding (Eq. 1).  To mathematically describe how discharge varies with arm 
position and velocity, we note that cell activity in M1 is modulated globally and often linearly as 
a function of limb position [29], and cells have preferred directions of movement that often 
change as a function of the shoulder angle [13].  To capture these observations, Hwang et al. [30] 
hypothesized that cells that are involved in computing the internal model have tuning functions 
that are described as follows: 

( ) ( ) ( )
( )
( ) ⎟
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The above function represents output of a basis function.  The position-dependent term 
is a linear function that encodes joint angles, q = (θshoulder, θelbow), while the velocity-
dependent term encodes joint velocities. Fig. 2C plots this function for reaching movements 
to various directions at various starting positions.  The basis is sensitive to both the static position 
of the limb and its velocity.  It combines the two via a gain field, i.e., directional tuning is 
modulated multiplicatively as a function of limb position.  As a result, both the preferred 
direction of the tuning and the depth of modulation vary with the starting position of the reach.  
The gradient vector k reflects sensitivities for the shoulder and elbow displacement, and b 
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is a constant. The velocity-dependent term is a Gaussian that encodes joint velocity q  
centered on the preferred velocity iq . 

The multiplicative nature of this encoding is one of the requirements of basis functions 
[27].  However, we should note that the properties that we assigned to the tuning function are not 
unique to cells in M1.  For example, in addition to M1, linear modulation of discharge with 
respect to limb position has been observed in the spinocerebellar tract [31] and the somatosensory 
cortex [32].  Tuning functions that have preferred directions or velocities of movement have been 
reported in the cerebellar cortex [33].  Indeed, it appears that a linear modulation of discharge 
with respect to limb position and a Gaussian tuning with respect to arm velocity may be a 
fundamental property of many cells in the motor system. 

Consider a situation in which the internal model is constructed as a linear combination of 
these non-linear bases.  How would their activity fields be reflected in behavioral generalization?  
With training at a given arm configuration, the preferred force vector of some of these bases will 
change.  The change will occur in those bases that happen to be most active at this arm 
configuration.  The way that these active bases change their static discharge with arm position 
dictates how far in position space the learning will generalize.   

Next, note that because the bases encode joint velocity and not hand velocity, the 
preferred direction of movement (which is represented in Cartesian coordinates) will rotate for 
some of the cells as the shoulder joint changes position.  The way that the elements change their 
PDs with arm position dictates the coordinate system of the generalization. 

Let us first examine how adaptation with these elements results in generalization in terms 
of spatial displacement of the hand.  Suppose one trains subjects in a small workspace (of 
reaching) with the arm at one configuration, and then tests them at another workspace.  The gain 
k dictates how close two workspaces have to be (in position space) before learning of conflicting 
fields becomes impossible.  When the gain is high, output of the bases changes greatly as a 
function of hand position.  This results in poor generalization between neighboring positions of 
the hand, making it possible to learn two different patterns of force at two different hand 
positions.  When the gain is low, output of the bases changes slowly as a function of hand 
position.  At its limit, output changes not at all as a function of hand position and effectively there 
is no coding of hand position.  In this situation, forces generalize globally in hand position space 
and it is not possible to learn two different forces for the same spatial direction of movement in 
two different spatial locations. 

To quantify how people generalize forces as a function of hand position, Hwang et al. 
[30] performed an experiment in which participants made reaching movements from different 
starting locations to targets in the same direction (i.e., the direction of movement was the same in 
joint velocity space).  The arm was covered by a semitransparent screen, upon which an overhead 
projector painted targets.  The handle of the robot, held by the subject, housed an LED that was 
visible on the screen.  Therefore, subjects had visual and proprioceptive cues regarding hand 
position.  In these parallel movements, opposite curl fields acted on the hand in the left and right 
targets (Fig. 2a).  A null field was always present in the middle target.  The robot brought the 
hand to a random start position after completion of each movement.  When the left and right 
targets were 24 cm apart, subjects could learn these movements and little after-effects were 
present in the middle target (Fig. 2b).  As targets were brought closer, learning became more 
difficult and interference became apparent in the middle target. 

Fig. 2d plots the dependence of interference on the spatial distance.  The shape of this 
interference pattern constraints the gain k, i.e., the slope of the gain field.  We simulated learning 
with Eqs. 1 and 2 and kept k the same for all bases.  We found the gain k that produced an 
interference pattern similar to what we had seen in our subjects.  Now, we took these same bases 
and asked whether they could also explain the global generalization pattern that we had seen 
earlier: that is, when subjects learned a field at the left workspace and generalized to 80 cm away 
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at the right workspace [17].  Remarkably, we found that the same k also explained the amount of 
generalization that we had seen in that experiment (Fig. 2e).  Furthermore, the forces were 
generalized in terms of torques on the joints, rather than forces on the hand.  Therefore, bases that 
are linearly modulated by arm position (Fig. 2c) and encode joint velocity rather than hand 
velocity appear to explain the pattern of interference in Fig. 2d, the intrinsic coordinate system of 
generalization, along with its large spatial generalization in Fig. 2e. 

