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Abstract

Based on computational principles, the concept of an internal
model for adaptive control has been divided into a forward and an
inverse model. However, there is as yet little evidence that learning
control by the CNS is through adaptation of one or the other. Here
we examine two adaptive control architectures, one based only on
the inverse model and other based on a combination of forward and
inverse models. We then show that for reaching movements of the
hand in novel force �elds, only the learning of the forward model
results in key characteristics of performance that match the kine-
matics of human subjects. In contrast, the adaptive control system
that relies only on the inverse model fails to produce the kinematic
patterns observed in the subjects, despite the fact that it is more
stable. Our results provide evidence that learning control of novel
dynamics is via formation of a forward model.
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1 Introduction

The concept of an internal model, a system for predicting behavior of a controlled
process, is central to the current theories of motor control (Wolpert et al. 1995) and
learning (Shadmehr and Mussa-Ivaldi 1994). Theoretical studies have proposed
that internal models may be divided into two varieties: forward models, which
simulate the causal 
ow of a process by predicting its state transition given a motor
command, and inverse models, which estimate motor commands appropriate for a
desired state transition (Miall and Wolpert, 1996). This classi�cation is relevant for
adaptive control because based on computational principles, it has been proposed
that learning control of a nonlinear system might be facilitated if a forward model
of the plant is learned initially, and then during an o�-line period is used to train
an inverse model (Jordan and Rumelhart, 1992). While there is no experimental
evidence for this idea in the central nervous system, there is substantial evidence



that learning control of arm movements involves formation of an internal model.
For example, practicing arm movements while holding a novel dynamical system
initiates an adaptation process which results in the formation of an internal model:
upon sudden removal of the force �eld, after-e�ects are observed which match the
expected behavior of a system that has learned to predict and compensate for the
dynamics of the imposed �eld (Shadmehr and Brashers-Krug, 1997). However, the
computational nature of this internal model, whether it be a forward or an inverse
model, or a combination of both, is not known.

Here we use a computational approach to examine two adaptive control architec-
tures: adaptive inverse model feedforward control and adaptive forward-inverse
model feedback control. We show that the two systems predict di�erent behaviors
when applied to control of arm movements. While adaptation to a force �eld is
possible with either approach, the second system with feedback control through an
adaptive forward model, is far less stable and is accompanied with distinct kinematic
signatures, termed \near path-discontinuities". We observe remarkably similar in-
stability and near path-discontinuities in the kinematics of 16 subjects that learned
force �elds. This is behavioral evidence that learning control of novel dynamics is
accomplished with an adaptive forward model of the system.

2 Adaptive Control using Internal Models

Adaptive control of a nonlinear system which has large sensory feedback delays,
such as the human arm, can be accomplished by using two di�erent internal model
architectures. The �rst method uses only an adaptive inverse dynamics model to
control the system (Shadmehr and Mussa-Ivaldi, 1994). The adaptive controller
is feedforward in nature and ignores delayed feedback during the movement. The
control system is stable because it relies on the equilibrium properties of the muscle
and the spinal re
exes to correct for any deviations from the desired trajectory.
The second method uses a rapidly adapting forward dynamics model and delayed
sensory feedback in addition to an inverse dynamics model to control arm move-
ments (Miall and Wolpert, 1996). In this case, the corrections to deviations from
the desired trajectory are a result of a combination of supraspinal feedback as well
as spinal/muscular feedback. Since the two methods rely on di�erent internal model
and feedback structures, they are expected to behave di�erently when the dynamics
of the system are altered.

The Mechanical Model of the Human Arm

For the purpose of simulating arm movements with the two di�erent control archi-
tectures, a reasonably accurate model of the human arm is required. We model the
arm as a two joint revolute arm attached to six muscles that act in pairs around
the two joints. The three muscle pairs correspond to elbow joint, shoulder joint
and two joint muscles and are assumed to have constant moment arms. Each mus-
cle is modeled using a Hill parametric model with nonlinear sti�ness and viscosity
(Soechting and Flanders, 1997). The dynamics of the muscle can be represented by
a nonlinear state function fM , such that,

Ft = fM (N; xm; _xm) (1)

where, Ft is the force developed by the muscle, N is the neural activation to the
muscle, and xm, _xm are the muscle length and velocity. The passive dynamics
related to the mechanics of the two-joint revolute arm can be represented by fD,
such that,

�x = fD(T; x; _x) = D�1(x)[T � C(x; _x) _x + JTFx] (2)



where, �x is the hand acceleration, T is the joint torque generated by the muscles,
x, _x are the hand position and velocity, D and C are the inertia and the coriolis
matrices of the arm, J is the Jacobian for hand position and joint angle, and Fx is
the external dynamic interaction force on the hand.

