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The cerebellar model articulation controller (CMAC) (Albus 1975) is ap- 
plied for learning the inverse dynamics of a simulated two joint, planar 
arm. The actuators were antagonistic muscles, which acted as feedback 
controllers for each joint. We use this example to demonstrate some 
limitations of the control paradigm used in earlier applications of the 
CMAC (e.g., Miller et al. 1987, 1990): the CMAC learns dynamics of 
the arm and not those of the feedback system. We suggest an alternate 
approach, one in which the CMAC learns to manipulate the feedback 
controller’s input, producing a virtual trajectory, rather the controller’s 
output, which is torque. Several experiments are performed that sug- 
gest that the CMAC learns to compensate for the dynamics of the plant, 
as well as the controller. 

1 Introduction 

Flash (1987) has shown that in the human arm, for moderate speed move- 
ments, the spring-like behavior of the neuromuscular system is such that 
by manipulating an equilibrium point model of the arm, the CNS can pro- 
duce relatively accurate movements even without considering the dy- 
namics of the moving limb. In order to produce a precise trajectory, 
however, the applied neuromuscular activity should take into account 
the dynamics of the skeleton, as well as those of the attached mus- 
cles and the segmental feedback system. In this paper we show how 
one might learn to produce such a virtual equilibrium trajectory (Hogan 
1984a). 

The learning paradigm is based on the cerebellar model articulation con- 
troller (CMAC) as proposed by Albus (1975), and demonstrated in the 
works of MiIIer et al. (1987, 1990) and Kraft and Campagna (1990). The 
CMAC is a coarse-coding technique that is implemented as a look-up 
table for approximating a piece-wise continous function with multiple 
input and output variables. In Miller et al. (19871, for example, the func- 
tion was the inverse dynamics of a robot, the input variables described 
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the desired state of the robot, the output variables were joint torques, and 
the coding was done by layers of perceptrons that mapped the immense 
input space into a much smaller output table. The output of the network 
(torque) was then added to the output of a fixed-gain, error-feedback 
controller. 

In the application that we have considered here, the feedback con- 
trollers are the antagonistic muscles attached to the joints. This example 
will illustrate a limitation of the control scheme proposed by Miller et 
al. (1987, 1990): If the controller’s response depends on something other 
than the error in the plant’s output, then the CMAC will never be able 
to compensate for the dynamics of the controller, leading to persistent 
errors in the plant’s behavior. We propose that this limitation can be ad- 
dressed if the CMAC learns to modify the input to the controller rather 
than the controller‘s output. In effect, the CMAC will learn the dynamics 
of the skeleton, as well as the muscles that act on it. 

1.1 Arm Dynamics. Consider a two joint arm, with a pair of an- 
tagonistic muscles attached to each joint (Fig. 1). In the idealized case, 
shoulder and elbow torques, T = [T, T,], can be written as a function of 

Figure 1: Schematic of the arm with the muscle-like actuators. End-effector po- 
sitions in the text refer to a Cartesian coordinate system centered at the shoulder. 
Length of the upper-arm and forearm are 0.25 and 0.35 m, respectively. 
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joint position 0 = [& Be],  velocity b, and acceleration 6, where m, 1, s, r ,  
and b represent the mass, link length, distance from the center of mass 
to joint, rotary inertia, and viscosity of the joint: 

We modeled the arm described in (1.1-1.2) using parameter values in 
Uno et al. (1989). Forward dynamics were calculated by solving (1.1-1.2) 
for a. Given a torque vector T( t )  at some 0 ( t )  and b ( t ) ,  the resulting a(t)  
was integrated to specify b(t + A )  and 8(t + A). 

We assumed that the force generated by a muscle can be essentially 
represented by considering its dependence on muscle length, velocity of 
contraction, and activation rate (Hogan 1984a). The torque generated by 
a pair of muscles acting on the shoulder joint, for example, was defined 
as T, = Zi7(& - #,) - B&, where Zi‘ is joint stiffness, B is the joint’s viscous 
coefficient, and & is the equilibrium position of the joint (Flash 1987). 

