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Consolidation Patterns of Human Motor Memory
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Can memories be unlearned, or is unlearning a form of acquiring a new memory that competes with the old, effectively masking it? We
considered motor memories that were acquired when people learned to use a novel tool. We trained people to reach with tool A and
quantified recall in error-clamp trials, i.e., trials in which the memory was reactivated but error-dependent learning was minimized. We
measured both the magnitude of the memory and its resistance to change. With passage of time between acquisition and reactivation (up
to 24 h), memory of A slowly declined, but with reactivation remained resistant to change. After learning of tool A, brief exposure to tool
B brought performance back to baseline, i.e., apparent extinction. Yet, for up to a few minutes after A�B training, output in error-clamp
trials increased from baseline to match those who had trained only in A. This spontaneous recovery and convergence demonstrated that
B did not produce any unlearning of A. Rather, it masked A with a new memory that was very fragile. We tracked the memory of B as a
function of time and found that within minutes it was transformed from a fragile to a more stable state. Therefore, a sudden performance
error in a well-learned motor task does not produce unlearning, but rather installs a competing but fragile memory that with passage of
time acquires stability. Learning not only engages processes that adapt at multiple timescales, but once practice ends, the fast states are
partially transformed into slower states.
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Introduction
One of the defining characteristics of primates is the ability to use
tools. Learning to use a tool requires practice, and the result of
this practice is a motor memory that allows the user to display
skilled performance the next time the tool becomes available.
Classic texts on memory hypothesized that motor memory dif-
fered from cognitive or declarative memories because it did not
appear to include a short-term phase in which the memory was
fragile (Squire, 1987). This picture changed when it became clear
that motor memories exhibited a phenomenon termed sponta-
neous recovery (Kojima et al., 2004; Smith et al., 2006; Ethier et
al., 2008). For example, after people learned to use a novel tool (a
robotic arm) that exhibited dynamics A, they could quickly “un-
learn” that behavior if the dynamics of the tool suddenly changed
to B. However, in the subsequent “error-clamp” trials in which
motor output could be assayed while minimizing error-
dependent learning, behavior reverted back toward A (Smith et
al., 2006). This suggested that during motor learning, changes in
behavior were attributable to two processes: a fast learning pro-
cess that was highly sensitive to error but had poor retention, and
a slow learning process that had poor sensitivity to error but had
robust retention. Learning of B installed a fast memory that de-
cayed rapidly after acquisition. Extensions of this simple idea
appeared to account for a range of behaviors in motor learning
(Kording et al., 2007; Chen-Harris et al., 2008).

If motor memory is supported by a fast and a slow process,
what are their characteristics? For example, do these processes
show different sensitivities to passage of time? Are the processes
independent of each other, or does passage of time transform one
process into another? Finally, can motor memories be unlearned,
or is “unlearning” merely learning of a new memory that com-
petes with the old? These questions are of fundamental impor-
tance because they deal with consolidation patterns of motor
memory, a topic that despite years of research in various labora-
tories has produced a large body of apparently conflicting results.
Whereas some have found that passage of time increases resis-
tance of the memories to unlearning (Shadmehr and Brashers-
Krug, 1997; Krakauer et al., 2005; Overduin et al., 2006), others
have seen no evidence for a temporal gradient (Caithness et al.,
2004; Mattar and Ostry, 2007).

Here, we assayed the effects of time on motor memory
through error-clamp trials, in which the memory was reactivated
but error-dependent learning was minimized (Scheidt et al.,
2000). The crucial advantage of this approach was that it allowed
us to simultaneously measure both the magnitude of the reacti-
vated memory and its resistance to change. We found that the
large errors subjects experienced during deadaptation did not
produce unlearning of tool A, but rather installed a competing
memory of tool B. However, in contrast to predictions of the
fast/slow model, with passage of time after A�B training, mem-
ory of B did not rapidly fade away. Rather, when subjects stopped
performing the task, the initially fragile memory gained stability.
These results together suggest a new memory model in which
learning not only engages processes that adapt at multiple time-
scales, but that once practice ends, the fast states can be partially
transformed into slower states. We suggest that this framework
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can account for much of the apparently conflicting results in
motor memory consolidation research.

Materials and Methods
One hundred and seven neurologically intact right-hand-dominant par-
ticipants were involved in this study. Fifty-six volunteers (24 male, 32
female) were recruited for experiment 1 (average age, 26.0 years; SD, 4.3
years). Fifty-one different volunteers (26 male, 25 female) were recruited
for experiment 2 (average age, 28.5 years; SD, 9.1 years). All volunteers
were naive to the purpose of the experiment. Experimental procedures
were approved by the Johns Hopkins University School of Medicine
Institutional Review Board and all participants signed a consent form.