The reason why we assumed that the bases linearly coded hand position space was 
because discharge of cells in the spinocerebellar tract [31], somatosensory cortex [32], and M1 
[29] is modulated linearly with hand position.  The reason for assuming that the bases encoded 
joint velocity (rather than hand velocity) was because such encoding can account for the 
observation that preferred direction of many task related cells rotates with a rotation in the 
shoulder angle [34,35].  Therefore, generalization as a function of static position of the arm seems 
consistent with bases that encode limb velocity and position in intrinsic, joint-like coordinates.  
The bases appear to be tuned to direction of movement and that tuning is multiplicatively 
modulated as a linear function of limb position. 

 
Generalization from one arm to the other 

We can take this argument a step further and predict generalization patterns from one arm 
to another based on tuning properties of cells in M1.  One of the remarkable properties of many 
of these cells is that if their discharge is modulated as a function of movement direction for the 
contralateral arm, that discharge is also modulated when the reaches are performed with the 
ipsilateral arm.  In fact, one of us (O.D.) recently observed that many cells in M1 maintained their 
preferred direction of motion (calculated with the contralateral arm) even when the ipsilateral arm 
was performing the reaching movements and the contralateral arm was at rest [36].  Kalaska and 
colleagues also observed similar properties of tuning functions for cells in the premotor cortex 
[37].  An important technical point in both of these experiments is that both arms performed 
reaching movements directly in front the animal in the same workspace. 

Let us now imagine that this invariance of PD with respect to the right and left arms is 
also a property of the cells that we hypothesized were involved in computing an internal model.   
Consider a subject that trained with her right hand in a curl force field, resulting in a rotation of 
PDs in some cells by approximately 30o.  We now ask the subject to use her left hand and make 
reaching movements.  Because the neurons in the left hemisphere changed their PD due to 
training with the right hand, and because these same cells are also tuned for movements with the 
left hand, they could potentially influence movements with the left hand.  In fact, the model 
predicts that there should be generalization from right arm to the left arm.  Furthermore, it makes 
the surprising prediction that the coordinate system of generalization from one arm to another 
should be in an extrinsic, Cartesian-like coordinates! 

The prediction is surprising because we noted before that PDs rotate with the shoulder of 
the trained arm, causing the training to generalize in an intrinsic coordinates within the same arm.  
The theory now predicts that because the PDs are invariant to the arms, if we looked for 
generalization between arms, we would see transfer in extrinsic coordinates. 

Criscimagna-Hemminger et al. [38] tested this using the standard reaching movement 
paradigm with curl fields.  Hand position was directly in front of the subject centered on the 
midline.  We considered two coordinate systems for generalization: intrinsic (joint) coordinates 
and extrinsic (Cartesian) coordinates.  In the intrinsic coordinate system, if a movement to a 
given direction required increased activity in the biceps (for example), then the same movement 
direction with the other arm should also require increased activity in biceps.  Mathematically, this 
results in a mirror transformation of the force field to the other hand.  In the extrinsic coordinate 
representation, the system would expect the same forces to act on the other hand in terms of 
direction of movement in Cartesian space.  Was there generalization from one arm to the other, 
and if so, was the transfer in extrinsic coordinates?   



 - 11 - 

  

We first quantified generalization in right-handed individuals from right to left.  In 
comparing performance of the extrinsic and intrinsic groups to a control group (Fig. 3), we found 
significant inter-limb generalization in extrinsic coordinates only.  In the transfer trials, the 
extrinsic group’s performance with the left hand was significant better than controls (Fig 3c), 
whereas in the intrinsic group performance with the left hand was significantly worse than 
controls (Fig 3c). 

We next quantified generalization in right-handed individuals from left to right.  Subjects 
trained in a procedure similar to Fig. 3a, except that they trained with the left arm in a curl field 
and were then tested with the right arm on either the extrinsic or the intrinsic representation of the 
same field.  We found that performance during test of generalization was not significantly 
different from controls on either the extrinsic or the intrinsic representation (data not shown).  
This suggested that in humans, generalization of arm dynamics in right-handed individuals 
occurred only from the dominant right to the left arm, and its coordinate system was extrinsic in 
the workspace that we tested.   