1.2 Trajectory Generation. Hogan (1984b) has suggested that for reach- 
ing movements, a trajectory is planned in which the change in accelera- 
tion of the hand (jerk) over the period of movement is minimized. For 
our case, in moving from an initial hand position (z, y7) at t = 0 to (x, y,) 
at t = n, the function to be minimized is 

If motion begins and ends with zero velocity and acceleration, then it 
can be shown that hand trajectory always follows a straight line, and is 
described by 

(1.4) 
(1.5) 

where T = t/a. Applying inverse kinematics to (1.4-1.5) leads to a tra- 
jectory in joint coordinates. 

As an example, consider the case where the muscle parameters are set 
as follows: K = 40 N.m/rad, and B = 2 N.m/sec/rad, and the objective 
is to move the hand from (-0.3 0.2) to (0.1 0.5) in a = 0.7 sec (see 
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Figure 2: Desired and observed joint trajectories before and after learning. 
(A) Performance of the system before learning begun (RMSE = 0.1146 rad). 
(B) Performance of the system after the tenth learning iteration (RMSE = 0.073 
rad). 

Fig. 1). The desired and observed trajectories are plotted in Figure 2A. 
The RMS error (RMSE), averaged over 1.5 sec, was 0.1146 rad for this 
movement. Therefore by simply manipulating the equilibrium of the 
antagonist muscles, a reasonably accurate movement was accomplished. 
Our objective is to minimize this error. 

2 CMAC and Adaptive Control 

In learning the inverse dynamics of a manipulator, the CMAC has gener- 
ally been used in control structures similar to Figure 3A: Here the CMAC 
maps a joint trajectory into torques, and this torque is then added to the 
controller's output (Miller et al, 1987, 1990). Our results will show the 
limitations of this approach, and an alternate approach will be presented 
where the CMAC learns a virtual equilibrium trajectory rather than joint 
torques (Fig. 3B). 

Consider the control system of Figure 3A. At time f, the arm is at 
an observed state Q,(t) = [ O ( t )  b( t )  e ( t ) ] .  We would like the arm to 
be at +(t) ,  which is the equilibrium position generated by the minimum 
jerk trajectory. Actuators compare +( t )  to the currently observed position 
O ( t ) ,  and produce a torque T,(t) = K[+(t ) -@(t )]  -Bb(t) .  Next, a desired 
state Q d ( t )  = [f3(t) b(t)  e,(t)] is produced and given to the CMAC, which 
produces a torque T,(t). T,(t) + T,(t) is applied to the arm. b,(t) is 
calculated as follows: From our current position O ( t )  and velocity &'(t), 
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we wish to accelerate at a rate of d d ( t )  for 50 msec to reach 4(t). A 
second-order polynomial approximation method was used to solve for 
@ d ( t ) .  Next, the effects of the applied torques are calculated from the 
forward dynamics, and Q,(t + A) is observed. Q,(t + A) is given to the 
CMAC and the output T , ( t + A )  is compared to Tc(t)+T,( t ) .  Finally, the 
contents of the CMAC‘s activated output cells are updated by an amount 
proportional to T J t )  + T,(t) - T,(t + A). 

The feedback loop serves as the teacher to the CMAC in Figure 3A: 
It provides reasonably appropriate torques as the equilibrium trajectory 
4(t) deviates from O ( t ) .  But since the output of this controller never 
vanishes (due to the Be term), the inverse dynamics map Q, + T ,  that 
is learned by the CMAC will always be ”corrupted” by the controller’s 
output. In Experiment 1 we will see that after learning, the CMAC’s 
performance can be improved further if the feedback controller is dis- 
connected. 

The control scheme in Figure 3B is an alternate approach where the 
CMAC learns to control the controller, rather than augmenting its output. 
Here the output of the CMAC is not a torque, but a joint position vector 
+. +++ is the virtual equilibrium position, and +++e  is the virtual error 
in position that is given to the controller. Experiments 2 4  are examples 
where the CMAC learns a Q,) + + mapping. In these experiments, the 
CMAC compensates for the dynamics of the plant as well as those of the 
controller. 

