
Communicated by Michael Jordan

Learning Virtual Equilibrium Trajectories for Control
of a Robot Arm

Reza Shadmehr
Department of Computer Science, University of Southern California,
Los Angeles, C A 90089-0782 U S A

The cerebellar model articulation controller (CMAC) (Albus 1975) is ap-
plied for learning the inverse dynamics of a simulated two joint, planar
arm. The actuators were antagonistic muscles, which acted as feedback
controllers for each joint. We use this example to demonstrate some
limitations of the control paradigm used in earlier applications of the
CMAC (e.g., Miller et al. 1987, 1990): the CMAC learns dynamics of
the arm and not those of the feedback system. We suggest an alternate
approach, one in which the CMAC learns to manipulate the feedback
controller’s input, producing a virtual trajectory, rather the controller’s
output, which is torque. Several experiments are performed that sug-
gest that the CMAC learns to compensate for the dynamics of the plant,
as well as the controller.

1 Introduction

Flash (1987) has shown that in the human arm, for moderate speed move-
ments, the spring-like behavior of the neuromuscular system is such that
by manipulating an equilibrium point model of the arm, the CNS can pro-
duce relatively accurate movements even without considering the dy-
namics of the moving limb. In order to produce a precise trajectory,
however, the applied neuromuscular activity should take into account
the dynamics of the skeleton, as well as those of the attached mus-
cles and the segmental feedback system. In this paper we show how
one might learn to produce such a virtual equilibrium trajectory (Hogan
1984a).

The learning paradigm is based on the cerebellar model articulation con-
troller (CMAC) as proposed by Albus (1975), and demonstrated in the
works of MiIIer et al. (1987, 1990) and Kraft and Campagna (1990). The
CMAC is a coarse-coding technique that is implemented as a look-up
table for approximating a piece-wise continous function with multiple
input and output variables. In Miller et al. (19871, for example, the func-
tion was the inverse dynamics of a robot, the input variables described

Neural Computation 2, 436446 (1990) @ 1990 Massachusetts Institute of Technology

Equilibrium Trajectories to Control a Robot Arm 437

the desired state of the robot, the output variables were joint torques, and
the coding was done by layers of perceptrons that mapped the immense
input space into a much smaller output table. The output of the network
(torque) was then added to the output of a fixed-gain, error-feedback
controller.

In the application that we have considered here, the feedback con-
trollers are the antagonistic muscles attached to the joints. This example
will illustrate a limitation of the control scheme proposed by Miller et
al. (1987, 1990): If the controller’s response depends on something other
than the error in the plant’s output, then the CMAC will never be able
to compensate for the dynamics of the controller, leading to persistent
errors in the plant’s behavior. We propose that this limitation can be ad-
dressed if the CMAC learns to modify the input to the controller rather
than the controller‘s output. In effect, the CMAC will learn the dynamics
of the skeleton, as well as the muscles that act on it.

1.1 Arm Dynamics. Consider a two joint arm, with a pair of an-
tagonistic muscles attached to each joint (Fig. 1). In the idealized case,
shoulder and elbow torques, T = [T, T,], can be written as a function of

Figure 1: Schematic of the arm with the muscle-like actuators. End-effector po-
sitions in the text refer to a Cartesian coordinate system centered at the shoulder.
Length of the upper-arm and forearm are 0.25 and 0.35 m, respectively.

438 Reza Shadmehr

joint position 0 = [& Be], velocity b, and acceleration 6, where m, 1, s, r ,
and b represent the mass, link length, distance from the center of mass
to joint, rotary inertia, and viscosity of the joint:

We modeled the arm described in (1.1-1.2) using parameter values in
Uno et al. (1989). Forward dynamics were calculated by solving (1.1-1.2)
for a. Given a torque vector T(t) at some 0 (t) and b (t) , the resulting a(t)
was integrated to specify b(t + A) and 8(t + A).