Interestingly, the same pattern of generalization was observed in a right-handed 
callosotomy patient.  In callosotomy patients, when visual information is restricted to one 
hemisphere, that hemisphere can produce a reaching movement with the ipsilateral arm [39].  
This is because a small but significant number of corticospinal projections to the proximal 
muscles of the arm are from the ipsilateral hemisphere [40].   However, converging evidence [41] 
indicates that the dominant hemisphere may have a significant role in controlling the non-
dominant arm, but not vice versa.  The fact that we observed generalization only from the 
dominant to the non-dominant arm suggests that the cells in the non-dominant hemisphere that 
participate in learning in this task are not tuned to movements with the ipsilateral arm.  In 
contrast, cells in the dominant hemisphere (left) are tuned to movements of both arms and they 
maintain their PD when the task is performed with one or the other arm.  Therefore, the fact that 
some M1 cells maintain their PD irrespective of the arm that is used for reaching is consistent 
with the coordinate system of inter-limb generalization that we observed in learning of force 
fields. 

 
Activity fields with respect to color of the target 

The main claim of the hypothesis is that tuning properties of cells in the motor cortex can 
strongly influence behavior.  In particular, the tuning properties predict how we learn dynamics of 
reaching movements.  In most of the examples that we have considered thus far, forces that were 
imposed on reaching movements explicitly depended on the proprioceptive state of the arm.  This 
made sense because cells in the motor cortex are sensitive to these states and we wished to infer 
how this sensitivity influences learning.  Let us now consider a task where the forces do not 
depend on state of the arm.  For example, imagine a reaching movement where position or 
velocity (or any other kinematic variable of the arm) does not uniquely describe the forces in the 
task.  A very simply case is one where a target is presented at a given direction, but the forces that 
will be presented during that movement depend on the color of the target. 

If the cells that take part in learning this task are strongly tuned with respect to position or 
velocity of the arm and not to the color of the target, then this apparently simple task should be in 
fact extremely difficult to learn.  Gandolfo et al. [42] asked subjects to make movements to 
various directions.  For the initial 48 movements, a velocity dependent field, labeled B1, was 
present.  For the next block of 48 movements, field –B1 was present, and so on.  During 
presentation of each field, the room was flooded with a specific color of light.  Despite hundreds 
of movements, subjects never learned to use the color as a cue to predict the pattern of forces. 

We recently simplified this experiment by limiting movements to only one direction [43].  
On any given trial, the color of the target was randomly chosen as either red or green.  Because 
the movement was always in the same direction, the pattern of forces on that movement depended 
exclusively on this cue.  We trained subjects (n=3) extensively on this task, providing them with 



 - 12 - 

  

over 3000 trials, spread over three days.  Remarkably, in catch trials we consistently found no 
evidence of after-effects (Fig. 4) and performance showed no suggestion of adaptation.  However, 
with longer training [44] or with explicit instruction about the nature of the forces [45], it is 
possible to associate color to force fields.  The remarkable difficulty in learning of this apparently 
simple task makes the prediction that the activity fields of the bases are typically only weakly 
modulated by color of the target.   
 
Inferring shape of the tuning curves from patterns of generalization 

The assumption about formation of an internal model via a population code means that 
when one measures generalization, one might be able to infer activity fields of the bases with 
which the internal model is computed.  However, it is useful to outline the problems that are 
inherent in this approach. 

To measure generalization, subjects are trained with an input x1 and are then tested with a 
new input x2.  The first problem with this approach is that it requires an experimentally naïve set 
of participants to be trained in each pairing of x1 and x2.  As a result, behavioral experiments are 
often limited to training and testing with one or two pairs of inputs, and conclusions are in terms 
of qualitative statements regarding the shape of the bases, i.e., wide or narrow.  The second 
problem is that in motor control, we have to consider coordinate systems.  Generalization depends 
not only on the distance between training and test locations, but also on the coordinate system in 
which that space is measured.  For example, a force that is experienced at a given location may be 
generalized in terms of torques on the joints or forces on the hand.  These two coordinates predict 
different patterns of generalization in terms of position of the hand.  The third problem is that the 
bases that are inferred from one generalization experiment might not be consistent with those that 
are inferred in another.  In other words, adaptation to one force field might result in a pattern of 
generalization that is inconsistent with the pattern observed in adaptation to another field.  It 
would indeed be remarkable if behavioral data from a wide variety of force adaptation 
experiments suggested a consistent shape to the bases.  If this were the case, then one could argue 
that one has estimated the basic motor primitives with which internal models are computed.  
Finally, even if we are lucky enough to solve all of these problems, we would still have the 
problem of interpretation: we would hope that the bases that are inferred by this abstract model 
not only explain behavior, but also are interpretable in terms of the neurophysiology of the motor 
system.  In this section, we show that all four questions can be approached. 