Under the force �eld environment, the external force Fx acting on the hand is
equal to B _x, where B is a 2x2 rotational viscosity matrix. The e�ect of the force
�eld is to push the hand perpendicular to the direction of movement with a force
proportional to the speed of the hand. The overall forward plant dynamics of the
arm is a combination of fM and fD and can be represented by the function fp,

�x = fp(N; x; _x) (3)

Adaptive Inverse Model Feedforward Control

The �rst control architecture uses a feedforward controller with only an adaptive
inverse model. The inverse model computes the neural activation to the muscles
for achieving a desired acceleration, velocity and position of the hand. It can be

represented as the estimated inverse, f̂�1p , of the forward plant dynamics, and maps
the desired position xd, velocity _xd, and acceleration �xd of the hand, into descending
neural commands NC .

NC = f̂�1p (�xd; xd; _xd) (4)

Adaptation to novel external dynamics occurs by learning a new inverse model of the
altered external environment. The error between desired and actual hand trajectory
can be used for training the inverse model. When the inverse model is an exact
inverse of the forward plant dynamics, the gain of the feedforward path is unity and
the arm exactly tracks the desired trajectory. Deviations from the desired trajectory
occur when the inverse model does not exactly model the external dynamics. Under
that situation, the spinal re
ex corrects for errors in desired (xmd; _xmd) and actual
(xm; _xm) muscle state, by producing a corrective neural signal NR based on a linear
feedback controller with constants K1 and K2.

NR = K1(xmd � xm) +K2( _xmd � _xm) (5)

Adaptive Forward-Inverse Model Feedback Control

The second architecture provides feedback control of arm movements in addition
to the feedforward control described above. Delays in feedback cause instability,
therefore, the system relies on a forward model to generate updated state estimates
of the arm. An estimated error in hand trajectory is given by the di�erence in
desired and estimated state, and can be used by the brain to issue corrective neural
signals to the muscles while a movement is being made. The forward model, written
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Figure 1: The adaptive inverse model feedforward control system.
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Figure 2: A control system that provides feedback control with the use of a forward
and an inverse model.

as f̂p, mimics the forward dynamics of the plant and predicts hand acceleration �̂x,

from neural signal NC , and an estimate of hand state x̂, _̂x.

�̂x = f̂p(NC ; x̂; _̂x) (6)

Using this equation, one can solve for x̂; _̂x at time t, when given the estimated state
at some earlier time t�� , and the descending neural commands NC from time t��
to t. If t is the current time and � is the time delay in the feedback loop, then sensory
feedback gives the hand state x, _x at t�� . The current estimate of the hand position
and velocity can be computed by assuming initial conditions x̂(t� �)=x(t� �) and

_̂x(t � �)= _x(t � �), and then solving Eq. 6. For the simulations, � has value of 200
msec, and is composed of 120 msec feedback delay, 60 msec descending neural path
delay, and 20 msec muscle activation delay.

Based on the current state estimate and the estimated error in trajectory, the desired
acceleration is corrected using a linear feedback controller with constants Kp and
Kv. The inverse model maps the hand acceleration to appropriate neural signal
for the muscles NC . The spinal re
ex provides additional corrective feedback NR,
when there is an error in the estimated and actual muscle state.

�xnew = �xd + �xc = �xd +Kp(xd � x̂) +Kv( _xd � _̂x) (7)

NC = f̂�1p (�xnew ; x̂; _̂x) (8)

NR = K1(x̂m � xm) +K2( _̂xmd� _xm) (9)

When the forward model is an exact copy of the forward plant dynamics f̂p=fp, and

the inverse model is correct f̂�1p =f�1p , the hand exactly tracks the desired trajectory.
Errors due to an incorrect inverse model are corrected through the feedback loop.
However, errors in the forward model cause deviations from the desired behavior
and instability in the system due to inappropriate feedback action.

3 Simulations results and comparison to human behavior

To test the two control architectures, we compared simulations of arm movements
for the two methods to experimental human results under a novel force �eld environ-
ment. Sixteen human subjects were trained to make rapid point-to-point reaching
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Figure 3: Performance in �eld B2 after a typical subject (middle column) and each of
the controllers (left and right columns) had adapted to �eld B1. (1) hand paths for
8 movement directions, (2-5) hand velocity, speed, derivative of velocity direction,
and segmented hand path for the �90o downward movement. The segmentation in
hand trajectory that is observed in our subjects is almost precisely reproduced by
the controller that uses a forward model.

