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Abstract

Biological sensorimotor systems are not static maps that transform
input (sensory information) into output (motor behavior). Evi-
dence from many lines of research suggests that their representa-
tions are plastic, experience-dependent entities. While this plastic-
ity is essential for exible behavior, it presents the nervous system
with di�cult organizational challenges. If the sensorimotor system
adapts itself to perform well under one set of circumstances, will it
then perform poorly when placed in an environment with di�erent
demands (negative transfer)? Will a later experience-dependent
change undo the bene�ts of previous learning (catastrophic inter-
ference)? We explore the �rst question in a separate paper in this
volume (Shadmehr et al. 1995). Here we present psychophysical
and computational results that explore the question of catastrophic
interference in the context of a dynamic motor learning task. Un-
der some conditions, subjects show evidence of catastrophic inter-
ference. Under other conditions, however, subjects appear to be
immune to its e�ects. These results suggest that motor learning
can undergo a process of consolidation. Modular neural networks
are well suited for the demands of learning multiple input/output
mappings. By incorporating the notion of fast- and slow-changing
connections into a modular architecture, we were able to account
for the psychophysical results.
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D. S. Touretzky, T. K. Leen (eds), MIT Press, Cambridge, MA, 1995.



1 Introduction

Interacting physically with the world changes the dynamics of one's limbs. For
example, when holding a heavy load, a di�erent pattern of muscular activity is
needed to move one's arm along a particular path than when not holding a load.
Previous work in our laboratory has shown that humans learn a novel dynamic
task by forming an internal model of the new inverse dynamics of thier limbs.
(Shadmehr and Mussa-Ivaldi 1994, Shadmehr et al, 1995). Preliminary evidence
suggests that subjects can retain one of these internal models over time (Brashers-
Krug, et al. 1994). Humans are required, however, to move their limbs e�ectively
under a large number of dynamic conditions. Are people able to learn and store
an inverse dynamic model appropriate for each condition, or do they form such
models from scratch as they need them? In particular, can learning a new inverse
dynamic model overwrite or displace a previous model? We will present evidence
that certain conditions must be met before a subject is able to retain more than
one inverse dynamic model in a given experimental context. These conditions can
be modeled as leading to a process of consolidation, whereby learning is transfered
from vulnerable, low-capacity storage to a long-term, high-capacity storage.

2 Experimental Protocol

We have developed a motor learning paradigm that allows us to alter the dynamics
of a subject's arm and so to monitor a subject's ability to learn dynamic tasks.
A subject moves the handle on the free end of a two-link planar robot arm{called
a manipulandum{to guide a cursor to a series of targets displayed on a computer
screen (�g 1a). The position and velocity of the handle of the manipulandum are
recorded at ten-millisecond intervals and are used to deliver state-dependent forces
to the subject's hand. In order to test a subject's ability to learn a novel dynamic
task, we present the subject with a viscous force �eld as s/he moves from one
target to the next (�g 1b). Initially, such forces perturb the subject's movements,
causing them to depart from the smooth, straight-line trajectories of the baseline
condition (i.e., the condition before the viscous forces were presented) (�gs 1c,1d).
The extent of learning is measured as the degree to which a subject's movements
in the force �eld over time come to resemble that subject's baseline movements.
We have shown in previous work that subjects adapt to the imposed force �leds by
forming a predictive model of the velocity-dependent forces, and that subjects use
this inverse dynamicmodel to control their arms in what appears to be a feedforward
manner (Shadmehr and Mussa-Ivaldi 1994).

3 Psychophysical Findings

3.1 Catastrophic Interference

Here, we employed this paradigm to explore the consequences of learning two dif-
ferent dynamic tasks in a row. In an initial series of experiments, we allowed twelve
subjects to learn to move the manipulandum in a �rst force �eld (Field A) for ap-
proximately 5 minutes. Immediately after this �rst set of movements, we presented
the subjects with an anti-correlated force �eld (Field B). For example, if we pre-
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Figure 1: A: The experimental setup. B: An example of a viscous �eld, plotted in velocity
space (mm/sec). The arrows indicate the direction and magnitude of the forces exerted
by the manipulandum on the subject's hand at each location in velocity space. C: One
subject's trajectories before forces were introduced. Targets are indicated by the open
circles. D: Trajectories immediately after the force �eld in (B) was presented.

