JHU BME


Laboratory for Computational
Motor Control


Research Overview

 

Publications

 

Courses

 

Journal Club

 

Brain Imaging

 

Lab Members


Lab Scrap Book

Volunteering

 

 

 

 

 

 

We are lucky to live in an age in which we are still making discoveries.  It is like the discovery of America—you only discover it once.  The age in which we live is the age in which we are discovering the fundamental laws of nature.”

Richard Feynman, 1964

 

The brain sciences are in their infancy.  The fundamental properties of the brain, how it controls our movements, how it learns, are just starting to be understood.  Our goal is to help discover these laws, and through it learn more about ourselves and diseases that affect our ability to control our actions.

 

Computational and neural mechanisms of human motor control

The lab members are engineers, physicists, and physicians, working together to understand the brain. We are intrigued by how the brain controls movements. We find it amazing that despite the fact that neurons are noisy, slow transducers of information, we exhibit effortless grace in how we move our arm, our eyes, and use our hands to interact with objects. As engineers who build robots, we appreciate the enormous complexity of these graceful acts:  our environment and our body are constantly changing, which means that our brain must be constantly adapting to maintain the control the makes the graceful movements possible.  How is this adaptation, this learning that occurs below our level of consciousness, done?  What parts of the brain are involved in storing the representation?  With the passage of time, does the representation change? What kind of mathematics should we use to describe the computations?  When there is damage to the brain, how does it affect control? Can we accelerate the process of relearning control?

We use tools from robotics, computational neuroscience, neurophysiology, and brain imaging to discover the principles of motor control in humans. Our approach stresses a close integration between control theory and neuroscience. We are driven to understand the nature of the biological computations that underlie the control of movements. We use the following tools to understand human motor control:

  Psychophysics
  Mathematical modeling
  Brain imaging
  Neurophysiology

We couple this effort with the study of motor disorders in patient populations in order to discover the functional anatomy of the motor control system. One of our more recent projects involves the design and engineering of a new class of robotic arms. This robot allows us to investigate the neural basis of motor control of arm movements in humans both during neurosurgery and during FMRI experiments.  During neurosurgery, we investigate motor control and learning by recording from neurons in patients who are undergoing a brain mapping study.

Because the brain is fundamentally a learning system, understanding the systems architecture of how it learns motor control is a central theme in our lab. We use robots to produce novel dynamical systems that subjects learn to control. We program the mechanical impedance of the robot and produce force-field based environments. Subjects explore these environments by moving the handle of the robot. With practice, their brain builds an internal model of the robot's dynamics and adapts to the environment. One goal is to understand the computational properties of this adaptive controller and implicate the neural systems responsible for its representation.

As we make progress in discovering how a specific neurological disorder affects information processing in the motor control system, we gain insight into methods of redirecting the learning capabilities of the brain through focused rehabilitation.

Driving directions to the lab.