We assumed that the force generated by a muscle can be essentially
represented by considering its dependence on muscle length, velocity of
contraction, and activation rate (Hogan 1984a). The torque generated by
a pair of muscles acting on the shoulder joint, for example, was defined
as T, = Zi7(& - #,) - B&, where Zi‘ is joint stiffness, B is the joint’s viscous
coefficient, and & is the equilibrium position of the joint (Flash 1987).

1.2 Trajectory Generation. Hogan (1984b) has suggested that for reach-
ing movements, a trajectory is planned in which the change in accelera-
tion of the hand (jerk) over the period of movement is minimized. For
our case, in moving from an initial hand position (z, y7) at t = 0 to (x, y,)
at t = n, the function to be minimized is

If motion begins and ends with zero velocity and acceleration, then it
can be shown that hand trajectory always follows a straight line, and is
described by

(1.4)
(1.5)

where T = t/a. Applying inverse kinematics to (1.4-1.5) leads to a tra-
jectory in joint coordinates.

As an example, consider the case where the muscle parameters are set
as follows: K = 40 N.m/rad, and B = 2 N.m/sec/rad, and the objective
is to move the hand from (-0.3 0.2) to (0.1 0.5) in a = 0.7 sec (see

Equilibrium Trajectories to Control a Robot Arm 439

0 5 7 . 8 I . , 1 . I ' I . I '

0 2 0 4 0.6 0 8 1 0 1 2 1 4

A

0 5 7 . 8 I . , 1 . I ' I . I '

0 2 0 4 0.6 0 8 1 0 1 2 1 4

Time fsecJ

207

0 5
0 2 0 4 0 6 0 8 1 0 7 2 1 4

Time IsacJ

Figure 2: Desired and observed joint trajectories before and after learning.
(A) Performance of the system before learning begun (RMSE = 0.1146 rad).
(B) Performance of the system after the tenth learning iteration (RMSE = 0.073
rad).

Fig. 1). The desired and observed trajectories are plotted in Figure 2A.
The RMS error (RMSE), averaged over 1.5 sec, was 0.1146 rad for this
movement. Therefore by simply manipulating the equilibrium of the
antagonist muscles, a reasonably accurate movement was accomplished.
Our objective is to minimize this error.

2 CMAC and Adaptive Control

In learning the inverse dynamics of a manipulator, the CMAC has gener-
ally been used in control structures similar to Figure 3A: Here the CMAC
maps a joint trajectory into torques, and this torque is then added to the
controller's output (Miller et al, 1987, 1990). Our results will show the
limitations of this approach, and an alternate approach will be presented
where the CMAC learns a virtual equilibrium trajectory rather than joint
torques (Fig. 3B).

Consider the control system of Figure 3A. At time f, the arm is at
an observed state Q,(t) = [O (t) b(t) e (t)] . We would like the arm to
be at +(t) , which is the equilibrium position generated by the minimum
jerk trajectory. Actuators compare +(t) to the currently observed position
O (t) , and produce a torque T,(t) = K[+(t) -@(t)] -Bb(t) . Next, a desired
state Q d (t) = [f3(t) b(t) e,(t)] is produced and given to the CMAC, which
produces a torque T,(t). T,(t) + T,(t) is applied to the arm. b,(t) is
calculated as follows: From our current position O (t) and velocity &'(t),

440 Reza Shadmehr

'"L
1 -

A

d arm

rvrwald C I ~ ~ W ~ B ~ C S

cc("nIir,,a

Afnrcle-like Acltralors

Tm = K ($ + $ - H) - B B

- Trajectory
Gcricroror

B
Q d

Equilibrium Trajectories to Control a Robot Arm 441

we wish to accelerate at a rate of d d (t) for 50 msec to reach 4(t). A
second-order polynomial approximation method was used to solve for
@ d (t) . Next, the effects of the applied torques are calculated from the
forward dynamics, and Q,(t + A) is observed. Q,(t + A) is given to the
CMAC and the output T , (t + A) is compared to Tc(t)+T,(t) . Finally, the
contents of the CMAC‘s activated output cells are updated by an amount
proportional to T J t) + T,(t) - T,(t + A).