The volunteers were trained in the standard force field reach adapta-
tion paradigm (Shadmehr and Mussa-Ivaldi, 1994). They held a two-
joint robotic manipulandum with their right hand and made point-to-
point reaching movements from a center starting position to a single 1
cm square target positioned at 10 cm directly along the body midline.
Once at the target, the robot brought the subject’s hand back to the
center. Subjects were rewarded with an “explosion” for completing the
movement within a 50 ms window centered at 0.5 s after movement start
time. The subject’s hand was covered by a horizontal screen onto which a
small cursor (5 � 5 mm) representing hand position was projected at all
times. We recorded force at the handle, hand position, and hand velocity
at a rate of 100Hz.

The experiment (see Fig. 1 A) began with training in a null field (no
forces, 192 trials) followed by training in a curl field in which forces were
dependent on hand velocity f � Aẋ, in which A � [0 13; �13 0] N � s/m.
This adaptation phase consisted of 384 trials. One subject was excluded
from the analysis because of failure to adapt to the force field during the
training session.

Error-clamp trials. We placed error-clamp trials randomly in the base-
line and adaptation phases with one-eighth probability (no error-clamp
trials were present during the exposure to field B). During the error-
clamp trials, the motion of the hand was constrained to a straight line to
the target by a stiff one-dimensional spring (spring coefficient � 2500
N/m; damping coefficient � 25 N � s/m) that counteracted any forces
perpendicular to the target direction. Error-clamp trials, however, were
no different from regular trials in the type of feedback that the subject
received: they were rewarded with an explosion for completing the move-
ment within a 50 ms window centered at 0.5 s after movement start time.
Because the curl field perturbed the hand perpendicular to the direction
of motion, the forces that the hand produced against the “channel” wall
in error-clamp trials served as a proxy of adaptation, i.e., the change in
the motor output. Previous work has shown that after training, forces in
error-clamp trials faithfully represent the ideal force trace that one
should produce to cancel the robot forces, whether in velocity-dependent
(Scheidt et al., 2000; Hwang et al., 2006b; Smith et al., 2006) or
acceleration-dependent fields (Hwang et al., 2006a).

Experiment 1: group A. This experiment assayed the sensitivity of the
motor memory to passage of time. After the completion of adaptation,
subjects were reexamined once at 0, 2, or 10 min, or 1, 6, or 24 h. The
reexamination consisted of 30 error-clamp trials only.

Experiment 2: group A�B. In this experiment, volunteers who had
completed their training in field A were immediately exposed to 20 trials
of field B (viscosity matrix [0 �13; 13 0] N � s/m). This small number of
trials was sufficient to bring the motor output back to baseline. However,
according to our theory, the trials set up a competition between a “fast”
memory acquired in response to training in B and a “slow” memory
acquired in response to training in A. As a result, we expected to see
spontaneous recovery of A immediately after completion of the 20 trials
in B. We were interested in quantifying the sensitivity of this spontaneous
recovery to passage of time after completion of training in B. Therefore,
after completion of training in B, subjects were reexamined once at 0, 2,
or 10 min, or 1, 6, or 24 h. The reexamination consisted of 30 error-clamp
trials only.

We accounted for the time that passed between end of training and
start of the test session in all subjects. In the 0, 2, and 10 min groups, all
subjects remained seated in front of the robot. In the 1, 6, and 24 h
groups, all subjects left the chair during the break and were instructed to

proceed throughout their day normally. Subjects in the 24 h group were
required to sleep a minimum of 6.5 h between day one and day two.

Data analysis. Performance was measured via the force that subjects
produced against the channel wall of the error-clamp trials. Our perfor-
mance measure, termed force output as a percentage of perturbation, was
simply the ratio between this force as measured at the maximum velocity
and the ideal force in field A. That is, regardless of whether the block of
trials was in field A or null, the ideal force was described as f � Aẋ, where
ẋ is the hand velocity on that trial. In this way, in the null field we assayed
motor output with the same yard-stick as in subsequent training trials in
field A. Note that there were no error-clamp trials during exposure to
field B. Repeated-measures ANOVA and post hoc Tukey’s tests were used
to quantify effects of time passage and differences between groups. All
analyses were done using Matlab and SPSS.

When subjects were using the robot, the memory was “active” and it
changed as a function of time/trial. When subjects were not using the
robot, the memory was “inactive” but it still continued to change as a
function of time. To assay the sensitivity of the active memory to time/
trial, we focused on the rate of decay of the force output during the
error-clamp trials of the test period. This rate was estimated by fitting a
single exponential of the form f (n) � aexp � (bn) to the data set during
the test period for each subject. In this equation, f is force and n is trial
number. This continuous-domain equation can be well approximated in
the discrete domain: f (n � 1) � (1 � b) f (n ), in which (1 � b) is an
estimate of sensitivity of the memory to trial. Therefore, b is fraction of
the force that is lost from one trial to the next. This measure quantifies the
fragility of the memory as assayed at a particular time after its acquisition.