To approach the first two questions – being limited to naïve subjects and needing to 
consider coordinate systems – we have been developing a new mathematical method to estimate 
the shape of the bases from the trial to trial variations in performance [46,47].  We leverage the 
fact that the shape of the bases determines how error experienced during a movement will 
generalize to the subsequent movement.  That is, the preferred force vector associated with a 
basis is likely to change most for those bases that are most active.  This means that if error on one 
movement effects behavior on the next movement in a different direction, then some of the bases 
must be reasonably active during both of these movements.  That is because they must be active 
in the first movement to be influenced by the error and active in the second movement in order to 
have an influence on behavior.  Thus, generalization of error from one movement to the next can 
tell us whether the bases are wide enough to encompass both the movements, or, alternatively, 
whether they are so narrow that they cannot span the gap.  The generalization function depends 
on how the tuning curves encode movements and one can acquire critical information regarding 
generalization from the trial-to-trial variations in behavior.   

The importance of this idea is that it suggests that it is not necessary to train in one set 
and then test in another in order to estimate generalization.  Rather, all possible inputs should be 
presented in a random sequence.  From the movement-to-movement changes in performance, one 
can estimate how error in one movement affected the subsequent movement as a function of the 
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distance of the two movements in the state space (for example, angular distance in directions of 
the two movements).  The result is a generalization function. 

Begin with the assumption that the internal model is composed of a linear combination of 
an unknown set of bases (Eq. 1).  These bases encode the state of the arm (in the current case, 
only velocity because we limit movement to a small spatial workspace).  Assume that the purpose 
of learning is to minimize the difference between expected force in a movement and the actual 
force, and that adaptation is through gradient descent that results in modification of the preferred 
force vector associated with each basis.  How does the shape of the bases affect the pattern of 
trial-to-trial errors?  

Donchin et al. [48] demonstrated a method to quantify generalization from the trial-to-
trial measures of behavior.  The idea was to represent adaptation with basis functions as a hidden-
state dynamical system.  Once that system was expressed mathematically, fitting it to the data 
would provide an estimate of the generalization function. 

As an example, consider a task where subjects make movements to 8 directions in a 
random order.  We are interested in estimating how force experienced in a given direction is 
generalized to all other directions and would like to understand how that generalization depends 
on the shape of the basis functions g.  To simplify matters, let us ignore the noise in Eq. 1, assume 
that the bases are only a function of velocity because our reaching movements will all be 
performed in a small spatial workspace, and rewrite that equation in terms of vector quantities: 

[ ]

11 1

21 2

1

ˆ ( )

( ) ( ) ( )

m

m
T

m

W
w w

W
w w

g g

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

=

f g x

g x x x

 

Here f̂  is a 2x1 vector.  It is an estimate of actual force f.  The error in our estimate is: 
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Our objective is to change W so that we minimize the “squared” error e: 
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To do so, we need the gradient of e with respect to W.  After some algebra, we find: 
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After performing trial n, the error in that trial ( )nf will be used to change the weights )(nW of the 
internal model.  That change will be in the opposite direction as the gradient, and will be 
weighted by a small constant α: 
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Writing this in vector form we have: 
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If we multiply both sides of this equation by )( )1( +nxg , we have: 
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Eq. 3 says that the change in the internal model from trial n to n+1 is completely described by the 
error in trial n times a generalization function.  That generalization function is the projection of 
the bases in trial n upon the bases evaluated at trial n+1.  Intuitively, we see that the projection 
will be largest when the two consecutive trials are along the same velocity.  The shape of the 
tuning functions will determine the generalization as the distance between the two movements 
changes in the state space.   

In an artificial system, a “trial” would be an example data point.  That is, the internal 
model would make a guess about the force at a particular velocity, and a “teacher” would provide 
the actual force, and the error would be used to modify the weights.  The shape of the bases 
would then dictate the generalization to the next trial.  However, movements are not a single point 
in velocity space, but a trajectory.  Because of delays in sensorimotor feedback, we could 
reasonably assume that feedback about the actual forces might not be available to update the 
internal model until the movement is completed.  After completion of movement, the internal 
model would be updated along the entire trajectory of the desired velocity.  Because this desired 
trajectory is along a straight line to the target, we will represent it simply as a direction.  For 
example, if we have 8 directions of movement, the “generalization function” is a matrix of size 
8x8.  Element (i, j) of this matrix describes the fraction of error in movement direction i that is 
generalized to direction j.  To simplify things, we can assume that what matters is not the specific 
directions of the two consecutive movements, but rather their angular distance.  In this way, the 
generalization function becomes a vector of size 8x1 where each element indicates generalization 
between two consecutive movements that are separated by an angular distance of 0, 45, …, 270o.  
Let us call this generalization function b.  With this approximation, a trial becomes a single 
reaching movement. 