2.1 Learning Inverse Dynamics. For the arm in Figure 1, the state 
vector Q consists of six parameters: Shoulder and elbow position 
(bounded within -1 and 3 rad), velocity (bounded within -20 and 20 
rad/sec), and acceleration (bounded within -100 and 100 rad/sec*). 
CMAC (Albus 1975) is one method for mapping this six-dimensional 
space onto a two-dimensional space, which after learning will represent 
joint torque in the case of the control system in Figure 3A, and virtual 
joint position in the case of Figure 3B. 

2.2.1 Network Architecture. In the first layer of our CMAC, 400 input 
sensors encoded each parameter (so the input space was quantized into 
4006 segments and, for example, joint position was encoded at a res- 
olution of 0.01 rad). Each input sensor had an 80-unit-wide receptive 
field, and each segment within this input space mapped onto a second 
layer of cells that acted as state sensors (there were 1.25 x lo6 state sen- 
sors). For each input a unique set of 80 state sensor cells would be ac- 
tivated. Although this encoding reduced the memory requirements for 
representing the input space by a factor of lo9, nevertheless, if each state 
sensor pointed to a memory location containing two real numbers, that 
is, a torque for each joint, then the required memory space would be 10 
MB, exceeding the author’s available machine memory. Following Miller 
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et al.’s (1987) approach, a second mapping was done to overcome this 
problem: Initially, an output table containing 31,250 cells (each holding 
two real numbers) was constructed. Then a many-to-one mapping was 
performed from the state sensors to the output cells using a hashing 
function (an output cell had -40 state sensors mapping onto it). For 
an input Q, the contents of all activated output cells were summed to 
form T,.  

2.1.2 Experiment 1. Here the CMAC attempted to learn the torque 
sequence necessary for moving the arm along the same trajectory as that 
shown in Figure 2A. We began with the output cells all set to zero. At this 
stage, the Rh4SE was 0.1146 rad. On the first attempt with the learning 
scheme in place, the RMSE was reduced to 0.0810. By the tenth such 
attempt, the RMSE was at 0.073 (Fig. 28). Note that the overshoot and 
oscillatory behavior of the feedback controller have been eliminated, yet 
the arm still lags the desired trajectory. 

To see the contribution of the CMAC as compared to the controller 
for this movement, we plotted the shoulder torque generated by each 
system before (Fig. 4A) and after (Fig. 4B) learning. In Figure 4A, the 
applied torque is the response of a damped-spring, and the CMAC’s con- 
tribution is zero because its content has been initialized. After the tenth 
iteration (Fig. 4B), the CMAC’s output has begun to dominate the out- 
put of the feedback controller. At this point, the controller was removed 
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Figure 4: Torque contribution of the controller (solid line) and CMAC (dotted, 
more “noisy“ line) to the shoulder joint during movement of Figure 2, using 
the control scheme of Figure 3A. (A) Before learning: All of the torque is due to 
the controller. (B) After the tenth learning iteration: Most of the torque is due 
to the CMAC. 
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from the loop and the same trajectory was repeated. This improved the 
performance of the CMAC by a factor of 5 (RMSE = 0.013 rad). We 
concluded that although the CMAC had essentially learned the inverse 
dynamics of the plant, it could not compensate for the effects of the con- 
troller because it had not witnessed the input/output behavior of the 
lumped system. 

2.2 Learning Virtual Trajectories. We investigated the utility of the 
control structure depicted in Figure 3B by performing three experiments. 
In all cases, the CMAC was identical to the one used in the Experiment 1. 
The learning scheme was as follows: At time f ,  for a virtual position 
error +(t)  +@( t )  - O ( t ) ,  an observed state vector Q,(t + A )  was produced. 
Q,(t + A) was given to the CMAC, which produced +(t + A), and the 
activated output cells were updated by an amount proportional to +( t )  + 
4(t) ~ @ ( t )  - +(t + A). 