We performed a boot-strapping procedure to estimate strength of
memory for B at each time point after A�B training. To do so, we had
two subject groups to choose from: one group of subjects who had
learned A and was then tested at time point t for 30 trials, and another
group of subjects who had learned A�B and was then tested at the same
time point t for 30 trials. We picked one subject at random (with replace-
ment) from group A, and another subject at random (with replacement)
from group A�B, and then subtracted performance of subject in group A
from subject in group A�B, i.e., B̂ � (A � B) � A. We then repeated this
procedure 50 times to arrive at a distribution for the motor output at each
trial during the test period at time t. This produced the data for B̂, shown
in Figure 4.

When the subjects were not reaching with the robot, the memory was
inactive. The sensitivity of the inactive memory to passage of time was
estimated using a boot-strapping procedure. We selected at random one
subject (with replacement) from each group and calculated the average of
the first two error-clamp trials of the test session. We then took the six
data points (one for each time delay) and fitted them to a single expo-
nential of the form f (t) � aexp � (t/�). We repeated this procedure 50
times.

Active–inactive state model of motor memory. Previous models of motor
memory assumed that during learning, the observed state of the environ-
ment, was assigned to one of two general states: a fast state and a slow
state. Learning was a procedure in which one tried to estimate the state of
the environment (Kording et al., 2007). With passage of time, the fast
state decayed rapidly whereas the slow state decayed gradually. Here, one
of our main observations was that effect of time was not merely a decay in
the states, but rather a transformation of the fast state into a slow state. In
particular, when the subject was not performing the task (the inactive
state of the memory), passage of time produced a partial transformation
of the fast state into a slow state. To represent this idea, we considered a
generative model in which the environment was sometimes observable
and sometimes unobservable. In the observable condition, the generative
model was identical to our previous model (Kording et al., 2007). How-
ever, in the inactive state, the state transitions allowed some transforma-
tion of the fast states into slow states.

The graphical representation of the model is shown in Figure 5A. The
measured variables are filled circles, whereas the estimated variables are
unfilled circles. When the environment is observable (active memory),
measurements are simply the sum of the fast and slow states, with equal
weight, i.e., y (t ) � cTx (t ) � �y where cT� [1, 1] and xT � [xs xf]. Time
affects the states in both the active and inactive conditions. When the
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environment was observable, we assumed x (t � � ) � Aax (t ) � �a, where
Aa was diagonal, representing the state transition for the active memory.
When the environment was unobservable, we assumed x (t � � ) � Aix

(t )

� �i, where Ai was not diagonal, representing the state transition for the
inactive memory. To fit the model to the data, the only relevant variables
are Aa (two parameters) and Ai (three parameters) because the noises
play no role in the decay rates in error-clamp trials (as long as we assume
that there are no errors in error-clamp trials, and the noises are
Gaussian). We assume that by end of training in A, 83% of the memory
was attributable to the slow state and 17% was attributable to the fast
state. Training in B introduced a competing memory that was 83% fast
and 17% slow. These values were found to be the optimal initial condi-
tion proportions for the fast and slow states for the memory of A and the
memory of B. We estimated the five parameters of the model by fitting it
to the average data using nonlinear optimization.

Results
We imagined that practice resulted in a motor memory that had
at least two functional states: a fast state and a slow state. To assay
the sensitivity of the hypothetical slow memory to passage of
time, we trained subjects for a long period of time (384 trials)
(Fig. 1A) on a reach adaptation protocol (field A), and then di-
vided them into six groups and tested each group at a single time
point after completion of practice (experiment 1). To assay the
sensitivity of the hypothetical fast memory to passage of time, we
performed an adaptation/deadaptation experiment in which the
same training in A was followed by a brief period of training in B
(20 trials) until performance reached naive levels (experiment 2).
Although A�B training produced apparent extinction, we hy-
pothesized that the training in fact produced a fast memory of B
that competed with the slow memory of A. We divided the sub-
jects into 6 groups and tested each group at a single time point
after completion of A�B. By comparing A with A�B at various
time points, we quantified how passage of time affected the hy-
pothetical slow memory of A and fast memory of B.

Performance was measured via the force that subjects pro-
duced against the channel wall of the error-clamp trials. Adapta-
tion in A produced performance measures that had the familiar
initial fast rise followed by a period of gradual increase (Fig. 1B).
We found no significant differences in the performance measures
of the 12 groups during adaptation in A (repeated-measures
ANOVA, F(11,95) � 0.683, p � 0.752). A one-way ANOVA on the
average of the last five trials showed no differences between
groups (F(11,95) � 0.174, p � 0.999).