Now the important thing to notice is that despite the fact that the error in movement n 
potentially affects the internal model for all possible directions of movement, we can observe that 
effect for only one direction, the actual direction for which movement was made in trial n+1.  
Therefore, while the effects of the generalization to the other 7 possible directions are hidden to 
us, they nevertheless exist and we must account for them in order to accurately represent the trial-
to-trial changes in the internal model.  To do so, let k be an integer variable that can take a value 
from 1 to 8.  It represents the possible directions of movement that could occur in trial n+1.  After 
movement n is completed, the internal model is updated in all these directions, and we have: 

( 1) ( ) ( ) ( )ˆ ˆ ( )                 1, ,8n n n n
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We see that if we could estimate the generalization function b from trial-to-trial changes 
in performance, we could have a reasonable idea of the kind of bases that are being used for 
computation of the internal model.  However, our problem is that we can only record people’s 
reaching movements, not f̂ .  Movements will be straight when the internal model has a correct 
estimate of force.  There will be an error in the hand’s trajectory when this estimate is incorrect.  
Let us assume that this error in the hand’s trajectory is computed simply as a vector that describes 
where the hand is at peak velocity with respect to where it “should be” if the internal model was 
perfect.  Let us call that position error vector y.  Let us further assume that it will be related to the 
force error f  in the estimate of the internal model via a compliance matrix D.  This matrix relates 
how force error produces a displacement from the intended trajectory.  We now have the 
following: 
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Now let us introduce a new variable z, and define it as follows: 
( ) ( )ˆn n
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With substitution of the above equation into Eq. (4), we arrive at a coupled dynamical system: 
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y(n) is the error vector on nth movement, made in direction k; f(n) is the force experienced in that 
movement, and is scaled by a compliance-like matrix D.  Compliance is the inverse of stiffness.  
Whereas stiffness describes force produced when a body is displaced, compliance describes 
displacement produced when a body experiences force.  When an error occurs in a movement, the 
internal model is updated (reflected in the 8 equations).  b is the generalization function that 
characterizes the effect of error that was experienced in a given state on all other states.  We 
measure a sequence of movement errors y(n) and fit them to the system in Eq. (5) in order to find 
the best fit for matrices D and vector b.  There are 12 unknown parameters in these two variables.  
The procedure for fitting these equations to a sequence of movements is provided in Donchin et 
al. [48].  If the model is correct, it should describe all the trial-to-trial changes in performance that 
takes place during adaptation and provide us with an estimate of the generalization function. 

We begin by considering the fit of these equations to human data (Fig. 5a).  Data from a 
large group of subjects (n=75) was collected as they learned to make movements in a curl force 
field.  The target pattern was out-and-back in a half-pinwheel pattern.  That is, movements began 
at center; a target was presented at 0 o, 40 o, 90 o, or 135o.  Upon completion of that movement the 
center target was lit, and the pattern was repeated.  In this way, the movements were to 8 
directions but all outward movements were followed by a movement back to the center.  We 
found that: 1) the equations fit the trial-to-trial variations in performance remarkably well (Fig. 
5a); and 2) the generalization function B and compliance matrix D remained consistent across 
repeated measures (Fig. 5b).  Interestingly, the generalization function was wide and bimodal.  
That is, generalization dropped off as angular distance of movements increased and reached a 
minimum at a distance of 90 o, but then rose to approximately 50% of its peak value at 180o. 

It was possible that this bimodality was an artifact of our out-and-back target sequence.  
We tested a new group of subjects (n=8) in a random target sequence where the robot brought the 
hand to the start position of each movement (2nd row of Fig. 5).  B and D maintained their shape 
(Fig. 5b). 

We next tested another group of subjects (n=11) in a target sequence where not only the 
directions of movement were random, but the force field at each direction was also random (third 
row of Fig. 5).   In this condition, at any given trial the field was either null, clockwise curl, or 
counter clockwise curl.  As the field was random, we did not expect any adaptation.  Remarkably, 
analysis of the trial-to-trial changes in performance produced a generalization function similar to 
that which we had estimated from trials in which subjects learned a “constant” field.  In all cases, 
the generalization function was bimodal, consistent with bases that encode direction of movement 
with a bimodal activation pattern.  The shape of the basis function that is consistent with our 
behavioral data is shown in Fig. 5c. 