The feedback loop serves as the teacher to the CMAC in Figure 3A:
It provides reasonably appropriate torques as the equilibrium trajectory
4(t) deviates from O (t) . But since the output of this controller never
vanishes (due to the Be term), the inverse dynamics map Q, + T , that
is learned by the CMAC will always be ”corrupted” by the controller’s
output. In Experiment 1 we will see that after learning, the CMAC’s
performance can be improved further if the feedback controller is dis-
connected.

The control scheme in Figure 3B is an alternate approach where the
CMAC learns to control the controller, rather than augmenting its output.
Here the output of the CMAC is not a torque, but a joint position vector
+. +++ is the virtual equilibrium position, and +++e is the virtual error
in position that is given to the controller. Experiments 2 4 are examples
where the CMAC learns a Q,) + + mapping. In these experiments, the
CMAC compensates for the dynamics of the plant as well as those of the
controller.

2.1 Learning Inverse Dynamics. For the arm in Figure 1, the state
vector Q consists of six parameters: Shoulder and elbow position
(bounded within -1 and 3 rad), velocity (bounded within -20 and 20
rad/sec), and acceleration (bounded within -100 and 100 rad/sec*).
CMAC (Albus 1975) is one method for mapping this six-dimensional
space onto a two-dimensional space, which after learning will represent
joint torque in the case of the control system in Figure 3A, and virtual
joint position in the case of Figure 3B.

2.2.1 Network Architecture. In the first layer of our CMAC, 400 input
sensors encoded each parameter (so the input space was quantized into
4006 segments and, for example, joint position was encoded at a res-
olution of 0.01 rad). Each input sensor had an 80-unit-wide receptive
field, and each segment within this input space mapped onto a second
layer of cells that acted as state sensors (there were 1.25 x lo6 state sen-
sors). For each input a unique set of 80 state sensor cells would be ac-
tivated. Although this encoding reduced the memory requirements for
representing the input space by a factor of lo9, nevertheless, if each state
sensor pointed to a memory location containing two real numbers, that
is, a torque for each joint, then the required memory space would be 10
MB, exceeding the author’s available machine memory. Following Miller

442 Reza Shadmehr

et al.’s (1987) approach, a second mapping was done to overcome this
problem: Initially, an output table containing 31,250 cells (each holding
two real numbers) was constructed. Then a many-to-one mapping was
performed from the state sensors to the output cells using a hashing
function (an output cell had -40 state sensors mapping onto it). For
an input Q, the contents of all activated output cells were summed to
form T,.

2.1.2 Experiment 1. Here the CMAC attempted to learn the torque
sequence necessary for moving the arm along the same trajectory as that
shown in Figure 2A. We began with the output cells all set to zero. At this
stage, the Rh4SE was 0.1146 rad. On the first attempt with the learning
scheme in place, the RMSE was reduced to 0.0810. By the tenth such
attempt, the RMSE was at 0.073 (Fig. 28). Note that the overshoot and
oscillatory behavior of the feedback controller have been eliminated, yet
the arm still lags the desired trajectory.

To see the contribution of the CMAC as compared to the controller
for this movement, we plotted the shoulder torque generated by each
system before (Fig. 4A) and after (Fig. 4B) learning. In Figure 4A, the
applied torque is the response of a damped-spring, and the CMAC’s con-
tribution is zero because its content has been initialized. After the tenth
iteration (Fig. 4B), the CMAC’s output has begun to dominate the out-
put of the feedback controller. At this point, the controller was removed

a 4 . I , . , . , . , . , . , .
0 2 0 4 0 6 0 8 1 0 1 2 1 4 0 2 0 4 0 6 0 8 1.0 1 2 1.4

l h e fsecj Time isec)

Figure 4: Torque contribution of the controller (solid line) and CMAC (dotted,
more “noisy“ line) to the shoulder joint during movement of Figure 2, using
the control scheme of Figure 3A. (A) Before learning: All of the torque is due to
the controller. (B) After the tenth learning iteration: Most of the torque is due
to the CMAC.