Memory of A decayed as a function of time, but when
reactivated remained resistant to trial
After completion of 384 trials in A, subjects were assigned to one
of six groups and waited 0, 2, or 10 min, or 1, 6, or 24 h. In the 0,
2, and 10 min groups, the subjects remained seated in front of the
robot. In the 2 and 10 min groups, subjects released the handle of
the robot during the delay period. The subjects in other groups
left the room and returned at their scheduled time. After return,
they were asked to hold the handle and reach to the target. In
these movements, the robot always produced a channel. There-
fore, the test period consisted of only error-clamp trials, allowing
us to assay the memory without contamination from additional
relearning.

The performance of each group during the test phase is shown
in Figure 2A. During the time between end of training and start of
testing, the memory decayed as a function of time, as reflected in
the force that subjects produced in the first two trials (Fig. 2B)
(F(5,50) � 8.469, p � 0.05). A Tukey’s post hoc test revealed differ-
ences between the 24 h group and the 0, 2, and 10 min and 1 h

groups, and the 6 h group and the 0 and 10 min groups ( p � 0.05
in all cases). A repeated-measures ANOVA suggested that groups
that waited a longer period of time produced smaller forces dur-
ing the course of the entire test session than those that waited a
brief period (main effect of wait period, F(5,50) � 3.773, p � 0.01).

Suppose that we consider the memory active when the subject
is using the tool, and inactive during the period that the subject is
not holding the handle of the tool (i.e., time between training and
testing). The effect of passage of time is a measure of decay of the
inactive memory. To estimate the sensitivity of the inactive mem-
ory to passage of time, we used a boot-strapping procedure to
select at random one subject from each group in Figure 2B and
fitted their data to a single exponential. The result suggested that
the strength of the inactive memory decayed with a time constant
of 18.5 � 3.89 h (SEM).

Figure 1. Study protocol and performances during learning of the task. A, Volunteers were
divided into two groups (group A and group A�B). They held the handle of a light weight
robotic arm and reached to a target. In the first 192 trials, the robot produced a null field (no
forces). In the subsequent 384 trials, a curl force field was introduced (field A), perturbing the
hand perpendicular to its direction of motion. In group A�B, the force field was reversed in sign
for 20 additional trials. The gray bars schematically represent “error-clamp” trials, trials in which
the robot produced a stiff channel that allowed us to measure the subject’s motor output
perpendicular to the direction of motion. After a break of variable length, subjects returned and
were asked to hold the robotic tool and perform the task. We quantified the strength of the
reactivated memory through 30 error-clamp trials. B, Force output (mean for each group for
each trial) during the error-clamp trials in the baseline and learning periods (field A only).
Learning of A was similar among the groups, exhibiting the classic double exponential pattern:
rapid initial learning followed by slow, gradual learning. Bin size is one trial.
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Once the test trials began, the activated memory decayed as a
function of time/trial. Intriguingly, this resistance did not appear
to change with the passage of time. Figure 2C illustrates the dis-
tribution of time constants when a single exponential was fitted
to the force output of each subject during the error-clamp trials in
the test period. A one-way ANOVA found no significant effect of
passage of time on sensitivity to trial (F(5,50) � 0.562, p � 0.729).
A Tukey’s post hoc analysis revealed no significant differences
between individual groups.

When the memory was reactivated (Fig. 2C), trial-dependent
loss was distributed between 1 and 3% per trial, which translates
into a time constant of 200 – 600 s. In contrast, when the memory
was inactive, the time constant was �18.5 h (Fig. 2B). Therefore,
decay of the activated memory was about two orders of magni-
tude faster than the inactive memory.

In summary, after a long period of training in A, the resulting

inactive memory decayed when the subject was not in the context
of the task with a time constant of 18.5 h. Once the memory was
reactivated in the test session, it further decayed as a function of
time/trial with a loss of between 1 and 3% per trial (time constant
of 200 – 600 s). This sensitivity of the reactivated memory did not
change, despite the fact that time caused a decay in the inactive
memory.

A�B training did not alter the memory of A, but produced a
competing memory of B
After 384 trials in A, subjects were exposed to 20 trials of B (ex-
periment 2). The small number of trials in B was sufficient to
drop the performance to naive levels (Fig. 3A), producing an
apparent extinction. Subjects then waited 0, 2, or 10 min, or 1, 6,
or 24 h. In all but the 0 min group, subjects released the handle. In
the 0, 2, and 10 min groups, the subjects remained seated in front
of the robot. The subjects in other groups left the room and
returned at their scheduled time. After return, they were asked to
hold the handle and reach to the target. The testing was always in
error-clamp trials.