Our finding that the generalization function remains invariant even in a randomly 
changing force field suggests that the fundamental computational properties of the internal model 
are approximately the same across repeated measures, across subjects and across a small number 
of force learning tasks that thus far we have tested.  Because the shape of g in Eq. (1) is 
responsible for generalization, this is our strongest evidence that there may exist a single basis 
function that encodes movement kinematics and explains learning in all of these tasks.  Our best 
guess today is that this function encodes hand position of the contralateral arm linearly and hand 
velocity with a bimodal activation function: 

2 2

, 2 2

)1( ) exp exp
2 2

i i
velocity i

q q q q
g q

sσ σ

⎛ ⎞ ⎛ ⎞
− +⎜ ⎟ ⎜ ⎟

= − + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (6) 



 - 16 - 

  

 
Relating the inferred activity fields to the neurophysiology of the motor system 

Are the bases that we inferred with this abstract model interpretable in terms of the 
neurophysiology of the motor system?  From the patterns of generalization, we inferred that:   

1) The bases encode hand velocity with a function that has a preferred direction and is 
modulated broadly but is bimodal. 

2) The bases encode position of the arm linearly in the horizontal plane.  This position 
coding multiplicatively modulates tuning with respect to direction. 

3) The preferred direction of the bases rotates with the shoulder angle. 
4) The bases are tuned to movements of the ipsilateral arm such that the preferred 

direction remains arm invariant if the workspace is near the midline. 
5) The bases are only weakly modulated by color of the target. 

All of these properties except the bimodality can be found among task related cells in the 
primary motor cortex, the basal ganglia, and the cerebellum [14,14,29,49,50,50].  The invariance 
of the preferred direction with respect to movements of the contralateral and ipsilateral arms was 
recently observed in the cells of the motor cortex [36], premotor cortex [37], and the cerebellum 
(Bradley Greger and Tom Thach, personal communication).  However, to our knowledge 
bimodality has only been observed in the cerebellum during reaching movements:  Purkinje cell 
discharge during reaching movements shows a weak but consistent bimodal activation pattern as 
a function of hand velocity [33], whereas no such bimodality is reported in the same task in the 
primary motor cortex [50]. 

In reaching movements, a muscle that provides the agonist burst to reach in a particular 
direction (say 0o) also provides the antagonist burst for a movement in the opposite direction 
(180o), but is generally not modulated very much when a movement is made to 90o.  The 
antagonist burst is generally significantly smaller than the agonist burst.  Therefore, bimodality is 
a fundamental characteristic of muscle activation functions and generalization patterns in terms of 
direction of movement suggest that the bases are likely to have muscle-like tuning functions.  We 
saw earlier that generalization patterns in terms of spatial configuration of the arm also made this 
suggestion.  Taken together, this suggests that the neural computation of the internal model is 
with elements that have muscle-like tuning properties with respect to contralateral arm during 
reaching movements. 

The one aspect of the model that is not muscle-like is the particular encoding of velocity.  
In Eq. (6), we have chosen to represent velocity with Gaussians.  This means that each basis has a 
preferred velocity of movement.  Purkinje cells in the cerebellar cortex appear to encode 
movement velocity in this way, where as cells in M1 generally increase their discharge with 
increased movement speed [15,50].  Only one study has considered how the internal model 
generalizes in terms of speed of movement [51].  In that study, force adaptation at a given 
average velocity generalized less than linearly to neighboring velocities.  However, the precise 
shape of the generalization function is not known.  If it generalizes globally, then that 
representation would be muscle-like and consistent with tuning of cells in M1.  If it generalizes 
locally, then that representation implies a coding of velocity that peaks at a particular value and 
then declines, that is, a preferred velocity.  This later generalization would be consistent with 
tuning of task related cells in the cerebellum. 
 
Consolidation 

Thus far we have been describing learning of internal models using a mathematical 
framework where acquisition of information is one and the same as memory.   In this framework, 
preferred force vectors associated with the bases change to minimize error in the task.  Once the 
task is over, presumably these changes are maintained and that forms the basis of long-term 
memory.   
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The scope of our naiveté was plainly demonstrated when we found that acquisition of 
memory of an internal model is merely the first step in a sequence of events that eventually 
results in a long-term representation of motor memory.  Our behavioral measurements suggested 
that the internal model changed not only during the training session, but also in the hours that 
followed completion of training [7].  The motor memory appeared to gradually change from an 
initially fragile state to a state more resistant to change during a period of ~5 hours.  Some of 
these results have recently been extended:  Ghez and colleagues reported that in a task where 
subjects learned internal models of an inertial object, motor memory of inertial object 1 could be 
disrupted if practice was immediately followed by movements with inertial object 2 [52].  Using 
transcranial magnetic stimulations (TMS), Hallett and colleagues reported that stimulation of M1 
immediately after practicing a thumb flexion task resulted in marked retention deficits whereas 
stimulation of M1 at 5 hours post-practice did not affect retention [53].  Using functional 
imaging, we have observed that at comparable levels of motor performance, the map of activation 
patterns in the brain differed significantly near the end of training on day 1 vs. at 6 hours [54,55], 
vs. at 2 or 4 weeks after initial practice [56].   