Equilibrium Trajectories to Control a Robot Arm 443

from the loop and the same trajectory was repeated. This improved the
performance of the CMAC by a factor of 5 (RMSE = 0.013 rad). We
concluded that although the CMAC had essentially learned the inverse
dynamics of the plant, it could not compensate for the effects of the con-
troller because it had not witnessed the input/output behavior of the
lumped system.

2.2 Learning Virtual Trajectories. We investigated the utility of the
control structure depicted in Figure 3B by performing three experiments.
In all cases, the CMAC was identical to the one used in the Experiment 1.
The learning scheme was as follows: At time f , for a virtual position
error +(t) +@(t) - O (t) , an observed state vector Q,(t + A) was produced.
Q,(t + A) was given to the CMAC, which produced +(t + A), and the
activated output cells were updated by an amount proportional to +(t) +
4(t) ~ @ (t) - +(t + A).

2.2.1 Experiment 2. The movement in Figure 2A was repeated with
the control scheme of Figure 3B. Initially, the RMSE was 0.1146 rad. Af-
ter the first iteration, RMSE fell to 0.0704. Following the tenth itera-

0.5 1
0.2 0.4 0.6 0.8 1.0 1 .2 1.4

elbow

sllouider

Time (sec)

Figure 5: The equilibrium trajectory (solid lines) and virtual equilibrium tra-
jectory (dotted line, the "noisy" signal) after the tenth learning iteration of the
CMAC with the control structure of Figure 3B.

444 Reza Shadmehr

tion, RMSE was at 0.0086 rad. We have plotted the virtual equilibrium
trajectory +(t) + 4(t) along with the equilibrium trajectory 4(t) in Fig-
ure 5. Intuitively, one would expect that in order to accelerate the
arm along a particular trajectory, a larger than observed positional er-
ror would have to be presented to the spring-like muscIes in order to
start the movement. Using the same analogy, an early reversal in joint
positional error terms needs to be implemented in order to brake the
system at some position, and not have it oscillate there. Note that in
Figure 5, the virtual trajectory is leading the equilibrium trajectory, and
then braking and finally clamping it at the goal position.

2.2.2 Experiment 3. Here we tested the system on a much faster move-
ment. In Figure 6A we have plotted the response of the system before
learning begun (RMSE = 0.1571 rad). The performances of the CMAC
after the first, tenth, and the fortieth iteration are plotted in Figures 6B,
C, and D, respectively. The RMSE associated with these iterations were
0.1481, 0.0312, and 0.0089 rad.

of
To

2.2.3 Experiment 4. Can the system of Figure 38 learn the dynamics
the arm for a wide range of movements in a nonrepeating protocol?
investigate this, the initial position of the hand was fixed at (0.0 0.3),

and the target position was randomly selected along the perimeter of a
circle with radius of 0.25. The movement time was randomly selected
within the range of 0.5 to 1.0 sec. After 500 such center-out movements,
the average RMSE for the next 10 movements was 0.0089 rad, compared
to an average RMSE of 0.1029 rad for the case where the CMAC was a
tabula rasa.

3 Conclusions

In this work we have been concerned with the problem of learning in-
verse dynamics of a plant and its controller. We used the example of a
robot arm with muscle-like actuators to illustrate the limitations of the
learning/control system of Figure 3A. In Experiment 1 it was shown that
after learning, the performance of the CMAC could be further improved
if the control loop was disconnected and the CMAC allowed to run in
a feedforward mode. It was suggested that instead of learning to mod-
ify the controller’s output, the CMAC should be set up to augment the
controller’s input, therefore learning a virtual equilibrium trajectory (Ex-
periments 2-41, rather than joint torques. The basic principle is to control
a controlled system by supervised learning on the lumped system’s in-
put/output relationship.