By comparing performance of subjects who learned A with
subjects who learned A�B we can answer a fundamental ques-
tion: does learning of B produce any destructive effects in the
memory of A? At 0 or 2 min after A�B training, the force output
for the first error-clamp trial was at zero (Fig. 3A). Trial by trial,
the force output increased and converged to the output observed
in subjects who had only learned A (Fig. 3A). This rise is a form of
spontaneous recovery and has been reported previously (Smith et
al., 2006). However, the crucial new result is that the rise is so
strong as to precisely converge to the falling memory of A. A
repeated-measures ANOVA on the last four trials of the test ses-
sion for the 0 min A and A�B groups revealed no significant
differences (F(1,16) � 0.186, p � 0.672). Similarly, there were no
significant differences in the last four trials for the 2 min A and
A�B groups (F(1,13) � 0.052, p � 0.824). If learning of B pro-
duced any destructive effects on A, this rise would have fallen
short of A. Therefore, the data for the 0 and 2 min groups suggested
that the long-term training in A produced a memory that was essen-
tially unaffected by the brief training in B, despite the fact that this
brief training brought performance down to baseline.

A repeated-measures ANOVA on the last four trials of the test
session revealed no significant differences between the A and
A�B groups for the 6 h (F(1,18) � 0.686, p � 0.418) and 24 h
groups, (F(1,16) � 1.074, p � 0.315). The A and A�B group were
different for the 10 min (F(1,14) � 5.37, p � 0.036) and 1 h (F(1,18)

� 5.69, p � 0.028) wait periods.
The 20 trials in B produced a memory that competed with A,

effectively learning a force that was equal in magnitude but opposite
to A. However, at 0 or 2 min after acquisition, the memory of B
washed out to zero within 30 error-clamp trials, whereas the same 30
trials after A did not wash out A (Fig. 2A). Therefore, whereas A
decayed slowly as a function of time/trial, at 0 or 2 min after acqui-
sition, B decayed nearly completely within 30 trials. The memory of
B was extremely fragile at 0 and 2 min after it was acquired.

B starts out as a fast motor memory, but with time
becomes slow-like
If at 0 or 2 min after acquisition, B starts out with a magnitude
equal to A but decays away within 30 trials (these trials took a
total of 1.85 � 0.02 min), does passage of time alter the charac-
teristics of this memory? That is, at 10 min and beyond, what is
the strength of the B memory and what is its sensitivity to trial?
We found that as we waited a longer period of time after A�B

Figure 2. Performance during test of recall in group A. A, Force output (mean � SEM) for
each subgroup after completion of training in A. The dashed line represents the force output at
end of training (average of last 5 error-clamp trials across all subgroups). The output started
higher for subjects that acquired the task recently, and decayed slowly during test of recall in all
subgroups. Bin size is one trial. B, Magnitude of the memory as a function of time since acqui-
sition. Each bar plot represents the initial force output (bin size is two trials) averaged across
subjects in each subgroup (error bars are SEM). C, Fragility of the memory. Force output as a
function of trial for each subject was fitted to a single exponential. The decay rates, shown here
as mean � SEM, did not change with passage of time.
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training, the motor output changed considerably. Whereas at 0
and 2 min after A�B training the motor output rose from zero to
meet A, at 10 min and beyond the force output started out signif-
icantly higher than zero (Fig. 3B): first trial was not significantly
different from zero at 0 min (t test, p � 0.595) and at 2 min (t test,
p � 0.451). However, force output was significantly higher than
zero for all other test periods (t test, p � 0.005). Whereas at 0 and
2 min after acquisition A�B converged onto A, at 10 min and 1 h,
performances no longer converged: a repeated-measures
ANOVA on the last four trials of the test session revealed a sig-
nificant difference between A and A�B groups at 10 min (F(1,14)

� 5.37, p � 0.036) and 1 h (F(1,18) � 5.69, p � 0.028). Therefore,
the patterns of “spontaneous recovery” changed drastically
within minutes after A�B training.

The change in the pattern of spontaneous recovery could
not have been attributable to the effects of time on memory of
A, because data in experiment 1 suggested that fragility of A
did not change significantly with passage of time. It is likely
that the changes were attributable to effects of time on mem-
ory of B. To estimate how the passage of time affected the
magnitude and sensitivity of B, we used a bootstrapping pro-
cedure to estimate B at each time point and each trial after
A�B training. We selected a subject at random from each
of the A and A�B groups and subtracted their force output
for each trial, i.e., B̂ � (A � B) � A (see Materials and
Methods).

The results, plotted in Figure 4 A, illustrate two points.