Therefore, passage of time changes the neural representation of the internal model. We 
currently have no theory to account for this.  One hope is that we eventually might be able to 
track changes in neural representation by measuring their influence on patterns of generalization. 
 
Major shortcomings of the theory 

Both our measures of performance and the construction of the internal model focused on 
the early component of the reach (typically up to 250 ms), a period when one expects little 
influence from feedback.  Therefore, even if the theory is successful, it only addresses adaptation 
associated with the motor commands that initiate the movement.  However, our recent work 
[57,58] and those of our colleagues [59,60] has found that with training, the brain also learns to 
respond to feedback during a movement by producing appropriate motor responses.  We currently 
have no model to account for trial-by-trial adaptation or generalization of this form of adaptation. 

The alert reader would also note that while we started our story with the problem of using 
visual appearance of objects to estimate their dynamics, the theory that we developed made little 
mention of these cues but rather focused on proprioceptive measures of limb state.  How do non-
proprioceptive cues like color, spatial cues about the pattern of forces, sequential cues regarding 
movement order, or cognitive cues affect computation of internal models?  In our daily 
interaction with the environment, it is these cues that must dominate selection and adaptation of 
internal models.  This important question remains poorly understood.   

 
Summary 
The specific coding of movement parameters in the neurons that compose internal models have a 
significant, measurable influence on behavior.  That influence can be observed in how our brain 
learns to predict forces in control of reaching movements.  Training to make reaching movements 
in a force field results is a specific, highly reproducible pattern of force generalization to other 
movements.  If we assume that the neural computation of an internal model is via a population 
code, then the tuning curves of the neurons that participate in this computation are the bases with 
which the force field is approximated.  From the patterns of generalization one can infer the shape 
of these bases:  1) The bases are modulated as a function of hand velocity with a broad function 
that has a preferred direction and but is bimodal.  2) The bases are modulated linearly with arm 
position in the horizontal plane and this position coding multiplicatively modulates directional 
tuning, resulting in a gain field.  3) The preferred direction of the bases rotates with the shoulder 
angle.  4) The bases are tuned to movements of the ipsilateral arm such that the preferred 
direction remains arm invariant if the workspace is near the midline.  5) The bases are weakly 
modulated by color of the target.  These are also some of the properties of cells in the primary 
motor cortex and the cerebellum. 
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Figure 1.  Experimental setup and typical data.  (a) Subjects hold the handle of the robot and 
reach to a target.  The plot shows hand trajectory (dots are 10 ms apart) for typical movements to 
8 targets.  (b) Examples of two force fields produced by the robot.  (c) Average hand trajectories 
(+/- SD) for movements during the initial trials in the saddle field.  (d) Simulation results for 
movements in the saddle field.  (e) Hand trajectories during catch trials.  (f) Simulation results 
during catch trials.  The controller in this simulation had fully adapted to the field and was 
expecting the field to be present in these movements.  Adapted from Shadmehr, R. and Mussa-
Ivaldi, F. A., J. Neurosci., 14, 3208, 1994.  Used with permission. 
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Figure 2.  A gain field coding of limb position and velocity in the internal model of arm 
dynamics.  (a) Subjects made parallel, 10 cm movements at left, center, and right toward target at 
–90o.  At the left and right targets a curl field was present (clockwise at left, counter-clockwise at 
right).  The field at the center target was always null.  Subjects were divided into four groups 
based on the distance between the left and right targets: d=1, d=6, d=14, and d=24 cm.  Typical 
movements for single subjects in the d=1 and d=24 cm groups are shown (field trials are dash, 
catch-trials are dotted).  The 24 cm group could learn the task: they had clear after-effects and 
movements in field improved.  The 1 cm group did not show after-effects and movements did not 
improve.  (b) Group data (mean+/-SD) for the 1 and 24 cm groups (n=6 in each group).  Field 
trials are connected with a solid line, catch-trials are dots. Note the increased interference in the 
center target for the 1 cm group as field trials start.  (c) We simulated learning with bases that 
encoded static hand position and movement velocity multiplicatively via a linear function of 
position and a Gaussian function of velocity.  The firing rate of one basis function is plotted for 8 
directions of movement during movement time, and at the hold time at start and end of the 
movement.   Firing rate is also plotted for another basis for movements that start from 9 different 
start positions.  Note that the preferred direction of the basis rotates with start position.  Firing at 
start of reach varies with start of reach.  Because of multiplicative interaction of position 
sensitivity with directional tuning, depth of modulation varies with start position. (d) An 
interference measure that quantifies how the left and right movements affected the movements at 
the center.  This is the ratio of standard deviations (SD) for the center movements 420-504 vs. 1-
84.  As distance between the targets decreases, interference increases.  The bases appear to 
account for the generalization pattern of our subjects over this small displacement of the hand.  
(e) We asked whether the bases could also account for the generalization pattern that we had 
observed in Shadmehr and Moussavi (2000).  In that report, we observed that after subjects were 
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trained in a small workspace at a “left” workspace, performance was significantly better than 
naïve when they were tested at a “right” workspace (80 cm away) in a rotated version of the same 
field.  The bases produced similar patterns of generalization as our subjects over this large 
displacement.    Adapted from Hwang, E. J., Donchin, O., Smith, M. A., and Shadmehr, R., PLoS 
Biol., 1, 209, 2003.  Used with permission. 