Recent results on use of the CMAC have shown it to be a particularly
useful approach for rapid learning of nonlinear functions (as compared to
backpropagation, for example). This is because (1) the network uses local

Equilibrium Trajectories to Control a Robot Arm 445

0 5 4 . I . I . , , . , . , , , .
0 2 0 4 0 6 0 8 1 0 1 2 1 4

-0 5
0 2 0 4 06 0 8 10 5 2 1 4

Time fsecl

B

2 0 -

ribor
1 5 -

D 1 0 -

05-

0 0 - ,b&

0 5
0 2 0 4 06 0 8 1 0 1 2 1 4

71nle Isec)

Figure 6: Learning a fast movement using the control scheme of Figure 3B.
(A) Before learning begun (RMSE = 0.1571 rad). (B) The first learning iteration
(RMSE = 0.1481). (C) The tenth iteration (RMSE = 0.0312). (D) The fortieth
iteration (RMSE = 0.0089).

representation of the input space, thus requiring evaluation and modi-
fication of only a few output celIs, and (2) the learning is a quadratic
optimization procedure, avoiding the problem of local minimas. The
mapping from the input space onto the output cells is the key to the
CMAC: The idea is to not only activate a unique set of output cells for
each input vector, but do so in such a way that similar input states share
a large number of output cells, while far-away input states share no out-
put cells. Recently, Moody (1989) has suggested two improvements to
this basic network architecture. These include the use of a neighbor-
hood function with graded response to overcome the potential problem
of response discontinuity over state boundaries, and a multiresoIution

446 Reza Shadmehr

interpolation scheme where a hierarchy of CMACs work in parallel to
provide high resolution along with good generalization abilities.

Acknowledgments

The author is supported by a n IBM Graduate Fellowship in Computer
Science. This work has been supported by a Grant-in-Aid of Research
from the Sigma-Xi Foundation, and the NIH Grant 1ROI-NS24926 (Prof.
Michael Arbib, Principal Investigator). I a m most grateful for the help of
Prof. Tom Miller in constructing the CMAC.

References

Albus, J. S. 1975. A new approach to manipulator control: The cerebellar model
articulation controller (CMAC). Trans. A S M E I. Dynamic Syst. Meas. Contr.

Flash, T. 1987. The control of hand equilibrium trajectory in multi-joint arm
movements. Biol. Cybernet. 57, 257-274.

Hogan, N. 1984a. Adaptive control of mechanical impedance by coactivation
of antagonist muscles. I E E E Trans. Autom. Confr. AC-29(8), 681490.

Hogan, N. 1984b. An organizing principle for a class of voluntary movements.
J. Neurosci. 4(11), 2745-2754.

Kraft, L. G., and Campagna, D. I? 1990. A comparison between CMAC neural
network control and two traditional adaptive control systems. I E E E Control
Syst. Magazine 10(3), 3643.

Miller, W. T., Glanz, F. H., and Kraft, L. G. 1987. Application of a general
learning algorithm to the control of robotic manipulators. Int. J. Robotics
Res. 6(2), 84-98.

Miller, W. T., Hewes, R. P., Glanz, F. H., and Kraft, L. G. 1990. Real-time dynamic
control of an industrial manipulator using a neural-network-based learning
controller. I E E E Trans. Robotics Automation 6(1), 1-9.

Moody, J. 1989. Fast learning in multi-resolution hierarchies. In Advances in
Neural information Processing Systems, D. S. Touretzky, ed., pp. 29-39. Morgan
Kaufmann, San Mateo, CA.

Uno, Y., Kawato, M., and Suzuki, R. 1989. Formation and control of optimal
trajectory in human multijoint arm movement: Minimum torque change
model. Bid. Cybernet. 61, 89-101.

97,220-227.

Received 1 February 90; accepted 6 August 90.