sented the counter-clockwise curl �eld depicted in �g. 1B as Field A, we would next
present a clockwise curl �eld as Field B. Half the subjects learned the clockwise curl
�eld �rst and the counter-clockwise �eld second; the other half learned the two �elds
in the reverse order. (The �rst �eld will be referred to as Field A and the second
�eld as Field B, whichever �eld was learned �rst.) The subjects' mean performance
in Field B was worse (p< 0:0001, paired t-test) than in Field A. This phenomenon
has been called negative transfer in the psychophysical literature. Negative transfer
in this motor learning paradigm is explored more fully in a separate paper in this
volume (Shadmehr et al, 1995). In that paper, we suggested that this negative
transfer could result from the fact that the same neural elements are learning both
tasks. We predicted that, if this is the case, learning to move in Field B would
interfere with a subject's ability to retain an inverse dynamic model of Field A.
Learning to move in Field B would, in e�ect, cause subjects to \unlearn" Field A,
resulting in catastrophic interference.

In order to test this prediction, we compared the improvement in performance from
one day to the next of two groups of subjects, with twelve subjects in each group.
The subjects in the control group learned to move in one force �eld on Day One
and were then tested on Day Two in the same force �eld. The subjects in the
experimental group learned two separate force �elds in a row on Day One and were
then tested on Day Two in the �rst force �eld they learned. The experimental
group retained signi�cantly less of their learning (p< 0:01, paired t-test) from Day
One to Day Two than the control group (�gs 2a,2b). In other words, learning the
second force �eld resulted in catastrophic interference. (The question of whether
this represents a storage or a retrieval phenomenon is beyond the scope of this
paper.)



3.2 Consolidation

Having found evidence for catastrophic interference, we wanted to know whether
there were circumstances under which dynamic motor learning was immune to being
functionally erased by subsequent learning. We therefore tested two further groups
of subjects. We allowed these subjects to practice longer in one �eld before they
learned the second �eld. We also allowed 24 hours to pass between the time subjects
�rst learned one �eld and when they learned the second �eld. The subjects in
the experimental group (n = 10) practiced in one force �eld for approximately 15
minutes on Day One. They returned on Day Two and practiced in the same force
�eld for �ve more minutes. They were then allowed to practice in a second force
�eld for 15 minutes. By the end of this �fteen minutes, they were performing in the
second �eld at a level comparable to the level they acheived in the �rst force �eld.
We had the subjects return on Day Three, when they were tested for their retention
of the �rst �eld they learned. We compared the di�erence in performance on Day
Two and Day Three of this experimental group with that of a control group (n =
9) who followed the same protocol in all respects except that they never learned a
second force �eld. In this way we could determine whether learning the second �eld
resulted in a decrement in performance for the experimental group when compared
with the control group.

Under these conditions, we found no di�erence in the retention of learning between
the experimental and control groups (�g 2c, 2d). That is, learning the second
�eld under these conditions no longer resulted in catastrophic interference. What
subjects had learned about the �rst �eld had become resistant to such interference.
It had become consolidated.

We can not tell from these experiments whether such consolidation is the result of
the increased practice in the �rst �eld, or whether it is the result of the 24 hours
that elapsed between when the �rst �eld was �rst learned and when the second �eld
was learned. There is evidence that increased practice in a motor task can engage
di�erent neural circuits than those that are active during initial learning (Jenkins,
et al 1994). The shift to \practiced" circuits may represent the neural substrate of
consolidation. There is also evidence that time can be an important factor in the
consolidation of skill learning. (Karni and Sagi 1993) In the next section, we present
a model of our results that assumes that time is the key variable in the consolidation
of motor learning. The model could also be applied to a practice-based model of
consolidation with minor modi�cations.