First, when subjects were away from the task (what we termed
inactive memory), passage of time caused forgetting. How-
ever, the rate of this forgetting was much faster for memory of
B than memory of A (Fig. 4 B). For example, the two memories
appeared to be equal in magnitude at 0 and 2 min, yet B was
significantly smaller at 10 min, 1 h, and 6 h (0 min: F(1,57) �
0.009, p � 0.924; 2 min: F(1,55) � 0.176, p � 0.676; 10 min:
F(1,56) � 30.692, p � 0.05; 1 h: F(1,60) � 58.244, p � 0.05; 6 h:
F(1,59) � 11.401, p � 0.05). Second, when subjects were
brought back to the task (what we termed reactivated mem-
ory), immediately after acquisition the reactivated memory of
B was far more fragile than A, but with passage of time it
gained stability. For example, at 0 and 2 min after acquisition,
the reactivated memory of B displayed a decay (loss per trial)
that was five times the rate of decay of memory of A (Fig. 4C).
However, at 10 min, the memory of B had a decay rate that was
no different from A. This increased resistance was maintained
for as long as the memory of B could be assayed (6 h). There-
fore, memory of B started out fragile (large loss per trial), but
then appeared to be transformed with passage of time to a
more stable memory (small loss per trial).

Together, these two observations suggest that at 0 and 2 min
after acquisition, the reactivated memory of B was fragile, be-
cause it decayed rapidly as a function of time/trial. However, if
that memory was not activated, it lost much of its content within
10 min, but the remaining content gained stability.

Figure 3. The patterns of spontaneous recovery. A, In the A�B group, the 20 B trials were sufficient to bring the motor output to baseline, as assayed at 0 or 2 min. Yet, in the subsequent
error-clamp trials, output spontaneously rose and precisely converged to the output of group A. B, At 10 min after A�B acquisition and for all subsequent time intervals, motor output no longer
started at zero and no longer rose during the error-clamp trials. All data points are mean � SEM. Bin size is one trial.
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A model of motor memory consolidation
We observed that (1) after long-term training in A, brief exposure
to B produced apparent extinction, but at 0 and 2 min error-
clamp trials produced spontaneous recovery; (2) the rate of decay
of an active memory (i.e., reaching with the robot) was two orders
of magnitude greater than that of an inactive memory (i.e., simple
passage without reaching with the robot); and (3) in the inactive
state, over time, the initially fast memory of B was partially trans-
formed into a more stable memory. The first observation is a
fundamental prediction of a multistate memory model (Smith et
al., 2006; Kording et al., 2007). This model is illustrated by the
graphical representation in Figure 5A: the learner assumes that
the environment has multiple states (here represented by a fast
and a slow state), and that his/her observations are a sum of these
states. However, to account for the second and third observa-
tions, we need to make a distinction between the condition in
which the learner can observe the environment (learning from

the environment through observations, active memory) and the
condition in which the learner is outside the context of the envi-
ronment (passage of time, inactive memory).

The simplest generative model that best accounted for our
data had a state transition matrix in the active state that was
diagonal, Aa � [0.984, 0; 0, 0.855], and a nondiagonal transition
matrix in the inactive state, Ai � [0.9999, 0.0043; 0, 0.983], where
x (t � � ) � Ax (t ) � � and � � 6 s (typical intertrial interval in the
test period). The nondiagonal transition matrix in the inactive
condition is essential to reproduce the result that, with passage of
time, the initially fast memory of B gains stability. However, the
change in the model from the active to inactive condition is a bit
unsettling because it raises the possibility that, even in the acti-
vated state, the fast memory states may be transformed into slow
states. Our experiment had no power to detect this possible trans-
formation during the active state of the memories, and we there-
fore stayed with the simplest approach and kept the transition

Figure 4. The effect of reactivation of memory as a function of time since acquisition. A, Force output as a function of trial after acquisition of A versus after acquisition of B. To estimate the memory
of B, we used a boot-strapping procedure to subtract performance of the A group from the A�B group. The memory of B is a result of only 20 training trials. This memory at 0 and 2 min after
acquisition is fragile in the sense that when activated in error-clamp trials it decays rapidly to baseline. However, at 10 min and beyond it acquires an increased resistance to trial. By 24 h, the memory
of B is no longer measurable. B, Magnitude of memories of A and B as a function of time since acquisition. Each bar plot represents the initial force output (bin size is two trials) averaged across
subjects in each subgroup. Error bars are SEM. With passage of time, the memory of A declines gradually, whereas memory of B declines rapidly. C, Fragility of the memory. Force output as a function
of trial for each subject was fitted to a single exponential (shown as mean � SEM). Within minutes after acquisition, the memory of B became more resistant to trial.
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matrix in the active state diagonal. How-
ever, we noted the possibility of the trans-
formation of the fast to slow states in the
active condition with a dotted arrow in
Figure 5A.