 
 
 
 
 
 
 

 
 
 
Figure 3.  Inter-limb generalization.  (a) Right handed subjects (n=20) trained with the left and 
then the right arm in a null field.  They were then assigned to one of 3 groups: training with the 
right arm in a clockwise curl, counter clockwise curl, or a control group that received further 
training in the null field.  All of these groups where then tested with their left arm on a clockwise 
curl field.  For subjects who trained with their right arm on a clockwise curl field, this was a test 
of inter-limb transfer in extrinsic (Cartesian) coordinates.  For subjects who trained with their 
right arm in a counter clockwise curl field, this was a test of inter-limb transfer in intrinsic (joint) 
coordinates.  (b) Performance index in the test trials (mean+/-SEM).  Cartesian coordinate group 
shows transfer.  Joint coordinate group shows interference.   (c) Performance of subject J.W. (a 
split-brain patient) on the Cartesian and joint transfer of the field from right arm to left.  This 
subject also showed generalization from right arm to left.  Adapted from Criscimagna-
Hemminger, S. E., Donchin, O., Gazzaniga, M. S., and Shadmehr, R., J. Neurophysiol., 89, 168, 
2003.   Used with permission. 
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Figure 4.  Naïve subjects (n=3) were trained to associate color cues (blue or red colored square 
appearing in the direction of the primary target) to force field B (a clockwise curl field) or –B (a 
clockwise curl field).  Error in each trial was measured as perpendicular displacement from a 
straight-line trajectory.  Data are means+/-SD.  Performance remained poor and no field specific 
after-effects developed in catch trials despite 3 days of training 
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Figure 5.  Generalization as a function of direction.  Top row: (a) Black lines are movement 
errors during 192 movements (out-and-back pattern) in a standard curl field paradigm to 8 
directions of targets (n=72 subjects).  Sharp negative spikes are catch trials. Gray lines are y(n) as 
fit to Eq. (5), where the influence of error in any given movement on subsequent movements is 
estimated.  Subjects performed 3x192 movements (3 target sets), but data for only one set is 
shown.  (b) The estimated generalization function (b in Eq. 5) and estimated compliance matrix D 
for each target set.  The generalization function implies that ~18% of the error that was recorded 
for a movement toward any given direction updated the internal model for that same direction.  
About 12% of error was generalized to neighboring directions at 135o and 180o.  The same 
subjects were again tested on the same field a second and a third time (2nd and 3rd target sets, each 
set 192 movements).  The generalization functions for all three sets of targets are shown in (b).  
Little change is seen in these repeated measures.  The matrix D is plotted as a transformation of a 
circle.  The estimate changes little in repeated measures and its orientation and shape are 
consistent with previous estimates of the stiffness of the arm (Mussa-Ivaldi et al., 1985).  Second 
row: In this experiment, a group of subjects (n=8) practiced in a target set that was not out-and 
back, but random directions.  The shape of the generalization function and compliance are similar 
to that obtained in the first row.  Third row: In this experiment, a group of subjects (n=11) 



 - 23 - 

  

trained in a force field that randomly changed from movement to movement. Despite no obvious 
learning of this field, the generalization function is similar to other “learnable” tasks.  (c) The 
shape of the basis function implied by the generalization functions.  This particular basis has a 
preferred velocity at [0.21, 0.21] m/s, corresponding to the peak velocity for a 10 cm movement 
toward 45o.  Dark regions indicate higher activation.  Velocity dependent component parameter 
values in Eq. (6): σ = 0.15, s = 2.  Adapted from Donchin, O., Francis, J. T., and Shadmehr, R. J. 
Neurosci., 23, 9032, 2003.  Used with permission. 
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