4 Computational Modeling of the Experimental Results

In order to model the results presented above we need a network that learns to
compute an appropriate control signal Y given the current state and the desired
next state X of the plant. More precisely, it needs to compute a mapping from joint

angles �, joint velocities _�, and desired joint accelerations �� to torques. Several ap-
proaches for solving this problem have been proposed. One way to learn a mapping
fromX into Y is to use direct inverse modeling: apply a control signal, measure the
next state of the plant, and use the current state, new state, and control signal as
a training pair for the controller. This approach is not suitable for explaining non-
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Figure 2: Plots of average learning curves. The correlation of trajectories in the force
�eld to baseline trajectories (before the force �eld was applied) is plotted as a function
of movement number. A: Learning curves for the �rst experimental group. Dark curve:
learning curve on Day One in Field A. Light curve: learning curve in Field A on Day Two.
This group learned Field B immediately after Field A on Day One (learning curve for
Field B not shown). Note minimal improvement from Day One to Day Two. B: Learning
curves for the �rst control group. Dark curve: learning curve in Field A on Day One.
Light curve: learning curve in Field A on Day Two. Control group never learned Field
B. Note signi�cant improvement from Day One to Day Two. C: Second experimental
group. Dark line: learning curve in Field A on Day Two immediately before learning
Field B (Field B curve not shown). Light line: learning curve in Field A on Day Three.
D: Second control group. Dark and light lines: learning curves in FIeld A on Day Two
and Three, respectively. Note the similarity of the curves in C and D. This indicates that
learning Field B did not signi�cantly a�ect the experimental group's retention of Field A.
All curves in C and D are signi�cantly higher than curves for the initial learning of Field
A on Day One.

convex mappings, however. The learning situation we must model is non-convex:
we change the dynamic environment the controller operates in by presenting force
�leds, and so there will be di�erent Y values corresponding to any X value. A dif-
ferent approach that solves the nonconvexity problem is distal supervised learning
(Jordan and Rumelhart 1992): produce control signals, observe the new state of
the plant, and use that information to train a forward model that maps actions into
states; then learn a controller, using the forward model to backpropagate error from
observable cartesian coordinates to the unknown control space. Distal supervised
learning solves the nonconvexity problem by learning one correct value of Y for each
X. But that can not explain the consolidation of learning { when the force �eld
changes back to something already learned, our controller should rapidly recover its
performance in that old �eld, meaning that it should retain information about all
Y s that a particular X can map into.

An architecture that seems to have most of the desirable properties discussed above
is the Mixture of Experts (ME) model (Jordan and Jacobs 1994): several experts
learn a mapping fromX to Y . A separate gating network selects an expert which is
most likely to be correct at each moment. Such a model has been used previously
(Jacobs and Jordan 1993) to learn a feedforward controller for a 2-joint planar arm
operating under di�erent loads. In their model however they assumed that the



identity of the load is known to the controller. The subjects in our study were
not given any explicit cues about the identity of the �elds they were learning. The
mixture of experts cannot be used directly here because it decides which expert
to select based on a soft partitioning of the input space, and in our experiment
any force �eld is active over any portion of the input space at di�erent moments
in time. Here we propose an extension to the ME architecture that is able to deal
with mappings overlapping in X space.

Another aspect of the results that is di�cult to model using standard computational
architectures is memory consolidation. To account for this e�ect we introduce two
di�erent learning rates (Alverez and Squire 1994). Some connections in the network
change faster, as a result of which they can serve as short-term memory. We also
introduce an o�-line training phase (possibly corresponding to sleep) in which ran-
dom inputs are generated, the part of the network containing the fast connections
is used to produce a target output, and the resulting input-output pair is used to
train the slowly changing connections. During the o�ine phase the faster changing
connections are �xed, after that they are randomized.

4.1 Modi�ed Mixture of Experts

The ME model assumes that Y is generated from X by one of N processes
(W1; :::;WN) and therefore the likelihood function is:

L(�jxt; yt) = P (ytjxt;�) =
X

i

gi
tP (ytjWi; xt;�)

gi
t = P (Wijxt;�);

where � represents the parameters of the model and gi is the prior probability. We
want to use the posterior probability P (Wijxt; yt) instead, because the processes
(di�erent force �elds) are separable in XY space, but not in X space. If we want to
implement an on-line controller such a term is not available, because at time t, yt
is still unknown (the task of the controller is to produce it). We could approximate
P (Wijxt; yt) with P (Wijxt�1; yt�1), because dynamic conditions do not change very
often. Now the gating network (which computes P (Wijxt) in ME) is going to select
expert i based on the previous XY pair. This approach would obviously lead to a
single large error at the moment when the force �eld changes, but so will any model
using only xt to compute yt. In fact such an error seems to be consistent with our
psychophysics data. Thus the learning rule is:

��i = �ihi
t(yt � �i(xt;�i))

gi
t = hi

t�1

hi
t = P (W t

i jx
t
i; y

t
i ;�) =

gi
tP (ytjWi; xt;�)P

j gj
tP (ytjWj; xt;�)

;

where hti is the posterior probability and �i is the output of exper i. �i is a linear
function of the inputs. In our model we used 4 experts. In order to model the process
of consolidation, we gave one expert a learning rate that was 10 times higher than
the learning rate of the other 3 experts.