In Figure 5B, the data are replotted with
the resulting curves from the model (we es-
timated the goodness of fit of the model to all
of the data with an omnibus R2 � 0.83, p �
0.001). The model provided a reasonable fit
to the data at 0, 2, and 10 min and 1 and 6 h
groups. However, forgetting rates for the in-
active state were smaller than expected for
the 24 h group. This raises the possibility that
sleep may play a role in further stabilizing the
motor memories, something that would be
consistent with some (Huber et al., 2004) but
not all previous results in reach adaptation
(Donchin et al., 2002).

Discussion
We trained people to reach with tool A
until performance approached an asymp-
tote (�400 trials in a single direction). We
then quantified properties of this memory
as it was reactivated in error-clamp trials,
i.e., trials in which error-dependent learn-
ing was minimized. We made three obser-
vations. (1) With passage of time (24 h),
memory of A gradually declined, but when
reactivated it remained resistant to trial.
This resistance did not change with pas-
sage of time. (2) When dynamics of the
tool were suddenly changed to B for 20
additional trials, the large performance er-
rors brought the motor output back to
baseline, demonstrating an apparent un-
learning or extinction. When we assayed
performance at 0 or 2 min after A�B
training, we found that within 30 error-
clamp trials (�2 min) the motor output
increased from baseline until it converged
to that of subjects who had trained in A
only. The magnitude of the spontaneous
recovery suggested that the large perfor-
mance errors introduced by B could not
have produced any unlearning of A.
Rather, it installed a memory that com-
peted with A. This competing memory, termed “memory of B,”
was initially fragile in the sense that when reactivated, it decayed
to zero within 30 trials. (3) Within 10 min after A�B training,
reactivation produced a changed pattern of spontaneous recov-
ery. The nature of these changes suggested that with the passage
of time, the memory of B gained stability.

To encapsulate these results, we suggested a new model of motor
memory (Fig. 5A). Acquisition of a motor memory not only de-
pends on processes that have multiple timescales, as has been pro-
posed previously (Smith et al., 2006; Kording et al., 2007), but that
during the inactive state, i.e., when time passes outside the context of
the task, the fast states partially transform to slower states.

Our conclusions depend crucially on the assumption that
memory of B can be assayed through mathematical subtraction of
A from A�B. This assumption was tested at 0 and 2 min after

A�B training, in which we observed that performance of A�B
group rose from zero and converged to A. The convergence is a
strong hint that there is superposition of the two memories. The
convergence could not occur unless learning of B left memory of
A virtually untouched.

If we now hypothesize that performance errors can produce
unlearning in only the fast memory and not the slow memory, the
resulting theory may explain a large set of apparently conflicting
results. We had initially reported that if task A was followed by
task B, subjects exhibited naive performance when retested on
task A some days later (Shadmehr and Brashers-Krug, 1997).
However, inserting a few hours between tasks A and B allowed for
recall of A. Caithness et al. (2004) and Mattar and Ostry (2007)
performed similar experiments but observed that, despite 24 h
between A and B, there was no recall of A. Overduin et al. (2006)

Figure 5. Active/inactive multistate model of motor learning. A, A generative model, describing the learner’s hypothesis about
the task. As in previous generative models (Kording et al., 2007), the learner assumes that the environment is composed of states
with multiple timescales (two timescales are considered here, labeled fast and slow), and the problem of learning is state
estimation. In the active condition (left), the learner can sample the environment (i.e., subject is using the tool) and learns from
observation. In the inactive condition (right), the learner is not in the context of the task and therefore cannot sample the
environment. Passage of time affects the two conditions differently, as specified by the state transition matrices Aa and Ai,
referring to the active and inactive conditions, respectively. We assumed that Aa is diagonal but Ai allows for transformation of a
portion of the fast states into the slow states. In total, there were five parameters in this model (components of the two matrices).
B, Output of the model compared with the measured data. Aa � [0.984, 0; 0, 0.855] and AI � [0.9999, 0.0043; 0, 0.983]. Error bars
indicate SEM.
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reproduced both results and explained that the key difference was
the presence of “catch trials,” i.e., trials in which the dynamics
were unexpectedly returned to null, causing occasional large er-
rors, especially near the end of training. The important questions
are why should learning of A with catch trials make it more vul-
nerable to B at 0 min than 6 or 24 h? Why should removal of catch
trials fundamentally alter this time dependency?