2.2.1 Experiment 2. The movement in Figure 2A was repeated with 
the control scheme of Figure 3B. Initially, the RMSE was 0.1146 rad. Af- 
ter the first iteration, RMSE fell to 0.0704. Following the tenth itera- 
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Figure 5: The equilibrium trajectory (solid lines) and virtual equilibrium tra- 
jectory (dotted line, the "noisy" signal) after the tenth learning iteration of the 
CMAC with the control structure of Figure 3B. 
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tion, RMSE was at 0.0086 rad. We have plotted the virtual equilibrium 
trajectory +(t) + 4(t) along with the equilibrium trajectory 4(t) in Fig- 
ure 5. Intuitively, one would expect that in order to accelerate the 
arm along a particular trajectory, a larger than observed positional er- 
ror would have to be presented to the spring-like muscIes in order to 
start the movement. Using the same analogy, an early reversal in joint 
positional error terms needs to be implemented in order to brake the 
system at some position, and not have it oscillate there. Note that in 
Figure 5, the virtual trajectory is leading the equilibrium trajectory, and 
then braking and finally clamping it at the goal position. 

2.2.2 Experiment 3. Here we tested the system on a much faster move- 
ment. In Figure 6A we have plotted the response of the system before 
learning begun (RMSE = 0.1571 rad). The performances of the CMAC 
after the first, tenth, and the fortieth iteration are plotted in Figures 6B, 
C, and D, respectively. The RMSE associated with these iterations were 
0.1481, 0.0312, and 0.0089 rad. 

of 
To 

2.2.3 Experiment 4. Can the system of Figure 38 learn the dynamics 
the arm for a wide range of movements in a nonrepeating protocol? 
investigate this, the initial position of the hand was fixed at (0.0 0.3), 

and the target position was randomly selected along the perimeter of a 
circle with radius of 0.25. The movement time was randomly selected 
within the range of 0.5 to 1.0 sec. After 500 such center-out movements, 
the average RMSE for the next 10 movements was 0.0089 rad, compared 
to an average RMSE of 0.1029 rad for the case where the CMAC was a 
tabula rasa. 

3 Conclusions 

In this work we have been concerned with the problem of learning in- 
verse dynamics of a plant and its controller. We used the example of a 
robot arm with muscle-like actuators to illustrate the limitations of the 
learning/control system of Figure 3A. In Experiment 1 it was shown that 
after learning, the performance of the CMAC could be further improved 
if the control loop was disconnected and the CMAC allowed to run in 
a feedforward mode. It was suggested that instead of learning to mod- 
ify the controller’s output, the CMAC should be set up to augment the 
controller’s input, therefore learning a virtual equilibrium trajectory (Ex- 
periments 2-41, rather than joint torques. The basic principle is to control 
a controlled system by supervised learning on the lumped system’s in- 
put/output relationship. 

Recent results on use of the CMAC have shown it to be a particularly 
useful approach for rapid learning of nonlinear functions (as compared to 
backpropagation, for example). This is because (1) the network uses local 
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Figure 6: Learning a fast movement using the control scheme of Figure 3B. 
(A) Before learning begun (RMSE = 0.1571 rad). (B) The first learning iteration 
(RMSE = 0.1481). (C) The tenth iteration (RMSE = 0.0312). (D) The fortieth 
iteration (RMSE = 0.0089). 

representation of the input space, thus requiring evaluation and modi- 
fication of only a few output celIs, and (2) the learning is a quadratic 
optimization procedure, avoiding the problem of local minimas. The 
mapping from the input space onto the output cells is the key to the 
CMAC: The idea is to not only activate a unique set of output cells for 
each input vector, but do so in such a way that similar input states share 
a large number of output cells, while far-away input states share no out- 
put cells. Recently, Moody (1989) has suggested two improvements to 
this basic network architecture. These include the use of a neighbor- 
hood function with graded response to overcome the potential problem 
of response discontinuity over state boundaries, and a multiresoIution 
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interpolation scheme where a hierarchy of CMACs work in parallel to 
provide high resolution along with good generalization abilities. 
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