movements with their hand while an external force �eld, Fx = B _x, pushed on the
hand. The task was to move the hand to a target position 10 cm away in 0.5
sec. The movement could be directed in any of eight equally spaced directions.
The subjects made straight-path minimum-jerk movements to the targets in the
absence of any force �elds. The subjects were initially trained in force �eld B1

with B=[0 13;-13 0], until they had completely adapted to this �eld and converged
to the straight-path minimum-jerk movement observed before the force �eld was
applied. Subsequently, the force �eld was switched to B2 with B=[0 -13;13 0] (the
new �eld pushed anticlockwise, instead of clockwise), and the �rst three movements
in each direction were used for data analysis. The movements of the subjects in
�eld B2 showed huge deviations from the desired straight path behavior because
the subjects expected clockwise force �eld B1. The hand trajectories for the �rst
movement in each of the eight directions are shown for a typical subject in Fig. 3
(middle column).

Simulations were performed for the two methods under the same conditions as
the human experiment. The movements were made in force �eld B2, while the
internal models were assumed to be adapted to �eld B1. Complete adaptation
to the force �eld B1 was found to occur for the two methods only when both
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Figure 4: The mean and standard deviation for segmentation parameters for each
type of controller as compared to the data from our subjects. Parameters are
de�ned in Fig. 3: �i is angle about a seg. point, di is the distance to the i-th
seg. point, ti is time to reach the i-th seg. point, cj is cumulative squared jerk
for the entire movement, Ns is number of seg. point in the movement. Up until
the �rst segmentation point (�1 and d1), behavior of the controllers are similar
and both agree with the performance of our subjects. However, as the movement
progresses, only the controller that utilizes a forward model continues to agree with
the movement characteristics of the subjects.

the inverse and forward models expected �eld B1. Fig. 3 (left column) shows the
simulation of the adaptive inverse model feedforward control for movements in �eld
B2 with the inverse model incorrectly expecting B1. Fig. 3 (right column) shows the
simulation of the adaptive forward-inverse model feedback control for movements
in �eld B2 with both the forward and the inverse model incorrectly expecting B1.
Simulations with the two methods show clear di�erences in stability and corrective
behavior for all eight directions of movement. The simulations with the inverse
model feedforward control seem to be stable, and converge to the target along a
straight line after the initial deviation. The simulations with the forward-inverse
model feedback control are more unstable and have a curious kinematic pattern
with discontinuities in the hand path. This is especially marked for the downward
movement. The subject's hand paths show the same kinematic pattern of near
discontinuities and segmentation of movement as found with the forward-inverse
model feedback control.

To quantify the segmentation pattern in the hand path, we identi�ed the \near
path-discontinuities" as points on the trajectory where there was a sudden change
in both the derivative of hand speed and the direction of hand velocity. The hand
path was segmented on the basis of these near discontinuities. Based on the �rst
three segments in the hand trajectory we de�ned the following parameters: �1,
angle between the �rst segment and the straight path to the target; d1, the distance
covered during the �rst segment; �2, angle between the second segment and straight
path to the target from the �rst segmentation point; t2, time duration of the second



segment; �3, angle between the second and third segments; NS , the number of
segmentation points in the movement. We also calculated the cumulative jerk CJ
in the movements to get a measure of the instability in the system.

The results of the movement segmentation are presented in Fig. 4 for 16 human sub-
jects, 25 simulations of the inverse model and 20 simulations of the forward model
control for three movement directions (a) �90o downward, (b) 90o upward and (c)
135o upward. We performed the di�erent simulations for the two methods by sys-
tematically varying various model parameters over a reasonable physiological range.
This was done because the parameters are only approximately known and also vary
from subject to subject. The parameters of the second and third segment, as rep-
resented by �2, t2 and �3, clearly show that the forward model feedback control
performs very di�erently from inverse model feedforward control and the behavior
of human subjects is very well predicted by the former. Furthermore, this charac-
teristic behavior could be produced by the forward-inverse model feedback control
only when the forward model expected �eld B1. This could be accomplished only
by adaptation of the forward model during initial practice in �eld B1. This provides
evidence for an adaptive forward model in the control of human arm movements in
novel dynamic environments.

We further tried to �t adaptation curves of simulated movement parameters (using
forward-inverse model feedback control) to real data as subjects trained in �eld B1.
We found that the best �t was obtained for a rapidly adapting forward and inverse
model (Bhushan and Shadmehr, 1999). This eliminated the possibility that the
inverse model was trained o�ine after practice. The data, however, suggested that
during learning of a force �eld, the rate of learning of the forward model was faster
than the inverse model. This �nding could be paricularly relevant if it is proven
that a forward model is easier to learn than an inverse model (Narendra, 1990),
and could provide a computational rationale for the existence of forward model in
adaptive motor control.
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