Our theory explains that learning with catch trials produces a
memory of A that contains a significant amount of the fast com-
ponent (because of the large errors that catch trials produce).
Learning of B probably destroys the fast memory at 0 min, but
with passage of time, the fast memory of A is transformed to slow,
becoming less vulnerable to B. This explains results of Brashers-
Krug et al. (1996) and Shadmehr and Brashers-Krug (1997), be-
cause both studies used catch trials. However, if learning of A is
without catch trials, then extended training in A produces a
memory that is slow, making it resistant to B at all times. In that
scenario, learning of B always installs a competing memory. No
matter when the task is assayed, both memories are present and
will compete, explaining the results of Caithness et al. (2004),
Mattar and Ostry (2007), and Overduin et al. (2006). Indeed,
Krakauer et al. (2005) showed that when training is without catch
trials, there is robust recall of A if subjects are provided with
washout trials before testing of recall. As they noted, naive per-
formance is not because A is gone, but because both A and B are
present and competing.

Our theory also explains why a relatively small amount of
training in A produces a memory that is vulnerable to B at 0 min
but less vulnerable at 24 h, yet a longer amount of practice pro-
duces a memory that is invulnerable both at 5 min and at 24 h
(Krakauer et al., 2005). A small amount of training installs a fast
memory, making it vulnerable to B at 5 min, whereas longer
training installs a slow memory, making it invulnerable to B at all
times.

The fundamental prediction of our theory is that once train-
ing installs a slow motor memory, it may not be possible to un-
learn it through performance errors. Our current understanding
of the biology of memory supports this idea. Retention of a motor
skill (Bracha et al., 1998; Luft et al., 2004a,b) requires synthesis of
new proteins. If unlearning is the formation of a new memory
trace and not erasure of the original learning, then it should also
require de novo protein synthesis for its long-term retention. A
number of paradigms have examined this question. In inhibitory
avoidance training (Vianna et al., 2001), conditioned taste aver-
sion (Berman and Dudai 2001, Burgos-Robles et al., 2007), and
classical conditioning of eyelid response (Inda et al., 2005), un-
learning is termed “extinction.” In all cases, retention of the ex-
tinction memory (what we termed memory of B here) requires
new protein synthesis, suggesting that unlearning is spawning of
a new, competing memory, not erasure of the existing memory.

Our finding that memory of B is a fast memory that over time
is transformed into a slow, stable memory closely parallels the
conclusions of studies that have attempted to disrupt the extinc-
tion memory. Berman and Dudai (2001) found that whereas in-
jection of anisomycin at 10 min after extinction training dis-
rupted later recall of the extinction memory, at 30 min the drug
had no effect on consolidation of the extinction memory. From
our point of view, the extinction memory is analogous to the
memory of B, which starts as a fast, vulnerable memory. Berman
and Dudai (2001) found that within minutes after acquisition,
this extinction memory gains resistance. In our data, we see that
within 10 min after exposure to B, the resistance of memory of B
to trial has more than doubled.

Because all of our conclusions are based on measurements in
error-clamp trials, it is important to consider how this method of
assaying memory differs from traditional approaches in which
testing is either via aftereffects, or in the same type of trials as the
original learning. In error-clamp trials, we can measure both the
magnitude of the reactivated memory via motor output and its
resistance to change via the derivative of the motor output with
respect to trials. Whereas in a catch trial we would be assaying an
aftereffect, in an error-clamp trial we are measuring the afteref-
fect but minimizing the error-dependent change that is caused by
the aftereffect. In the traditional approach, retention is assayed
via “savings” in which trials provide error feedback, resulting in
faster relearning. Therefore, the motor output in error-clamp
trials can be viewed as the bias from which the relearning curve
would start in the traditional savings experiment.

Consolidation of motor memory has now been investigated in
the reaching paradigm for 	10 years, with sometimes conflicting
results. Our results here provide a way to account for much of
that data. Motor memory can exist in two functional states, a fast
and a slow state. With passage of time away from the task, some of
the fast state may be transformed into a slow state. Furthermore,
once a slow motor memory has been established, large perfor-
mance errors may not be able to change it.

Is the neural circuit for the fast and slow motor memories the
same? We recently reported that brief disruption of M1 during
adaptation did not affect rates of adaptation, but produced a
memory that decayed more rapidly than normal (Hadipour-
Niktarash et al., 2007). It is possible that M1 has a particularly
important role for the slow human motor memory (Richardson
et al., 2006), although the question of whether the neural basis of
the fast memory is distinct has yet to be determined.

It appears that a typical long period of training (without catch
trials) is sufficient to produce a slow motor memory, and subse-
quent performance errors do not erase his memory, but install a
competing memory. The general implication of our work is that
once a motor skill has been well learned, all additional learning
may be instantiation of competing memories. This suggests that
in biology, the cost of unlearning may be much higher than
learning.
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