4.2 The Model

We simulated the dynamics of a 2-joint planar arm similar to the one used in our
previous work (Shadmehr and Mussa-Ivaldi, 1994). The torque applied to the arm
at every point in time is the sum of the outputs of a �xed controller, a PD controller,
and an adaptive controller with the architecture described above.

The �xed controller maps �; _� (current state), and �� (desired next state) into a
torque � . The mapping is exact when no external forces are applied. The de-
sired trajectories are minimum-jerk trajectories (Flash and Hogan 1985) sampled
at 100Hz. The desired trajectories are 10 cm long and last 0.5 seconds. The PD
controller is used to compensate for the troques produced by the force �eld while
the adaptive controller has not yet learned to do that. The adaptive part of the
controller consists of a mixture of 4 linear experts (whose initial output is small)
and a modi�ed gating network described above. The system operates as follows:

�; _�; �� are sent to the �xed controller, which outputs a torque �1; the PD controller
outputs a torque �2 based on the current deviation from the desired joint position
and velocity; 8 terms describing the current state of the arm (and chosen to linearize
the mapping to be learned) are sent to the mixture model, which outputs a torque
�3; �c = �1 + �2 � �3 is applied to the plant as a control signal; the actual torque
� = �c + �f is computed. The mixture model is trained to produce the torque �f
resulting from the force �eld. In other words, the adaptive part of the controller
learns to compensate for the force �eld exerted by the environment.

The parameters of the mixture model are updated after every movement, so a
training pair (xt; yt) is actually a batch of 50 points. The input, xt, consists of
the 8 terms describing the current state and the desired next state; the output, yt,
is the torque vector that the force �eld produces.The compensatory torques for a
complete movement are computed before the movement starts. The only processing
done during the movement is the computations necessary for the PD controller.

4.3 Results

4.3.1 Negative Transfer

When the network was given two successive, incompatable mappings to learn (this
corresponds to learning to move in two opposite force �elds), the resulting perfor-
mance very much resembled that of our human subjects. The performance in the
second mapping was much poorer than that in the �rst mapping. The fast-learning
expert changed its weights to learn both tasks. Since the two tasks involved anti-
correlated maps, the fast expert's weights after learning the �rst mapping were very
inappropriate for the second task, leading to the observed negative transfer.

4.3.2 Catastrophic Interference

When the network was trained on two successive, opposite force �elds, with no
consolidation occurring between the two training sessions, the learning in second
training session overwrote the learning that occurred during the �rst training session
(�g 3A). Since the expert with the fast-changing weights attempted to learn both
mappings, this catastrophic interference is not unexpected.

4.3.3 Consolidation

When the network was allowed to undergo consolidation between learning the �rst
and the second force �eld, the network no longer su�ered from catastrophic inter-
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Figure 3: A: Learning curves for the ME architecture. Dark line: curve when �rst learning
Field A. light line: curve when given Field A a second time, after learning FIeld B (no
consolidation allowed between learning Field A and Field B). Note lack of retention of
Field A. B: Learning curves for the same architecture in Field A before and after learning
Field B. Consolidations was allowed between learning Field A and Field B.

ference (�g 3B). The learning that had initially resided in the fast-learning expert
was transfered to one of the slower-learning networks. Thus, when the expert with
the fast-changing connections learned the second mapping, the original learning was
no longer destroyed. In addition, when the network was allowed to consolidate the
second force �eld, a di�erent slow-learning expert stored the second mapping. In
this way, the network stored multiple maps in long-term memory.

5 Conclusions

We have presented psychophysical evidence for catastrophic interference. We have
also shown results that suggest that motor learning can undergo a process of consol-
idation. By adding distinct fast- and slow-changing weights to a mixture of experts
architecture, we were able to account for these psychophysical �ndings. We plan to
investigate further the neural correlates of consolidation using both brain imaging
in humans and electrophysiological studies in primates.
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